JPH04165969A - Disc type ultrasonic motor - Google Patents
Disc type ultrasonic motorInfo
- Publication number
- JPH04165969A JPH04165969A JP2288686A JP28868690A JPH04165969A JP H04165969 A JPH04165969 A JP H04165969A JP 2288686 A JP2288686 A JP 2288686A JP 28868690 A JP28868690 A JP 28868690A JP H04165969 A JPH04165969 A JP H04165969A
- Authority
- JP
- Japan
- Prior art keywords
- recess
- ultrasonic motor
- type ultrasonic
- friction material
- elastic body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002783 friction material Substances 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 8
- 238000006073 displacement reaction Methods 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 11
- 238000003754 machining Methods 0.000 abstract description 7
- 230000010355 oscillation Effects 0.000 abstract 2
- 230000003534 oscillatory effect Effects 0.000 abstract 2
- 238000005452 bending Methods 0.000 description 4
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は圧電体の弾性振動を用いて駆動力を発生する円
板型超音波モータに関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a disk-type ultrasonic motor that generates driving force using elastic vibrations of a piezoelectric body.
従来の技術
近蝦 圧電セラミック等の圧電体を貼合わぜた振動体に
弾性振動を励振し これを駆動源とした超音波モータカ
\ 例えばNMR(核磁気共鳴装置)等の強磁場中の駆
動用モータとして注目されている。Conventional technology: An ultrasonic motor motor that excites elastic vibrations in a vibrating body laminated with piezoelectric materials such as piezoelectric ceramics, and uses this as a driving source. For example, for driving in strong magnetic fields such as NMR (nuclear magnetic resonance apparatus). It is attracting attention as a motor.
以下、図面を参照しながら円板型超音波モータの従来技
術について詳細に説明する。Hereinafter, the conventional technology of a disc-type ultrasonic motor will be described in detail with reference to the drawings.
第6図は径方向2次、周方向3次以上の振動モードで励
振される円板型超音波モータの切り欠き斜視図であり、
円板形の弾性体8に円板形圧電体9を貼り合せて振動体
6を構成している。振動体6上には円環状に等間隔に突
起体10が設けられている。11は耐磨耗性材料の摩擦
材 12は弾性体であり、互いに貼り合せられて移動体
3を構成している。移動体3は摩擦材11を介して振動
体6と加圧接触している。圧電体9に電界を印加すると
振動体6の周方向に曲げ振動の進行波が励振され 移動
体3を駆動する。九 同図中の矢印は移動体3の回転方
向を示す。FIG. 6 is a cutaway perspective view of a disc-type ultrasonic motor excited in a vibration mode of second order in the radial direction, third order in the circumferential direction or higher;
The vibrating body 6 is constructed by bonding a disk-shaped piezoelectric body 9 to a disk-shaped elastic body 8. Projections 10 are provided on the vibrating body 6 in an annular shape at equal intervals. Numeral 11 is a friction material made of a wear-resistant material. Numeral 12 is an elastic body, which are pasted together to form the moving body 3. The movable body 3 is in pressure contact with the vibrating body 6 via the friction material 11. When an electric field is applied to the piezoelectric body 9, a traveling wave of bending vibration is excited in the circumferential direction of the vibrating body 6, thereby driving the movable body 3. 9. The arrow in the figure indicates the rotation direction of the moving body 3.
第7図は第6図の円板型超音波モータに使用した圧電体
9の電極構造の一例を示している。同図では円周方向に
4波の弾性波が励振されるようにしである。電極は図中
に示したように+十−−の順序で分極されており、各電
極は4分の1波長(90度)に相当している。この電極
を十−十−の順序で接続することによって、位置的およ
び位相的に90度ずれた電極AとBが構成される。FIG. 7 shows an example of the electrode structure of the piezoelectric body 9 used in the disk type ultrasonic motor of FIG. In the figure, four elastic waves are excited in the circumferential direction. The electrodes are polarized in the order of +10-- as shown in the figure, and each electrode corresponds to a quarter wavelength (90 degrees). By connecting these electrodes in a ten-to-ten order, electrodes A and B, which are shifted by 90 degrees in position and phase, are constructed.
以上のように構成された円板型超音波モータの圧電体9
の電極AおよびBに
V+ =Ve x 5in(ωt)
−−−(1)Va−Vθx cos(ωt)
−−−(2)ただし ■11=電圧の
瞬時値
ω: 角周波数
t: 時間
で表される電圧V1および■2をそれぞれ印加ずれ(渋
振動体6には
ξ−ξe x (cos(ωt)x cos(kx)+
5in(ωt)x 5in(kx))−ξθx co
s(ωt−kx) ’ −−−(3)ただし
ξ :曲げ振動の振幅値
ξ9=曲げ振動の瞬時値
k :波数(2π/λ)
λ :波長
X :位置
で表せる、円周方向に進行する曲げ振動の進行波が励振
される。Piezoelectric body 9 of the disc type ultrasonic motor configured as above
V+ =Vex 5in(ωt) on electrodes A and B of
---(1) Va-Vθx cos(ωt)
---(2) However, ■11 = Instantaneous value of voltage ω: Angular frequency t: Application deviation of voltages V1 and ■2 expressed in time (for the astringent vibrator 6, ξ−ξe x (cos(ωt) x cos(kx)+
5in(ωt)x 5in(kx))−ξθx co
s(ωt-kx)' ---(3) where ξ: Amplitude value of bending vibration ξ9 = Instantaneous value of bending vibration k: Wave number (2π/λ) λ: Wavelength X: Progressing in the circumferential direction, expressed by position A traveling wave of bending vibration is excited.
第8図は振動体6の表面のA点が進行波の励起によって
、長軸2W、短軸2uの楕円運動をし振動体3上に加圧
して設置された移動体3力丈 楕円の頂点近傍で接触す
ることにより、摩擦力により波の進行方向とは逆方向に
V−ω×uの速度で運動する様子を示している。Figure 8 shows point A on the surface of the vibrating body 6 moving in an ellipse with the long axis 2W and the short axis 2u due to the excitation of the traveling wave, and the movable body 3 placed under pressure on the vibrating body 3. It shows how, due to close contact, the waves move at a speed of V-ω×u in the direction opposite to the direction of wave propagation due to frictional force.
第9図(よ 突起体10のない円板において2次振動モ
ードを励振した時の、半径方向の振動変位分布を示す。FIG. 9 shows the vibration displacement distribution in the radial direction when the secondary vibration mode is excited in a disk without the protrusion 10.
同図より、円板の半径方向に振動変位の最大点と部内部
13 (振動しないところ)が存在する。そして、径方
向2次の振動モードの場合 部内部でビスなどで支持固
定ができると言う大きな特徴を持っていtう
このような構成の場合 モータの回転速度の向上を図る
ために横方向変位Uの拡大用として、機械加工の困難な
突起体を、振動振幅の最大点近傍で振動体6の移動体3
との接触面に設けている。From the figure, there is a maximum point of vibrational displacement and an interior portion 13 (where no vibration occurs) in the radial direction of the disk. In the case of the second-order vibration mode in the radial direction, the main feature is that it can be supported and fixed with screws etc. inside the part.In the case of such a configuration, the lateral displacement U is used to improve the rotational speed of the motor. In order to enlarge the protrusion, which is difficult to machine, move the movable body 3 of the vibrating body 6 near the maximum point of vibration amplitude.
It is installed on the contact surface with the
さらに 駆動源が摩擦力であるた臥 移動体に設けられ
た摩擦材とそれに接触する突起体10の平面精度(うね
り等)力\ モータ特性や可聴域の騒音等に対して重要
な要素となっている。Furthermore, since the driving source is frictional force, the plane precision (waviness, etc.) of the friction material provided on the moving body and the protrusion 10 in contact with it is an important factor for motor characteristics and noise in the audible range. ing.
発明が解決しようとする課題
従来の円板型超音波モータ(友 振動体上に設けた突起
体と移動体を構成する摩擦材との平面精度が重要で、突
起体の振動体との付は根の機械強度や高さのばらつき(
よ 共振周波数ずれ・出力トルク・効率や駆動電極A、
Bの面積の違いや圧電体と突起体を有する振動体と
の貼合わせの位置ずれなどにより生じる不要振動の周波
数と駆動周波数とのビート成分などによる可聴域の騒音
の発生などモータ特性に直接影響を及ぼしている。その
ため平面精度の向上などから機械加工時器 加工精度さ
らにコストの観点からも問題がある。Problems to be Solved by the Invention Conventional disc type ultrasonic motor Variations in mechanical strength and height of roots (
yo Resonant frequency shift, output torque, efficiency, drive electrode A,
This directly affects the motor characteristics, such as the generation of noise in the audible range due to the beat component between the frequency of unnecessary vibration and the drive frequency, which is caused by the difference in the area of B or the misalignment of the bonding of the piezoelectric body and the vibrating body with protrusions. is affecting. Therefore, there are problems in terms of machining time, machining accuracy, and cost due to improvements in planar accuracy.
また 振動体の静止状態における平面精度を向上させ、
振動体自身が各定在波間の振幅が同じで不要振動の無い
理想的な振動をすると仮定しても、径方向には第8図の
ような振動変位量分布を持ち、現実に振動体と移動体と
の完全な接触状態を得ることは不可能である。It also improves the flatness accuracy of the vibrating body when it is stationary,
Even if we assume that the vibrating body itself vibrates ideally with the same amplitude between each standing wave and no unnecessary vibrations, it will have a vibration displacement distribution in the radial direction as shown in Figure 8, which is different from the actual vibrating body. It is impossible to obtain complete contact with the moving object.
さらに 接触状態の良否がモータ特性のばらつきや騒音
の発生源等のモータとして実用上大きな問題を有してい
る。Furthermore, the quality of contact poses a major problem in practical use as a motor, such as variations in motor characteristics and the source of noise.
そこて 本発明は上記従来の問題を解決する円仮型超音
波モータの提供を目的としている。Therefore, the present invention aims to provide a circular type ultrasonic motor that solves the above-mentioned conventional problems.
課題を解決するための手段
上記問題を解決する手段(よ 振動体に突起体部または
凹部を形成し その形成面と接触する側の移動体を構成
する弾性体に凹部を設け、凹部を少なくとも覆うように
摩擦材を貼合わせた移動体および振動体構成とするもの
である。Means for Solving the ProblemMeans for solving the above problem (by forming a protrusion or a recess on the vibrating body, providing a recess on the elastic body constituting the movable body on the side that contacts the formed surface, and covering at least the recess. The movable body and vibrating body are constructed by pasting friction materials together.
作用
本発明の円板型超音波モータ(主 振動体の突起体部ま
たは凹部と接触する面の移動体を構成する弾性体に凹部
を設け、その凹部を少なくとも覆うように摩擦材を貼合
わせた移動体構成とすることにより、凹部上の摩擦材に
振動体の突起体部の加圧力が加えられた時に 摩擦材の
両端固定条件時の変形により突起体の面に沿うと言う面
補正効果のた数 振動体と移動体との接触が容易に確保
できるものである。Function: The disk-type ultrasonic motor of the present invention (main) has a concave portion in the elastic body constituting the movable body on the surface that comes into contact with the protrusion or concave portion of the vibrating body, and a friction material is pasted to at least cover the concave portion. By adopting the movable body configuration, when the pressing force of the protruding part of the vibrating body is applied to the friction material on the concave part, the surface correction effect that the friction material follows the surface of the protrusion due to deformation when both ends of the friction material are fixed is achieved. Contact between the vibrating body and the moving body can be easily ensured.
また 上記面補正構造のために弾性進行波を発生する各
定在波振幅のアンバランスから生じる不要振動成分の吸
収作用により、可聴域の騒音の発生を防止でき、ばらつ
きの少ない安定したモータ特性を得ることができるもの
である。 ゛実施例
以下、本発明を実施例の図面と共に詳細に説明する。In addition, due to the surface correction structure described above, the absorption of unnecessary vibration components caused by the unbalance of the amplitude of each standing wave that generates elastic traveling waves prevents the generation of noise in the audible range, and provides stable motor characteristics with less variation. It is something that can be obtained.゛Examples The present invention will be described in detail below with reference to drawings of examples.
(第1実施例)
第1図は本発明の円板型超音波モータの第1の実施例に
おける移動体の断面図である。(First Embodiment) FIG. 1 is a cross-sectional view of a moving body in a first embodiment of the disc type ultrasonic motor of the present invention.
同図において、弾性体1は摩擦材2と共に円板状の移動
体3を構成し 弾性体1に(友 振動体の突起体部に接
する側に円環状の凹部4を設け、さらに 凹部4面を少
なくとも覆うように摩擦材2が弾性体に貼合わされて移
動体3を構成している。In the same figure, the elastic body 1 constitutes a disc-shaped moving body 3 together with a friction material 2, and an annular recess 4 is provided on the side of the elastic body 1 that contacts the protrusion of the vibrating body, A friction material 2 is bonded to an elastic body so as to at least cover the movable body 3.
上記構成の移動体3(ミ 突起体を有する振動体とが第
6図の場合と同様にして摩擦材2を介して加圧すること
により円板型超音波モータが構成されている。A disk-type ultrasonic motor is constructed by pressurizing the movable body 3 (mi) having the above configuration with a vibrating body having protrusions through the friction material 2 in the same manner as in the case shown in FIG.
移動体を本実施例の構成とすることにより、第9図のA
、 B電極で面積ずれや突起体を有する振動体との貼
付は位置ずれにより発生する各定在波間の振幅ばらつき
による不要振動や原理的に生じる径方向の振動変位の傾
き力受 凹部4を設けることにより、凹部4上の摩擦材
2が振動変位分布に沿うように変形することによる面補
正効果で吸収できる。By making the moving body have the configuration of this embodiment, A in FIG.
When attaching the B electrode to a vibrating body that has an area misalignment or a protrusion, a concave portion 4 is provided to receive unnecessary vibration due to amplitude variation between each standing wave caused by positional misalignment and the tilt force of the radial vibration displacement that occurs in principle. As a result, the friction material 2 on the concave portion 4 deforms along the vibration displacement distribution, so that the vibration can be absorbed by the surface correction effect.
その結果、平面精度への許容範囲か拡大でき、機械加工
への制約や不要振動による不要振動周波数と駆動周波数
とのビート成分による可聴、域の騒音を無くすることが
できる。As a result, the allowable range for planar accuracy can be expanded, and it is possible to eliminate restrictions on machining and audible noise due to beat components of unnecessary vibration frequencies and drive frequencies due to unnecessary vibrations.
(第2実施例)
第2図は本発明の第2の実施例における移動体の断面図
であり、第3図LL、 本実施例における振動体の平
面図とその断面図である。また 第4図に上記移動体と
振動体を組合せた状態を断面図で示す。(Second Embodiment) FIG. 2 is a sectional view of a moving body in a second embodiment of the present invention, and FIG. 3 LL is a plan view and a sectional view of a vibrating body in this embodiment. Moreover, FIG. 4 shows a cross-sectional view of a state in which the moving body and the vibrating body are combined.
第2図において、移動体3(よ 凹部4を持つ弾性体1
と貼合わされる凸部5を有する摩擦材2で構成されてい
る。In FIG. 2, a moving body 3 (an elastic body 1 having a recess 4)
It is made up of a friction material 2 having a convex portion 5 that is bonded to the friction material 2.
まf:、、第3図では振動体6に凹部7が摩擦抵抗の増
大のために設けられている。In FIG. 3, a recess 7 is provided in the vibrating body 6 to increase frictional resistance.
q−
上記凸部5の位置(よ 第3図に示した振動体6の凹部
7に相対し 第7図の振動モードにおいて振動の最大変
位量の位置に設けられるもので、振動体6と移動体3と
の接触位置の確定に対して大きな効果がある。q- The position of the convex portion 5 (relative to the concave portion 7 of the vibrating body 6 shown in FIG. 3) is provided at the position of the maximum displacement of vibration in the vibration mode of FIG. This has a great effect on determining the contact position with the body 3.
凹部7の形状(主 第5図(aL (bL (c)
等のように各種考えられるがこの形状に限定されるもの
ではない。また 凹部4の形状も各種考えられる力交
面補正効果や不要振動の吸収効果があれば第5図に示す
形状やテーパ形状等でもよく、上記実施例の形状に限定
されるものではない。Shape of recess 7 (main Fig. 5 (aL (bL (c)
Various shapes can be considered, such as, but the shape is not limited to this. In addition, the shape of the concave portion 4 can be variously considered.
The shape shown in FIG. 5 or a tapered shape may be used as long as it has a surface correction effect or an effect of absorbing unnecessary vibrations, and is not limited to the shape of the above embodiment.
本構成の円板型超音波モータ(主 基本的には平板状の
円板である。そのたへ 振動体6の変位量よりも少し深
い程度の凹部7であればよく、第1実施例や従来例のよ
うな突起体の加工時に生じる歪等の機械加工上の課題(
精度、コスト等)か容易に解決される。The disc type ultrasonic motor of this configuration (mainly basically a flat disc).The recess 7 may be slightly deeper than the amount of displacement of the vibrating body 6. Machining issues such as distortion that occurs when machining protrusions as in conventional examples (
(accuracy, cost, etc.) can be easily resolved.
また 進行波を励振する各定在波の振幅のばらつきによ
る不要振動を移動体3の弾性体1に形成された凹部4に
より吸収できるために 不要振動周波数と駆動周波数と
のビート成分による騒音や平面精度不良による振動体6
と移動体3との面接触状態の低下を防ぎミ モータの出
力トルクの向上や安定した特性を得ることができる。In addition, since unnecessary vibrations due to variations in the amplitude of each standing wave that excites the traveling wave can be absorbed by the recess 4 formed in the elastic body 1 of the moving body 3, noise and flat surfaces due to the beat component of the unnecessary vibration frequency and the drive frequency can be absorbed. Vibrating body 6 due to poor accuracy
It is possible to prevent the deterioration of the surface contact state between the motor and the moving body 3, thereby improving the output torque of the motor and obtaining stable characteristics.
一方、振動体6に設けた凹部7の数(よ 第1実施例や
従来例の突起体構造に比べて、非常に浅くできるため自
由に設定できる。なぜなら、突起体の高さの2乗に反比
例し 厚みに比例すると言う関係で突起体の共振特性が
決定されるた敦 突起体の機械強度を得るために振動体
6の駆動周波数から2倍以上に突起体の共振を設定する
事が安定な特性を得るには必要である。そのたへ 凹部
7の数の増加によりコギングが少なく低速回転性などの
安定したモータ特性を得ることができる。On the other hand, the number of recesses 7 provided in the vibrating body 6 can be made very shallow compared to the protrusion structure of the first embodiment or the conventional example, and can be freely set. The resonance characteristics of the protrusion are determined by the relationship that it is inversely proportional to the thickness.In order to obtain the mechanical strength of the protrusion, it is stable to set the resonance of the protrusion to more than twice the driving frequency of the vibrating body 6. Furthermore, by increasing the number of recesses 7, it is possible to obtain stable motor characteristics such as low-speed rotation with less cogging.
砥 突起体の径方向幅は移動体3に設けられた凹部4の
径方向幅より小さい必要は特になく、形状に対する制約
も無いが、好ましくは突起体幅より大きい方が不要振動
の吸収効果や面に沿う効果を大きくすることができる。The radial width of the grinding protrusion does not need to be smaller than the radial width of the recess 4 provided in the movable body 3, and there are no restrictions on the shape, but it is preferably larger than the width of the protrusion to improve the absorption effect of unnecessary vibrations. The effect along the surface can be increased.
さらに 第2実施例の凸部5を有する摩擦材2(よ 他
の実施例に適用してもなんら問題は生じない。Furthermore, no problem will arise even if the friction material 2 having the convex portions 5 of the second embodiment is applied to other embodiments.
まな 凹部4(よ 上記各実施例では空洞としている力
受 例えばゴム系の材料やフェルト等のスポンジ状の材
料など摩擦材料に比べて、音速や弾性率の小さいものや
内部損失の大きな材料を充填してもよい。その場合には
不要振動に対するより大きな吸収効果か得られる。こ
の様(ζ 凹部4は上記第1、第2の実施例の様に空洞
に限定されるものではない。Mana Recess 4 (In each of the above embodiments, the force receiver is hollow. For example, it is filled with a material such as a rubber material or a sponge-like material such as felt, which has a lower sound velocity and elastic modulus or a material with a larger internal loss than a friction material. In that case, a greater effect of absorbing unnecessary vibrations can be obtained. In this case (ζ) the recess 4 is not limited to a cavity as in the first and second embodiments.
発明の効果
本発明で(よ 移動体を構成する弾性体に凹部を設け、
少なくとも凹部を覆うように摩擦材を形成することによ
り、振動体の面精度が悪くても摩擦材の変形による面補
正効果で振動体と移動体との接触状態を大幅に改善する
ことができる。Effects of the Invention In the present invention, a concave portion is provided in an elastic body constituting a moving body,
By forming the friction material so as to cover at least the concave portion, even if the surface accuracy of the vibrating body is poor, the contact state between the vibrating body and the movable body can be significantly improved due to the surface correction effect due to the deformation of the friction material.
また 進行波を発生する各定在波の振幅ばらつきによる
不要振動を吸収することにより、従来不要振動周波数と
駆動周波数とのビート成分による可聴域の騒音を抑制す
ることができる。In addition, by absorbing unnecessary vibrations due to amplitude variations in each standing wave that generates a traveling wave, it is possible to suppress noise in the audible range due to beat components of conventional unnecessary vibration frequencies and drive frequencies.
さらに 振動体部に凹部を形成することにより、機械加
工上のコストや機械精度に対する制約条件を突起体を形
成する時よりも大幅に削減できる。Furthermore, by forming a recess in the vibrating body, the cost for machining and constraints on machine accuracy can be significantly reduced compared to when forming a protrusion.
また 凹部の数を増加することによりコギング等の低減
したモータ特性や安定性の優れた円板型超音波モータが
実現できるものである。Furthermore, by increasing the number of recesses, a disk-type ultrasonic motor with reduced cogging and other motor characteristics and excellent stability can be realized.
第1図は本発明の円板型超音波モータの第1の実施例に
おける移動体の断面医 第2図は本発明の第2の実施例
における移動体の断面@ 第3図は第2の実施例に用い
た振動体の平面図とその断面は 第4図は第2の実施例
における振動体と移動体の組合せ断面は 第5図IJ本
発明における凹部の他の形状例を示す断面医 第6図は
従来円板型超音波モータの切り欠き斜視医 第7図は第
6図の円板型超音波モータに用いた圧電体の形状と電極
構造を示す平面図 第8図は超音波モータの動作原理の
説明医 第9図は円板型超音波モータの径方向の振動変
位分布図である。
2、11・・・摩擦抹 3・・・移動体 4、6・・・
凹皿5・・・ハム 7・・・振動体 9・・・圧電体
10・・・突起体。
第1図
第2図
第3図
(L)
第4図
第5図
(の
第 6 図
第7図Figure 1 is a cross-section of a moving body in a first embodiment of the disc type ultrasonic motor of the present invention. Figure 2 is a cross-section of a moving body in a second embodiment of the present invention. A plan view and a cross section of the vibrating body used in the embodiment are shown in FIG. 4, and a combined cross section of the vibrating body and moving body in the second embodiment are shown in FIG. 5. Figure 6 is a cutaway perspective view of a conventional disk-type ultrasonic motor. Figure 7 is a plan view showing the shape and electrode structure of the piezoelectric body used in the disk-type ultrasonic motor of Figure 6. Figure 8 is an ultrasonic Doctor explaining the operating principle of the motor. FIG. 9 is a radial vibration displacement distribution diagram of the disc-type ultrasonic motor. 2, 11... Friction eraser 3... Moving object 4, 6...
Concave plate 5...Ham 7...Vibrating body 9...Piezoelectric body
10... Protrusion. Figure 1 Figure 2 Figure 3 (L) Figure 4 Figure 5 (Figure 6 Figure 7
Claims (3)
起体を有する弾性体とから構成される振動体に径方向2
次、周方向3次以上の弾性波を励振し、摩擦材と弾性体
とから構成される移動体を、前記振動体の突起体に加圧
接触することにより駆動する円板型超音波モータにおい
て、前記移動体の弾性体には、前記摩擦材側に凹部を設
けることを特徴とする円板型超音波モータ。(1) A piezoelectric body is driven with an alternating current voltage, and a vibrating body composed of the piezoelectric body and an elastic body having protrusions is moved in the radial direction.
Next, in a disc-type ultrasonic motor that excites third-order or higher-order elastic waves in the circumferential direction and drives a moving body composed of a friction material and an elastic body by pressurizing and contacting the protrusion of the vibrating body, . A disc type ultrasonic motor, wherein the elastic body of the movable body is provided with a recess on the friction material side.
性体とから構成される振動体に径方向2次、周方向3次
以上の弾性波を励振し、摩擦材と弾性体とから構成され
る移動体を前記振動体に加圧接触することにより駆動す
る円板型超音波モータにおいて、前記振動体の弾性体に
凹部を設けると共に、前記移動体の弾性体には、前記摩
擦材貼付け側に凹部を設け、かつ前記摩擦材には、前記
振動体の凹部に相対する凸部を設けることを特徴とする
円板型超音波モータ。(2) The piezoelectric body is driven with an alternating current voltage to excite elastic waves of second order in the radial direction, third order in the circumferential direction or higher in the vibrating body composed of the piezoelectric body and the elastic body, and the friction material and the elastic body are A disc-type ultrasonic motor that drives a movable body made of A disc type ultrasonic motor, characterized in that a concave portion is provided on the material pasting side, and the friction material is provided with a convex portion facing the concave portion of the vibrating body.
部損失の大きい材料で充填されたことを特徴とする請求
項1または2記載の円板型超音波モータ。(3) The disk type ultrasonic motor according to claim 1 or 2, wherein the recess provided in the moving body is filled with a material having a larger internal loss than a friction material.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2288686A JP3001956B2 (en) | 1990-10-26 | 1990-10-26 | Disk type ultrasonic motor |
US07/783,192 US5256928A (en) | 1990-10-26 | 1991-10-28 | Ultrasonic motor with a vibrator having recesses |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2288686A JP3001956B2 (en) | 1990-10-26 | 1990-10-26 | Disk type ultrasonic motor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04165969A true JPH04165969A (en) | 1992-06-11 |
JP3001956B2 JP3001956B2 (en) | 2000-01-24 |
Family
ID=17733377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2288686A Expired - Fee Related JP3001956B2 (en) | 1990-10-26 | 1990-10-26 | Disk type ultrasonic motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3001956B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007139442A (en) * | 2005-11-15 | 2007-06-07 | Hitachi Ltd | Nmr analyzer and sample management device |
JP2008295234A (en) * | 2007-05-25 | 2008-12-04 | Canon Inc | Oscillatory wave drive unit |
JP2012139080A (en) * | 2010-12-28 | 2012-07-19 | Canon Inc | Vibration type drive device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6866128B2 (en) | 2015-12-04 | 2021-04-28 | キヤノン株式会社 | Vibration type actuator drive method, vibration type drive device and mechanical device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63202193U (en) * | 1987-06-18 | 1988-12-27 |
-
1990
- 1990-10-26 JP JP2288686A patent/JP3001956B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63202193U (en) * | 1987-06-18 | 1988-12-27 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007139442A (en) * | 2005-11-15 | 2007-06-07 | Hitachi Ltd | Nmr analyzer and sample management device |
JP2008295234A (en) * | 2007-05-25 | 2008-12-04 | Canon Inc | Oscillatory wave drive unit |
JP2012139080A (en) * | 2010-12-28 | 2012-07-19 | Canon Inc | Vibration type drive device |
Also Published As
Publication number | Publication date |
---|---|
JP3001956B2 (en) | 2000-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0383309B1 (en) | Vibration wave motor | |
JPS61224881A (en) | Vibration wave motor | |
JPH0284079A (en) | Supporting device of oscillatory wave motor | |
JP4435695B2 (en) | Piezoelectric motor operation method and piezoelectric motor in the form of a hollow cylindrical oscillator having a stator | |
JPH04165969A (en) | Disc type ultrasonic motor | |
JPH01129782A (en) | Ultrasonic motor | |
JPH07154981A (en) | Surface elastic wave motor | |
JP2902712B2 (en) | Ultrasonic motor | |
JPS62259485A (en) | Piezoelectric driving apparatus | |
JP2002218774A (en) | Ultrasonic motor | |
JP3001957B2 (en) | Annular ultrasonic motor | |
JP2769151B2 (en) | Ultrasonic motor | |
JP2746578B2 (en) | Ultrasonic motor | |
JPH03273878A (en) | Supersonic motor | |
JPS62277079A (en) | Piezoelectric driving device | |
JPH0270277A (en) | Ultrasonic motor | |
JP4731737B2 (en) | Vibration wave motor | |
JP2864479B2 (en) | Annular ultrasonic motor | |
JPH03164077A (en) | Ultrasonic motor | |
JP3089750B2 (en) | Ultrasonic motor | |
JPH07178370A (en) | Vibrator and vibrating actuator | |
JPS6135176A (en) | Piezoelectric motor | |
JPH05207762A (en) | Ultrasonic motor | |
JP2523634B2 (en) | Ultrasonic motor | |
JP2543145B2 (en) | Ultrasonic motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071112 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081112 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |