JPH04167073A - Channel wiring processing method - Google Patents

Channel wiring processing method

Info

Publication number
JPH04167073A
JPH04167073A JP2296872A JP29687290A JPH04167073A JP H04167073 A JPH04167073 A JP H04167073A JP 2296872 A JP2296872 A JP 2296872A JP 29687290 A JP29687290 A JP 29687290A JP H04167073 A JPH04167073 A JP H04167073A
Authority
JP
Japan
Prior art keywords
channel
obstacle
vertex
lines
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2296872A
Other languages
Japanese (ja)
Inventor
Masahiko Kuretsubo
正彦 暮坪
Kazuhiro Takahashi
一浩 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2296872A priority Critical patent/JPH04167073A/en
Publication of JPH04167073A publication Critical patent/JPH04167073A/en
Pending legal-status Critical Current

Links

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a high connection rate even if there is an obstacle in a channel by preferentially assigning main lines which are small in the number of assignable tracks. CONSTITUTION:The terminals of cell arrays 1 and 2 arranged on a substrate are connected by using main lines 11a - 14a assigned for tracks in the channel 3 between the cell arrays 1 and 2 while the obstacle 4 in the channel 3 is by- passed. Then a position restriction graph including a main line 13a which is not under position restrictions, main lines 12a and 14a which are restricted by other main lines, and the obstacle 4 in the channel is generated and the respective main lines 11a - 14a and obstacle 4 are weighted and given order. Therefore, the main line 11a whose assigned truck is restricted by the obstacle 4 can be assigned preferentially to other main lines 12a - 14a. Consequently, the high connection rate is obtained even when there is the obstacle 4 in the channel.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は基板上に配置されたセル列の端子同士を接続す
るための複数の配線をセル列間のチャネルのトラックに
チャネル内障害物を避けつつ自動的に割り付け得るよう
にしたチャネル配線処理方法に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention provides a method for connecting a plurality of wires for connecting terminals of cell rows arranged on a substrate to tracks of channels between cell rows to prevent obstructions in the channels. The present invention relates to a channel wiring processing method that enables automatic allocation while avoiding the problem.

〔従来の技術〕[Conventional technology]

第1図は基板上に形成したセル列及びその間のチャネル
を示す模式図であり、セル列1における端子18〜1d
とセル列2における端子28〜2dとを、例えば端子2
aとlb、 laと2c、2bとld、 Icと2dの
組合せで結線する場合、4本の配線11.12.13.
14をチャネル内に割り付けるが、従来にあってはこの
割り付けを次の如き手順で行っていた。
FIG. 1 is a schematic diagram showing cell rows formed on a substrate and channels between them, and shows terminals 18 to 1d in cell row 1.
and terminals 28 to 2d in cell row 2, for example, terminal 2
When connecting a and lb, la and 2c, 2b and ld, and Ic and 2d, four wires 11.12.13.
14 is allocated within the channel. Conventionally, this allocation was performed in the following procedure.

即ち、第1図において破線で示す如くチャネル3内に配
線を置くことが可能な位置である配線格子8を設定し、
障害物4を避けてセル列1,2と平行な向きの格子、即
ちトラック98〜9dには配線における幹線11a〜1
4aを、またセル列1.2と直交する向きの格子、即ち
カラム10a〜10mには支線11b、12b =14
b 、llc〜14cを夫々割り付ける。
That is, as shown by the broken line in FIG. 1, a wiring grid 8 is set at a position where wiring can be placed within the channel 3,
The main lines 11a to 1 in the wiring are placed in the grid, that is, in the tracks 98 to 9d, which are parallel to the cell rows 1 and 2 while avoiding the obstacles 4.
4a, and branch lines 11b, 12b = 14 for grids oriented orthogonally to cell row 1.2, i.e. columns 10a to 10m.
b, llc to 14c are allocated, respectively.

ところで例えば第1図においては、セル列1の端子1c
とセル列2の端子2cとは同じカラム10に上に位置す
るから、支!5112c、14bが重ならないためには
幹線12aと14aとは幹線14aを幹線12aよりも
セル列1側寄りのトラックに、換言すれば幹線12aを
幹線14aよりもセル列2側寄りのトラックに割り付け
る必要がある。他の幹線11a、13cについては、相
互の間及び幹線12a、 14aとの間においてこのよ
うな配慮は不要である。
By the way, in FIG. 1, for example, the terminal 1c of the cell row 1
and terminal 2c of cell row 2 are located above in the same column 10, so support! 5112c and 14b do not overlap, the trunk lines 12a and 14a are allocated to a track closer to the cell row 1 side than the trunk line 12a, or in other words, the trunk line 12a is allocated to a track closer to the cell row 2 side than the trunk line 14a. There is a need. Regarding the other main lines 11a and 13c, such consideration is not necessary between each other and between the main lines 12a and 14a.

そこでこのような位置制約関係を第5図に示す如き有向
グラフを用いた位置制約グラフとして表わす。位置制約
グラフは4本の配線11〜14の各幹線11a、 12
a、 13a、 14aを夫々表わす頂点■〜Oについ
て、位置制約関係がある頂点■、Oについては例えば上
、下方向に適長離して配置し、相互の間に頂点0から頂
点■に向かう矢印を付して連結関係を表わし、他の頂点
■、0についてはこれとは無関係に横に並べて配置しで
ある。
Therefore, such a position constraint relationship is expressed as a position constraint graph using a directed graph as shown in FIG. The position constraint graph shows each of the main lines 11a and 12 of the four wires 11 to 14.
Regarding the vertices ■ to O representing a, 13a, and 14a, respectively, the vertices ■ and O that have a positional constraint relationship are placed at appropriate distances in the upward and downward directions, and an arrow pointing from vertex 0 to vertex ■ is placed between them. is attached to represent the connection relationship, and the other vertices ① and 0 are arranged side by side regardless of this.

例えば第5図において連結成分である頂点0→θの関係
は前述した如く頂点0は頂点θよりもセル列1側寄りの
トラックに、換言すれば頂点0は頂点Oよりもセル列2
側寄りのトラックに割り当てることを意味している。他
の頂点■、0についてはこのような制約のない独立した
成分である。
For example, in FIG. 5, the relationship between vertex 0 → θ, which is a connected component, is as described above. Vertex 0 is located on the track closer to cell row 1 than vertex θ.
This means assigning it to a truck closer to the side. The other vertices (2) and 0 are independent components without such restrictions.

次にトラック98〜9dのいずれにどの順序で配線11
〜14の幹線11a〜14aを割り付ける順位を定める
。順位は第5図のグラフにおいて、矢印が入線していな
い頂点、■、0.0を始点とし、この始点から矢印に沿
って他の頂点■に至る経路に含まれる全ての頂点の個数
(第5図では1個)を各頂点の順位とし、順位を示す数
値が大きい頂点から順次小さい頂点へ割り付けを行う。
Next, in which order is the wiring 11 placed on any of the tracks 98 to 9d?
The order in which to allocate the 14 main lines 11a to 14a is determined. In the graph of Figure 5, the ranking is based on the number of all vertices included in the path from this starting point to another vertex (■) along the arrow, starting from the vertex where the arrow does not enter, ■, 0.0. 5) is taken as the rank of each vertex, and the vertices are sequentially allocated from the highest numerical value to the lowest numerical value indicating the rank.

即ち第5図のグラフにおいて、頂点■、O及び0には矢
印が入線していないから、これらを夫々始点として矢印
をたどるが、頂点■、0,0は始点であるから、いずれ
も順位は“1″であり、また頂点■は同様に順位が“2
”である、従ってトラックへの割り付けは先ず頂点θが
示している幹線12aを優先し、その後頂点■、0.0
が示す幹線、即ちlla、 13a、 14aについて
行う。順位が同じ場合はいずれの幹線から割り付けを行
ってもよい。
In other words, in the graph of Figure 5, no arrows enter the vertices ■, O, and 0, so the arrows are traced using these as starting points, but since the vertices ■, 0, and 0 are starting points, the rankings for all of them are The rank is “1”, and the vertex ■ is also ranked “2”.
”, therefore, the allocation to the tracks first gives priority to the main line 12a indicated by the vertex θ, and then the vertices ■, 0.0
This is done for the main lines indicated by , lla, 13a, and 14a. If the rankings are the same, allocation can be made from either trunk line.

次に上記した如くに定めた順位に従って配線の幹線11
a〜14aの配線手順を第6図に示す如きフローチャー
トに従ってチャネル98〜9dに割り付ける。
Next, the main line 11 of the wiring according to the order determined as described above.
The wiring procedure for a to 14a is assigned to channels 98 to 9d according to the flowchart shown in FIG.

第6図は従来方法による配線の割り付け過程を示すフロ
ーチャートであり、先ずセル列1.2の各端子18〜l
d、 2a〜2dを結ぶための配線11〜14の幹線及
び支線のデータであるチャネル内の幹線情報に基づいて
、第5図に示すのと同じ態様で幹線をチャネル内のトラ
ックに割り付ける際の割り付け位置に関する幹線相互の
間の位置制約を、各幹線を頂点とし、上、下方向の制約
を矢印で表現した有向グラフとしてを作成する(ステッ
プTl)。
FIG. 6 is a flowchart showing the wiring allocation process according to the conventional method.
d, when allocating trunk lines to tracks within a channel in the same manner as shown in FIG. Positional constraints between trunk lines regarding allocation positions are created as a directed graph in which each trunk line is a vertex and upward and downward constraints are expressed by arrows (step Tl).

次にこの有向グラフとして表わした位置制約グラフに基
づいて、頂点のうちいずれの矢印も入線しない頂点を始
点としたとき、この始点から矢印をたどって他の頂点に
至る経路に含まれる全頂点の個数を前記頂点の順位とす
るトラックへの割り付け順位の決定を行う (ステップ
T2)。
Next, based on this positional constraint graph expressed as a directed graph, if a vertex that no arrow enters among the vertices is the starting point, the number of all vertices included in the path from this starting point to other vertices by following the arrow. The order of allocation to the tracks is determined by making the order of the vertices to be the order of the vertices (step T2).

トラックへの割り付けが未だ行われておらず、しかもト
ラックへの割り付け可能な幹線が有るか否かを判断しく
ステップT3)、幹線が有る場合には対応する頂点の順
位を示す値が最も大きい頂点と対応する幹線を優先して
出来るだけセル列2側寄りのトラックに割り付け、・そ
の幹線に対応した頂点を位置制約グラフから削除する(
ステップT4)。
It is determined whether or not there is a trunk line that has not been allocated to a track yet and can be allocated to a track (step T3). If there is a trunk line, the vertex with the largest value indicating the rank of the corresponding vertex Give priority to the main line corresponding to , and assign it to the track as close to cell column 2 as possible, and delete the vertices corresponding to that main line from the position constraint graph (
Step T4).

再びステップT3にもどって幹線の有無を判断し、有る
場合は前述した過程を反復し、また幹線が無い場合は終
了する。
Returning again to step T3, it is determined whether or not there is a main line, and if there is, the above-described process is repeated, and if there is no main line, the process ends.

第7図は前述した如き従来の配線処理方法に従って配線
された結果を示す模式図であり、先ず順位を示す数値が
“2”であって最も高い頂点■に対応する幹線12aを
セル列2に最も近いトラック9dに割り付ける。他の頂
点■、0.0の順位はいずれも“l”であるから、単純
に前述した過程を反復して、頂点0.0に対応する幹線
f3a、14aを夫々トラック9c、 9bに割り付け
得る。しかし頂点■に対応する幹線11aついては割り
付け得るトラックが存在しない状態のまま、割り付けを
終了してまうこととなる。
FIG. 7 is a schematic diagram showing the result of wiring according to the conventional wiring processing method as described above. First, the main line 12a corresponding to the highest vertex (1) whose numerical value indicating the rank is "2" is connected to cell column 2. It is assigned to the nearest track 9d. Since the rankings of the other vertices ■ and 0.0 are both "l", it is possible to simply repeat the above process and assign the main lines f3a and 14a corresponding to the vertex 0.0 to the tracks 9c and 9b, respectively. . However, for the main line 11a corresponding to the vertex {circle around (2)}, the allocation ends with no track available for allocation.

この結果第7図に示す如く、幹線12a、 13a、 
14aについては支障なく割り付けられるが、幹線11
aについては割り付けることが出来ない状態となってし
まう。
As a result, as shown in FIG. 7, the main lines 12a, 13a,
14a can be allocated without any problem, but main line 11
As for a, it becomes impossible to allocate it.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述した如き従来方法にあっては、チャネル内に障害物
が存在する場合は、その障害物を考慮することな(幹線
をトラックに割り付けているため、トラックの使用効率
が悪く、配線不能状態となる幹線の数が多く、結線率が
低下し、これを解消するためには多くのトラックが必要
となる等の問題があった。
In the conventional method as described above, if there is an obstacle in the channel, the obstacle is not taken into consideration (because the main line is assigned to the track, the track usage efficiency is poor and the wiring is not possible). There were problems such as a large number of trunk lines, a reduction in connection efficiency, and the need for many trucks to solve this problem.

本発明はかかる事情に鑑みなされたものであって、その
目的とするところは位置制約グラフにチャネル内の障害
物に対応した頂点を設定してこれにも順位を付与し、障
害物の存在及び支線相互の干渉等の不都合を回避するた
めに、割り付けに際して制約を受ける幹線、換言すれば
割り付け可能なトラック数の少ない幹線を優先して割り
付けることで、チャネル内に障害物があっても高い結線
率が得られるようにしたチャネル配線処理方法を提供す
るにある。
The present invention has been made in view of the above circumstances, and its purpose is to set vertices corresponding to obstacles in the channel in a position constraint graph and assign ranks to these vertices, so as to detect the presence of obstacles. In order to avoid inconveniences such as mutual interference between branch lines, priority is given to trunk lines that are subject to restrictions during allocation, in other words trunk lines with a small number of allocatable tracks. An object of the present invention is to provide a channel wiring processing method that allows a high efficiency to be obtained.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係るチャネル配線処理方法は各幹線のうち、位
置制約を受けない幹線、及び他の幹線によって制約を受
ける幹線、及びチャネル内障害物を含む位置制約グラフ
を作成し、各幹線及び障害物夫々に重みを付けて順位を
付与する。
The channel wiring processing method according to the present invention creates a position constraint graph that includes trunks that are not subject to position constraints, trunks that are constrained by other trunks, and obstacles in the channel, and Give weight to each item and rank them.

〔作用〕[Effect]

本発明にあってはこれによって、障害物によって割り付
けるべきトラックが制約を受ける幹線を、他の幹線より
も優先して割り付けることが可能となる。
According to the present invention, it is thereby possible to allocate a trunk line whose tracks to be allocated are restricted by an obstacle with priority over other trunk lines.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づき具体的に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on drawings showing embodiments thereof.

第1図は本発明方法を適用すべき基板に形成したセル列
及びその間のチャネルを示す模式図であり、図中1.2
はセル列、3はチャネルを示している。前述した如く第
1図においてセル列1の端子1a〜1dとセル列2の端
子2a〜2dとをチャネル3に割り付けた配線11〜1
4により結線する場合、チャネル3に設定した配線格子
8のうちセル列1゜2と平行な向きの格子、即ちトラッ
クに幹線11a〜14aを、またセル列1.2と直交す
る向きの格子、即ちカラム10a 〜IOs+に支線1
1b ”14b、llc〜14cを配置するものとする
と配線11〜14の幹線11a−14a間は次のような
位置の制約が必要となる。
FIG. 1 is a schematic diagram showing cell rows formed on a substrate to which the method of the present invention is applied and channels between them.
indicates a cell column, and 3 indicates a channel. As mentioned above, in FIG. 1, the wirings 11 to 1 in which terminals 1a to 1d of cell row 1 and terminals 2a to 2d of cell row 2 are assigned to channel 3
4, among the wiring grids 8 set in channel 3, a grid oriented parallel to cell row 1.2, that is, a grid with main lines 11a to 14a in the track, and a grid oriented perpendicular to cell row 1.2, That is, branch line 1 is connected to columns 10a to IOs+.
1b'' 14b and llc to 14c, the following positional restrictions are required between the main lines 11a to 14a of the wirings 11 to 14.

例えば幹線11aについては障害物4の下のトラック9
dを用いなければ配置出来ないから、チャネル内障害物
4と幹線11aとの間には障害物4よりも幹線11aを
セル列2側寄りに配設するという位置制約が必要となり
、また支線12cと14bとは同じカラムIOKを用い
て配置するから、支線12c、 14bが重複しないた
めに幹線14aよりも幹線12aをセル列2側寄りに配
置する位置制約が必要となる。
For example, for the main line 11a, the track 9 under the obstacle 4
d cannot be placed without using the branch line 12c, it is necessary to place the main line 11a closer to the cell row 2 side than the obstacle 4 between the in-channel obstacle 4 and the main line 11a, and the branch line 12c and 14b are arranged using the same column IOK, so that the main line 12a is arranged closer to the cell row 2 side than the main line 14a so that the branch lines 12c and 14b do not overlap.

他の幹線13aについては幹線11a、 12a、 1
4a及び障害物4との間にこのような位置制約は生じな
い。
Regarding other trunk lines 13a, trunk lines 11a, 12a, 1
4a and the obstacle 4, no such positional restriction occurs.

このような事実に基づき、第2図に示す如き有向グラフ
として表わした位置制約グラフを作成する。
Based on these facts, a position constraint graph expressed as a directed graph as shown in FIG. 2 is created.

第2図においての、0.0.0は前記各幹線11a。In FIG. 2, 0.0.0 represents each trunk line 11a.

12a、 13a、 14aに対応する頂点、■は障害
物4に対応する頂点を示している。グラフ中■−のは前
述した障害物4と幹線11aとの関係を、また0−■は
幹線12a、 14aの位置制約関係を表わす連結成分
であり、一方頂点0はこのような制約関係のない独立し
た成分である。
The vertices corresponding to 12a, 13a, and 14a, and ■ indicate the vertex corresponding to the obstacle 4. In the graph, ■- represents the relationship between the aforementioned obstacle 4 and trunk line 11a, and 0-■ represents the positional constraint relationship between trunk lines 12a and 14a, while vertex 0 represents a connected component that does not have such a constraint relationship. It is an independent component.

次にこのような位置制約グラフに基づき各頂点■〜0及
び■に重み及び順位を付ける。重みは各頂点■〜0につ
いては夫々重みは“l”、頂点■は第1図において障害
物4とオーバーランプするトラック9a、 9b、9c
の数“3”を重みとする。順位はこれら矢印の入線がな
い頂点を始点とし、各始点から矢印をたどって他の各頂
点に至る経路に含まれる頂点の重みの和を当該頂点の順
位とする。
Next, weights and rankings are assigned to each of the vertices ① to 0 and ② based on such a positional constraint graph. The weight is "l" for each of the vertices ■ to 0, and the vertex ■ is the track 9a, 9b, 9c that overlaps the obstacle 4 in FIG.
The number “3” is used as a weight. The ranking is determined by starting from a vertex to which these arrows do not enter, and by the sum of the weights of the vertices included in the route from each starting point to each other vertex by following the arrow.

例えば頂点■の順位は、頂点■の重み3”と頂点■の重
み“1”の和である“4”、同様に頂点0,0の順位は
夫々“ビ、頂点■の順位は“2”であり、この順位を示
す値が大きい頂点と対応する幹線の割り付けを他の幹線
に優先して行う。
For example, the rank of vertex ■ is "4" which is the sum of the weight of vertex "3" and the weight of vertex "1", similarly, the rank of vertices 0 and 0 is "bi" respectively, and the rank of vertex ■ is "2". , and trunk lines corresponding to vertices with a large value indicating this rank are allocated with priority over other trunk lines.

次にこの順位に基づいて、配線を行うがこの配線処理を
第3図に示すフローチャートに従って説明する。
Next, wiring is performed based on this order, and this wiring process will be explained according to the flowchart shown in FIG.

第3図は本発明方法の処理過程を示すフローチャートで
ある。先ず、幹線情報に基づいてチャネル内のトラック
に割り付ける際の割り付け位置に関する幹線の位置の制
約を、幹線、障害物を夫々頂点とし上、下関係を矢印で
表現した有向グラフである位置制約グラフを作成する(
ステップSt)。
FIG. 3 is a flowchart showing the processing steps of the method of the present invention. First, create a position constraint graph that is a directed graph that expresses the trunk position constraints regarding the allocation position when allocating to tracks in a channel based on trunk information with trunks and obstacles as vertices, and upper and lower relationships with arrows. do(
Step St).

次にチャネル内障害物4によって割り付け可能なトラッ
クが制限されている幹線があるとき、前記位置制約グラ
フにチャネル内障害物を表す頂点と、この頂点から幹線
を表す頂点へ向かう矢印を追加する(ステップS2)。
Next, when there is a trunk line whose allocatable tracks are restricted by the intra-channel obstacle 4, add a vertex representing the intra-channel obstacle and an arrow pointing from this vertex to the vertex representing the trunk line to the position constraint graph ( Step S2).

位置制約グラフの各頂点に対し、結線要求をあられす頂
点の重みはいずれも“1”、チャネル内障害物を表す頂
点はその存在によって幹線を割り付ける際に制約を受け
るトラックの数をその頂点の重みとする(ステップS3
)。
For each vertex in the position constraint graph, the weight of the vertex that requests a connection is all "1", and the weight of the vertex that represents an obstacle in the channel is the number of tracks that are constrained when allocating a trunk line due to the existence of that vertex. weight (step S3)
).

次に位置制約グラフにおいて、矢印が入線していない頂
点を始点とし、この始点から矢印をたどって他の頂点に
至る経路に含まれる全頂点の重みを累積した値を前記各
頂点の順位とする(ステップS4)。
Next, in the positional constraint graph, a vertex without an arrow is taken as a starting point, and the rank of each vertex is determined as the cumulative weight of all vertices included in the path from this starting point to other vertices following the arrow. (Step S4).

未だ割り付けられておらず、しかもトラック上に割り付
け可能な幹線が有るか否かを判断しくステップS5)、
有る場合には順位が最も大きい幹線を優先して可及的に
セル列2側寄りのトラックに割り付け、その幹線に対応
した頂点を位置制約グラフから削除する(ステップS6
)。
In step S5), it is determined whether there is a trunk line that has not been allocated yet and can be allocated on the track.
If there is a main line, the main line with the highest rank is prioritized and allocated to a track as close to the cell row 2 side as possible, and the vertex corresponding to that main line is deleted from the position constraint graph (step S6).
).

再びステップS5に戻って幹線の有無を判断し、有る場
合は前述した過程を反復し、また無い場合は終了する。
Returning again to step S5, it is determined whether or not there is a main line, and if there is, the above-described process is repeated, and if there is not, the process ends.

第4図は前述した方法にで配線した結果を示す模式図で
あり、これに基づいて前述した過程を具体的に説明する
。先ず第2図に示す位置制約グラフにおいて、順位を示
す数値が最も大きい頂点は■であるから、頂点■に対応
する幹線11aをセル列2側寄りのトラック9dに割り
付ける。
FIG. 4 is a schematic diagram showing the result of wiring according to the above-described method, and the above-described process will be specifically explained based on this diagram. First, in the position constraint graph shown in FIG. 2, since the vertex with the largest numerical value indicating the rank is ■, the main line 11a corresponding to the vertex ■ is allocated to the track 9d closer to the cell row 2 side.

これによって配線11の幹線11aはトラック9d上の
カラム10bから10jにわたる間に形成され、カラム
10b上の支線11bにてセル列2の端子2aと、また
カラム10j上の支線11cにてセル列1の端子1bと
接続されることとなる。
As a result, the main line 11a of the wiring 11 is formed between columns 10b to 10j on the track 9d, and the branch line 11b on the column 10b connects to the terminal 2a of the cell row 2, and the branch line 11c on the column 10j connects the terminal 2a of the cell row 1. It will be connected to terminal 1b of.

次に順位の大きい頂点は■であるが、障害物4は既に配
置済みであるから、その次に順位の大きい頂点■に対応
する幹線12aをセル列2側寄りのトラック9cに割り
付ける。これによって幹線12aはトラック9c上のカ
ラム10jから10kにわたる間に形成され、カラム1
0.上の支線12bにてセル列lの端子1aと、またカ
ラム10に上の支線12cにてセル列の端子12gと接
続されることとなる。
The vertex with the next highest rank is ■, but since the obstacle 4 has already been placed, the main line 12a corresponding to the vertex with the next highest rank is assigned to the track 9c closer to the cell row 2 side. As a result, the main line 12a is formed between columns 10j and 10k on the track 9c, and the main line 12a is
0. The upper branch line 12b is connected to the terminal 1a of the cell row l, and the upper branch line 12c of the column 10 is connected to the terminal 12g of the cell row.

以下同様にして幹線13aはトラック9b上のカラム1
0hから11にわたる間に形成され、カラム10h上の
支線13bにてセル列2の端子2bと、またカラム1o
Il上の支線13cにてセル列1の端子1dと接続され
る。
Similarly, the main line 13a is connected to column 1 on track 9b.
It is formed between 0h and 11, and connects terminal 2b of cell row 2 at branch line 13b on column 10h, and also connects terminal 2b of cell row 2 to column 1o.
It is connected to the terminal 1d of the cell row 1 by a branch line 13c on Il.

更に幹線14aはトラック9a上のカラム10kから1
0+wにわたる間に形成され、カラム10に上の支線1
4bにてセル列lの端子ICと、またカラム10s上の
支線14cにてセル列2の端子2dと接続されることと
なり、第7図に示す如き配線不能となる幹線の発生を減
少出来て、結線率を高め得ることとなる。
Furthermore, the main line 14a is connected to columns 10k to 1 on the track 9a.
The upper branch line 1 is formed between 0+w and column 10.
4b is connected to the terminal IC of the cell row 1, and the branch line 14c on the column 10s is connected to the terminal 2d of the cell row 2, thereby reducing the occurrence of trunk lines that cannot be wired as shown in FIG. , the wire connection rate can be increased.

なお、上述の実施倒位おいては第2図において連結関係
を上から下に向かう矢印にて表わし、これに基づいて重
み及び順位を付与する場合について説明したが、逆に連
結関係を下から上に向かう矢印にて表わし、これに基づ
いて重み及び順位を付与する構成としてもよい。この場
合は順位に従ってセル列1側から幹線の割り付けを行う
こととなる。
In addition, in the above-mentioned implementation, the connection relationship is represented by an arrow pointing from the top to the bottom in Figure 2, and the case where weights and rankings are assigned based on this has been explained. It may be represented by an upward arrow, and weights and rankings may be assigned based on this. In this case, trunk lines will be allocated from the cell column 1 side according to the order.

〔発明の効果〕〔Effect of the invention〕

以上の如く本発明にあっては、位置制約グラフ内にチャ
ネル内の障害物に対応した頂点を設定し、この障害物及
び各幹線を表す頂点に重みを付し、またこの重みに基づ
く割り付け順位を付与して配線を行うこととしたから、
割り付けに制約を受ける幹線を他の幹線に優先して割り
付け得ることとなり、チャネル内に障害物が存在する場
合も高い結線率を得ることが可能となる。
As described above, in the present invention, vertices corresponding to obstacles in the channel are set in the position constraint graph, weights are assigned to the vertices representing the obstacles and each main line, and the allocation order is determined based on this weight. Since we decided to perform the wiring by giving
Trunk lines subject to allocation restrictions can be allocated with priority over other trunk lines, making it possible to obtain a high connection rate even when an obstacle exists within the channel.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の適用対象である基板上のセル列と
チャネルとを示す模式図、第2図は同じく配線の幹線相
互の位置制約関係を示すグラフ、第3図は本発明方法の
配線処理過程を示すフローチャート、第4図は本発明方
法による配線態様を示す模式図、第5図は従来の方法で
用いる位置制約グラフ、第6図は従来方法の処理過程を
示すフローチャート、第7図は従来方法による配線態様
を示す模式図である。 l・・・セル列  2・・・セル列  3・・・チャネ
ル4・・・チャネル内の障害物  11.12.13.
14・・・配線11a、12a、13a、14a ・・
・幹線11b、12b、13b、14b、llc、12
c、13c、14c ・・”支線なお、図中、同一符号
は同−又は相当部分を示す。 代理人   大   岩   増   雄第   2 
  図 □ 第   3   図 第   5   図 手続補正118) 3.補正をする者 代表者 志 岐 守 哉 5、補正の対象 明細書の「発明の詳細な説明」の欄、並びに図面 6、補正の内容 6−1明細書の「発明の詳細な説明」の(資)(11明
細書の第5頁12行目に「有向グラフとしてを作成する
」とあるを「有向グラフとして作成する」と訂正する。 (2)明細書の第6頁17行目に「幹線11aついては
」とあるを「幹線11aについては」と訂正する。 6−2図面 第4図を別紙のとおりに訂正する。 7、添付書類の目録
FIG. 1 is a schematic diagram showing cell rows and channels on a substrate to which the method of the present invention is applied, FIG. 2 is a graph showing the positional constraint relationship between main wiring lines, and FIG. Flowchart showing the wiring processing process, FIG. 4 is a schematic diagram showing the wiring mode according to the method of the present invention, FIG. 5 is a position constraint graph used in the conventional method, FIG. 6 is a flowchart showing the processing process of the conventional method, and FIG. The figure is a schematic diagram showing a wiring pattern according to a conventional method. l... Cell row 2... Cell row 3... Channel 4... Obstacle in channel 11.12.13.
14...Wiring 11a, 12a, 13a, 14a...
・Trunk lines 11b, 12b, 13b, 14b, llc, 12
c, 13c, 14c...” Branch lines In the diagram, the same reference numerals indicate the same or equivalent parts. Agent Masuo Oiwa 2nd
Figure □ Figure 3 Figure 5 Procedure amendment 118) 3. Representative of the person making the amendment Moriya Shiki 5, "Detailed Description of the Invention" column of the specification subject to amendment, Drawing 6, Contents of Amendment 6-1 (() of "Detailed Description of the Invention" of the specification) (Note) (In the 11th specification, page 5, line 12, "create as a directed graph" is corrected to "create as a directed graph.") (2) In the specification, page 6, line 17, "main line 11a 6-2 Figure 4 of the drawing is corrected as shown in the attached sheet. 7. List of attached documents

Claims (1)

【特許請求の範囲】[Claims] (1)基板上に配したセル列の端子同士を、セル列間の
チャネル内のトラックに、チャネル内の障害物を避けて
割り付けた幹線を用いて結線するチャネル配線処理方法
において、チャネル内の各トラックに幹線を割りつける
際の前記障害物による制約を含む幹線相互の位置の制約
関係を表わした位置制約グラフを作成し、前記位置制約
グラフに基づき各幹線及び障害物に重みを設定すると共
に、この重みに基づいて前記トラックへの割り付け優先
順位を決定し、この順位に基づき配線を行うことを特徴
とするチャネル配線処理方法。
(1) In a channel wiring processing method in which terminals of cell rows arranged on a board are connected to tracks in a channel between cell rows using trunk lines allocated while avoiding obstacles in the channel, A positional constraint graph is created that expresses the constraint relationship between the positions of trunk lines, including the constraints imposed by the obstacles when allocating trunk lines to each track, and weights are set for each trunk line and obstacle based on the positional constraint graph. , a channel wiring processing method characterized in that an allocation priority order to the track is determined based on this weight, and wiring is performed based on this order.
JP2296872A 1990-10-30 1990-10-30 Channel wiring processing method Pending JPH04167073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2296872A JPH04167073A (en) 1990-10-30 1990-10-30 Channel wiring processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2296872A JPH04167073A (en) 1990-10-30 1990-10-30 Channel wiring processing method

Publications (1)

Publication Number Publication Date
JPH04167073A true JPH04167073A (en) 1992-06-15

Family

ID=17839259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2296872A Pending JPH04167073A (en) 1990-10-30 1990-10-30 Channel wiring processing method

Country Status (1)

Country Link
JP (1) JPH04167073A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770481A (en) * 1995-03-31 1998-06-23 Nec Corporation Wiring designing apparatus for automatically designing layout of integrated circuit and wiring designing method therefor
US6014507A (en) * 1996-08-14 2000-01-11 Nec Corporation Integrated circuit routes designing method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770481A (en) * 1995-03-31 1998-06-23 Nec Corporation Wiring designing apparatus for automatically designing layout of integrated circuit and wiring designing method therefor
US6014507A (en) * 1996-08-14 2000-01-11 Nec Corporation Integrated circuit routes designing method and apparatus

Similar Documents

Publication Publication Date Title
US6035108A (en) Figure layout compaction method and compaction device
US5898597A (en) Integrated circuit floor plan optimization system
US4858143A (en) Work ordering routine for use in a method of routing
US6763512B2 (en) Detailed method for routing connections using tile expansion techniques and associated methods for designing and manufacturing VLSI circuits
JP2746762B2 (en) Layout method of semiconductor integrated circuit
US7926017B2 (en) Layout method for a chip
US7818703B2 (en) Density driven layout for RRAM configuration module
US4964057A (en) Block placement method
JP2720629B2 (en) Integrated circuit layout system
US4571451A (en) Method for routing electrical connections and resulting product
US7533360B1 (en) Flow based package pin assignment
Lin et al. A complete pcb routing methodology with concurrent hierarchical routing
JPH04167073A (en) Channel wiring processing method
US3644937A (en) Channel-stacking input/output interconnections
US5532501A (en) Semiconductor device having wiring take-out cells
JP3504739B2 (en) Clock routing design method using hierarchical layout design
US6760896B2 (en) Process layout of buffer modules in integrated circuits
US6804811B2 (en) Process for layout of memory matrices in integrated circuits
Fisher A multi-pass, multi-algorithm approach to PCB routing
JP3060609B2 (en) Wiring design method for integrated circuits
JPH02303142A (en) Automatic layout in analog lsi
CA1269157A (en) Work ordering method for use in a method of routing
CN116683539A (en) Inverter distribution method, device and equipment of photovoltaic module and storage medium
JP2844945B2 (en) Layout design method for integrated circuits
JPS62273751A (en) Integrated circuit