JPH0416592A - Superconducting thin film of bi oxide - Google Patents

Superconducting thin film of bi oxide

Info

Publication number
JPH0416592A
JPH0416592A JP2119235A JP11923590A JPH0416592A JP H0416592 A JPH0416592 A JP H0416592A JP 2119235 A JP2119235 A JP 2119235A JP 11923590 A JP11923590 A JP 11923590A JP H0416592 A JPH0416592 A JP H0416592A
Authority
JP
Japan
Prior art keywords
thin film
class
superconductor
axis length
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2119235A
Other languages
Japanese (ja)
Other versions
JP3038485B2 (en
Inventor
Hiromasa Shimojima
浩正 下嶋
Keizo Tsukamoto
塚本 惠三
Senjo Yamagishi
山岸 千丈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Cement Co Ltd
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP2119235A priority Critical patent/JP3038485B2/en
Publication of JPH0416592A publication Critical patent/JPH0416592A/en
Application granted granted Critical
Publication of JP3038485B2 publication Critical patent/JP3038485B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve the critical temp. of the superconductor thin film where many types exist by specifying the c-axial; length of the 110K class superconductor in the thin film. CONSTITUTION:This thin film is constituted of the 110K class oxide superconductor of a (Bi+Pb)2Sr2Ca2Cu3Ox structure contg. Bi, (Pb), Sr, Ca, and Cu and the 80K class oxide superconductor having a (Bi+Pb)2Sr2Ca1Cu2Ox structure and has the compsn. of BiaPbbSr1.00CacCudOx, where 0.5<=a<=1.2, 0.0<=b<=1.2, 0.4<=c<=1.3, 1.3<=d<=2.0. This thin has >=3.7100nm c-axis length of the 110K class oxide superconductor. The critical temp. of this thin film is >=100K. The 80K class superconductor is eventually included partially in the thin film and the resistance curve flares to a low-temp. side, resulting in the dropped critical temp. unless the above-mentioned c-axis length is >=3.7100nm.

Description

【発明の詳細な説明】 〔産業上の利用分野J 本発明はBii酸化物超伝導薄膜に関し、特に。[Detailed description of the invention] [Industrial Application Field J The present invention relates to Bii oxide superconducting thin films, and more particularly.

超伝導特性を有し、高い臨界温度を有するB1−Pb−
5r−Ca−Cu−0系及びB1−5r−Ca−Cu−
0系を含むBi系紐伝導潰膜に関するものである。
B1-Pb- has superconducting properties and a high critical temperature
5r-Ca-Cu-0 system and B1-5r-Ca-Cu-
This relates to Bi-based string conductive ulcers including 0-based.

〔従来の技術] Bi系超超伝導体、臨界温度が100K以上の優れた材
料であることは広く知られている。この材料は、前圧ら
により発見IJapanese Journal of
Applied Physics、 27119881
.L209〜2101されて以来、電子材料及びデバイ
ス等へ応用するために。
[Prior Art] It is widely known that Bi-based superconductors are excellent materials with critical temperatures of 100 K or higher. This material was discovered by Zeno et al. in the Japanese Journal of
Applied Physics, 27119881
.. Since L209-2101, it has been applied to electronic materials and devices.

各所で1iilIli化が行われている。IilIli conversion is being carried out in various places.

しかしながら、この材料には11OK級、8OK級及び
半導体相の三種類の多形が存在し、しかも110に級超
伝導体の生成温度領域が狭いため単相化が難しい、従来
、単相110に縁起伝導薄膜を合成するには、熱処理前
の組成としてほぼBi:Pb:Sr:Ca:Cu=1:
l:I+l:1.5若しくはCaを過剰に加えた薄膜を
約85(1℃で熱処理していた(例えばJapanes
eJournal of Applied Physi
cs、 28f19891. LaI3〜822)。
However, this material has three types of polymorphism: 11OK class, 8OK class, and semiconductor phase.Moreover, the formation temperature range of 110 class superconductors is narrow, so it is difficult to make it into a single phase. To synthesize an edge-induced conductive thin film, the composition before heat treatment is approximately Bi:Pb:Sr:Ca:Cu=1:
l:I+l:1.5 or a thin film with excess Ca added was heat-treated at about 85℃ (1℃ (for example, Japanese
eJournal of Applied Physi
cs, 28f19891. LaI3-822).

〔発明が解決しようとする課HJ 薄膜中に生成した板状の110に級超伝導体のC軸長と
臨界温度の関係についての報告は少ないが。
[Problem to be solved by the invention HJ There are few reports on the relationship between the C-axis length and critical temperature of plate-like 110-class superconductors formed in thin films.

例えばJapanese Journal of Ap
plied Physics、28f19891. L
646〜649にC軸の格子定数が小さいほど臨界温度
が高いと報告されている。
For example, Japanese Journal of Ap
plied Physics, 28f19891. L
646-649, it is reported that the smaller the lattice constant of the C axis, the higher the critical temperature.

本発明の目的は、多形の存在する超伝導薄膜について、
薄膜中の11OK級超伝導体のC軸長と臨界温度との関
係から臨界温度の高いBi系超伝導薄膜を提供しようと
するものである6 【課題を解決するための手段] 本発明者らは、製造した薄膜を種々条件で熱処理を行い
、得られた薄膜のC軸長と臨界温度の関係を調べた結果
、単相110に縁起伝導体の合成にこだわることなく、
生成薄膜中の11OK級超伝導体相のC軸長によって、
高臨界温度の超伝導薄膜を選択できることを見出して1
本発明を完成するに到った。
The purpose of the present invention is to provide superconducting thin films containing polymorphisms,
This is an attempt to provide a Bi-based superconducting thin film with a high critical temperature based on the relationship between the C-axis length of the 11OK class superconductor in the thin film and the critical temperature6 [Means for solving the problem] The present inventors conducted heat treatment on the manufactured thin film under various conditions and investigated the relationship between the C-axis length and critical temperature of the obtained thin film, and found that without being particular about the synthesis of an originating conductor in a single phase 110,
Depending on the C-axis length of the 11OK class superconductor phase in the produced thin film,
Discovering that it is possible to select superconducting thin films with high critical temperatures 1
The present invention has now been completed.

すなわち、本発明は、Bi、Pb、Sr、Ca及びCu
、又はBi、Sr、Ca及びCuを含む(BuPbl 
2sr2cazcu3Dm構造の11OK級酸化物超伝
導体と、  fBi+Pb1zsr、ca、Cu2低構
造の8OK級酸化物超伝導体から構成され、その組成が
That is, the present invention provides Bi, Pb, Sr, Ca and Cu.
, or containing Bi, Sr, Ca and Cu (BuPbl
It is composed of an 11 OK class oxide superconductor with a 2sr2cazcu3Dm structure and an 8OK class oxide superconductor with a fBi+Pb1zsr, ca, Cu2 low structure, and its composition is as follows.

BtaPbbSr+  oocaccua低であって1
組成中のa、b、c及びdが、05≦a≦1.2 0.0≦b≦1.2 04≦c≦1.3 1.3≦d≦2.0 である薄膜において、 11OK級酸化物超伝導体のC
軸長が3.7100nm以上であることを特徴とする臨
界温度が100に以上のBi系超伝導薄膜である。
BtaPbbSr+ oocaccua low and 1
In a thin film in which a, b, c and d in the composition are 05≦a≦1.2 0.0≦b≦1.2 04≦c≦1.3 1.3≦d≦2.0, 11OK C of class oxide superconductor
A Bi-based superconducting thin film having an axial length of 3.7100 nm or more and a critical temperature of 100 or more.

以下詳細に説明する。This will be explained in detail below.

〔作用1 110に縁起伝導体結晶の(Bz +pb) zsrz
cazcu30x構造は、8OK縁起伝導体結晶の(B
i+Pbl zsrzca1cuz帆構造中のC軸方向
に垂直な面にCa層とCu−0層が入り込んで構成され
る。その際、Ca層とCu−0層が十分に入り込まない
と、11OK級超伝導体としての特性が発揮されない。
[Effect 1 110 of (Bz + pb) zsrz of the originating conductor crystal
The cazcu30x structure consists of (B
i+Pbl zsrzca1cuz It is composed of a Ca layer and a Cu-0 layer inserted into a plane perpendicular to the C-axis direction in the sail structure. At that time, unless the Ca layer and the Cu-0 layer are sufficiently penetrated, the properties as an 11OK class superconductor will not be exhibited.

また、 Ca層とCu−0層が理論組成よりも多く結晶
構造中に取り込まれると、110に縁起伝導体の特性よ
りも落ちる。すなわち。
In addition, when more Ca layers and Cu-0 layers are incorporated into the crystal structure than the theoretical composition, the properties fall below that of an originating conductor to 110. Namely.

110に縁起伝導体の結晶構造であっても、C軸長が3
.7100nm以上でないと部分的に8OK縁起伝導体
が含まれることになり、抵抗曲線は低温側に裾を弓き、
臨界温度が低下する。
Even if the crystal structure of an originating conductor is 110, the C-axis length is 3.
.. If it is not 7100 nm or more, 8OK fringe conductor will be partially included, and the resistance curve will curve toward the low temperature side.
Critical temperature decreases.

得られるBi系超伝導薄膜の11OK級超伝導体結晶と
してそのC軸長が3.710(ln51以上のものを合
成する超伝導薄膜製造方法については、後記する製造方
法において、薄膜組成、特にCa/Sr原子比、焼成温
度、焼成時間等が相互に影響しあっていると考えられる
The resulting Bi-based superconducting thin film has a C-axis length of 3.710 (ln51 or more) as an 11OK-class superconductor crystal. It is considered that the /Sr atomic ratio, firing temperature, firing time, etc. influence each other.

本発明における薄膜の製造方法は、スパッタリング法、
蒸着法等の物理的手法により行われる。
The thin film manufacturing method in the present invention includes sputtering method,
This is done by physical methods such as vapor deposition.

薄膜を製造する際、スパッタリングターゲットの数及び
蒸着源の数は特に限定しない、つまり、基板上に堆積し
た薄膜の組成が上記の範囲であればよい。
When manufacturing a thin film, the number of sputtering targets and the number of evaporation sources are not particularly limited, as long as the composition of the thin film deposited on the substrate is within the above range.

Biは0.5より少ないと超伝導体の結晶構造が構成さ
れにくく、1.2より多いと8OK縁起伝導体と半導体
相を生成する。pbも1.2より多いと8OK縁起伝導
体と半導体相を生成し易い、 Caは0.4より少ない
と半導体相を生成し、1.3より多いと110に相は生
成するが、CaCuzLやCa−Cub、などの不純物
相が同時に生成するため、臨界1度が低下する。Cuは
1.3より少ないと8OK縁起伝導体を生成し、2.0
より多いと8OK縁起伝導体と半導体を生成する。
When Bi is less than 0.5, it is difficult to form a superconductor crystal structure, and when it is more than 1.2, an 8OK originating conductor and a semiconductor phase are generated. When pb is more than 1.2, it is easy to form an 8OK conductor and a semiconductor phase, when Ca is less than 0.4, a semiconductor phase is formed, and when it is more than 1.3, a 110 phase is formed, but CaCuzL and Since impurity phases such as Ca-Cub are generated at the same time, the critical degree is lowered. Cu less than 1.3 produces an 8OK fringe conductor, and less than 2.0
If the amount is larger, 8OK originating conductors and semiconductors are produced.

用いられる基板としては、熱処理中に4M中の元素と反
応しないMgO、SrTiO3、LaGaO3、LaA
lO3等の酸化物単結晶、Ag、 Au、・Pj、Cu
等の多結晶金属、Sl、GaAs等の半導体、又はこれ
らを組み合わせたものなどが使用される。
The substrates used include MgO, SrTiO3, LaGaO3, and LaA, which do not react with the elements in 4M during heat treatment.
Oxide single crystals such as lO3, Ag, Au, ・Pj, Cu
Polycrystalline metals such as, semiconductors such as Sl, GaAs, or a combination thereof are used.

薄膜の厚さは、使用目的に合わせて製造し、好ましくは
0.1〜1OII11程度がよい。薄膜の厚さが0、l
lI+m以下だと熱処理後、超伝導粒子同志の結合が弱
くなり、lOμ−以上だと膜の配向性が著しく低下し、
臨界電fiL密度等の超伝導特性が低下する。
The thickness of the thin film is determined depending on the purpose of use, and is preferably about 0.1 to 1OII11. The thickness of the thin film is 0, l
If it is less than lI+m, the bond between superconducting particles becomes weak after heat treatment, and if it is more than lOμ-, the orientation of the film will be significantly reduced.
Superconducting properties such as critical electric fiL density deteriorate.

薄膜製造の際、基板加熱は行っても行わなくてもよい。During thin film production, substrate heating may or may not be performed.

また、ターゲットの原料は、#化物、炭酸化物、硝酸化
物等の無機化合物、又は、各単体の金属、二種類以上の
合金が用いられる。
Further, as the raw material for the target, inorganic compounds such as oxides, carbonates, and nitrates, individual metals, or alloys of two or more types are used.

作製された薄膜は、結晶化させるために800〜860
℃で5〜l口0時間熱処理し、11OK級超伝導体を合
成する。また、熱処理の前に700〜800℃で2〜I
O時間予め仮焼すると膜の特性が安定する。
The produced thin film was heated to 800 to 860 to crystallize it.
Heat treatment is performed at ℃ for 5 to 1 hour to synthesize an 11 OK class superconductor. Also, before heat treatment, 2-I at 700-800℃
Preliminary calcination for O hours stabilizes the properties of the film.

熱処理後は、炉内で冷却する。熱処理は、空気中もしく
はPbOの蒸気が存在する雰囲気等の酸素存在化で行う
After heat treatment, it is cooled in a furnace. The heat treatment is performed in the presence of oxygen, such as in air or in an atmosphere containing PbO vapor.

[実施例1 以下の測定において11OK級超伝導体結晶のC軸長は
、x!1回折装置を用い、試料の回折線のうち1002
1 、10061 、 +0081 、10010) 
、 100141 、100161 。
[Example 1 In the following measurements, the C-axis length of the 11OK class superconductor crystal is x! 1002 out of the diffraction lines of the sample using a diffractometer
1, 10061, +0081, 10010)
, 100141 , 100161 .

10024) 、 +00261 、10032+ 、
 +00341の回折ピーク位置を、Si粉末を標準試
料として、その+2201.13111゜+4001 
、 +3311 、 +4221 、 +3331の回
折角度から補正した。補正したピーク位置を面間隔dに
直して最小二乗法で計算した。計算には、X線結晶解析
用プロゲラ1hUNIcs R5LC−3を用イタ。
10024) , +00261 , 10032+ ,
The diffraction peak position of +00341 is determined by +2201.13111°+4001 using Si powder as a standard sample.
, +3311, +4221, +3331 diffraction angles. The corrected peak position was converted into a surface spacing d and calculated using the least squares method. For calculations, Progera 1hUNIcs R5LC-3 for X-ray crystallography was used.

また、臨界温度は、クライオスタット中で四端子法によ
り測定した。
Further, the critical temperature was measured in a cryostat using the four-terminal method.

超伝導薄膜の製造 スパッタリングターゲット ■ Bio、5Pbo sO++ 第一のターゲットとしてB120−とPbOの粉末を、
原子比でBi:Pb= l:1となるように配合し、メ
タノール中で24時間混合して乾燥したもの。
Superconducting thin film production sputtering target■ Bio, 5Pbo sO++ B120- and PbO powders are used as the first target.
Blend in an atomic ratio of Bi:Pb=l:1, mixed in methanol for 24 hours, and dried.

■ CaCuo、 ysL 第二のターゲットとして、 CaCO5とCuOの粉末
を、原子比でCa:Cu=1:0.75に配合し、上記
方法と同様に混合した粉末を、950℃で10時間空気
中で焼成し粉砕したもの。
■ CaCuo, ysL As the second target, powders of CaCO5 and CuO were mixed in an atomic ratio of Ca:Cu=1:0.75, and the mixed powder was heated in the air at 950℃ for 10 hours. calcined and crushed.

■ 5rCuo、 ysO++ 第三のターゲットとして、SrCO3とCuOの粉末を
、原子比でSr:Cu= l:0.75となる様に配合
し、上記方法と同様に混合した粉末を、950℃で10
時間空気中で焼成し粉砕したもの。
■ 5rCuo, ysO++ As the third target, powders of SrCO3 and CuO were blended so that the atomic ratio was Sr:Cu=l:0.75, and the mixed powder was heated at 950°C for 10
Calcined in air for an hour and then ground.

加熱されていないMgO単結晶基板上に、上記3種類の
ターゲットを用い、RFパワーを100wとして。
The above three types of targets were used on an unheated MgO single crystal substrate, and the RF power was set to 100 W.

A「ガスでスパッタリングし、各ターゲットの堆積が一
巡したら、これを400回くり返して約2u■の薄膜を
得た。
A: After sputtering with a gas and completing one cycle of deposition for each target, this process was repeated 400 times to obtain a thin film of about 2u.

各ターゲットの一回の堆積時間は ■ Bto、5Pbn aO++     8秒■  
CaCuo  tsO+1   (53,5÷X)秒■
 5rCuo ysL  !53.5−X1秒とし、X
としてl015及び0を選び1次の三種類の組成の薄膜
を得た。
The time for one deposition of each target is ■ Bto, 5Pbn aO++ 8 seconds■
CaCuo tsO+1 (53,5÷X) seconds■
5rCuoysL! 53.5-X1 seconds, X
1015 and 0 were selected as the 1015 and 0, and thin films with three types of first-order compositions were obtained.

A) X:lO:lBi+Pbl+、a*Sr+、oo
Ca+ +tC1l+、atO。
A) X:lO:lBi+Pbl+, a*Sr+, oo
Ca+ +tC1l+, atO.

B) X” 5: lBi+Pb) 1. *ySr+
、 oocan、 5zcu+、 goo。
B) X” 5: lBi+Pb) 1. *ySr+
, oocan, 5zcu+, goo.

CI X= 0: lBi+Pbl +、 1asr+
、 oocao、 5ocu+、 sJx得られたそれ
ぞれの薄膜を850℃で、 15時間。
CI X= 0: lBi+Pbl+, 1asr+
, oocao, 5ocu+, sJx The obtained thin films were heated at 850°C for 15 hours.

24時間及び65時間熱処理した。Heat treatment was performed for 24 hours and 65 hours.

得られた超伝導薄膜について、各試料の110に縁起伝
導体のC軸長及び臨界温度を測定した結果を表−1に示
す。
Regarding the obtained superconducting thin films, the C-axis length and critical temperature of the originating conductor of each sample were measured and the results are shown in Table 1.

表−1 (以下余白) 〔発明の効果J 本発明のBI系酸化物超伝導薄換は、その薄膜を構成す
る11OK級超伝導体結晶のC軸長が3.7100nm
以上の場合、その臨界温度はIflOK以上あり、優れ
た超伝導特性を示す。
Table 1 (blank below) [Effects of the invention J The BI-based oxide superconducting thin film of the present invention has a C-axis length of 3.7100 nm of the 11OK class superconductor crystal constituting the thin film.
In the above case, the critical temperature is higher than IflOK, and exhibits excellent superconducting properties.

Claims (1)

【特許請求の範囲】[Claims] (1)Bi、Pb、Sr、Ca及びCu、又はBi、S
r、Ca及びCuを含む(Bi+Pb)_2Sr_2C
a_2Cu_3O_x構造の11OK級酸化物超伝導体
と、(Bi+Pb)_2Sr_2Ca_1Cu_2O_
x構造の8OK級酸化物超伝導体から構成され、以下の
組成を有する薄膜において、11OK級酸化物超伝導体
のc軸長が3.7100nm以上であることを特徴とす
る臨界温度が100k以上のBi系超伝導薄膜。 Bi_aPb_bSr_1_._0_0Ca_cCu_
dO_x0.5≦a≦1.20.0≦b≦1.2 0.4≦c≦1.3 1.3≦d≦2.0
(1) Bi, Pb, Sr, Ca and Cu, or Bi, S
(Bi+Pb)_2Sr_2C containing r, Ca and Cu
11OK class oxide superconductor with a_2Cu_3O_x structure and (Bi+Pb)_2Sr_2Ca_1Cu_2O_
A thin film composed of an 8 OK class oxide superconductor with an Bi-based superconducting thin film. Bi_aPb_bSr_1_. _0_0Ca_cCu_
dO_x0.5≦a≦1.20.0≦b≦1.2 0.4≦c≦1.3 1.3≦d≦2.0
JP2119235A 1990-05-09 1990-05-09 Bi-based oxide superconducting thin film Expired - Lifetime JP3038485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2119235A JP3038485B2 (en) 1990-05-09 1990-05-09 Bi-based oxide superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2119235A JP3038485B2 (en) 1990-05-09 1990-05-09 Bi-based oxide superconducting thin film

Publications (2)

Publication Number Publication Date
JPH0416592A true JPH0416592A (en) 1992-01-21
JP3038485B2 JP3038485B2 (en) 2000-05-08

Family

ID=14756310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2119235A Expired - Lifetime JP3038485B2 (en) 1990-05-09 1990-05-09 Bi-based oxide superconducting thin film

Country Status (1)

Country Link
JP (1) JP3038485B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110777434A (en) * 2019-11-12 2020-02-11 中国工程物理研究院化工材料研究所 Mixed anion infrared nonlinear optical crystal/powder and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110777434A (en) * 2019-11-12 2020-02-11 中国工程物理研究院化工材料研究所 Mixed anion infrared nonlinear optical crystal/powder and preparation method thereof
CN110777434B (en) * 2019-11-12 2020-07-28 中国工程物理研究院化工材料研究所 Mixed anion infrared nonlinear optical crystal/powder and preparation method thereof

Also Published As

Publication number Publication date
JP3038485B2 (en) 2000-05-08

Similar Documents

Publication Publication Date Title
JPH0577611B2 (en)
EP0800494B1 (en) LOW TEMPERATURE (T LOWER THAN 950 oC) PREPARATION OF MELT TEXTURE YBCO SUPERCONDUCTORS
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
JP2501620B2 (en) Preparation method of superconducting thin film
JPH0416592A (en) Superconducting thin film of bi oxide
JPH10236821A (en) Low-anisotropy high-temperature superconductor based on uncertainty principle and its production
Thejeel et al. Effect of Partial Substitution of Sr by Ba on the Structural Properties of Tl0. 8Ni0. 2Sr2-xBrxCa2Cu3O9-δ System
US5439878A (en) Method for preparing copper oxide superconductor containing carbonate radicals
JPS63301424A (en) Manufacture of oxide superconductor membrane
JPH04292420A (en) Superconducting compound and method for its preparation
JPH0465395A (en) Superconducting fibrous crystal and its production
JP2817869B2 (en) Copper oxide superconductor containing carbonate group and method for producing the same
WO1989007086A1 (en) SUPERCONDUCTING Bi-Sr-Ca-Cu OXIDE COMPOSITIONS AND PROCESS FOR MANUFACTURE
JPH06157041A (en) Lead complex copper oxide material
Song et al. Low-temperature (T⩽ 950° C) preparation of melt-textured YBa2Cu3O7− δ superconductors
JP2870647B2 (en) Method for producing Bi-based oxide superconductor
JPS63307614A (en) High-temperature oxide superconductor thin film
Bandyopadhyay et al. : a new series of mercury-based 1212 superconductors
EP0441903A4 (en) Superconducting metal oxide compositions and processes for manufacture and use
JPH0829938B2 (en) Composite oxide superconducting thin film and method for producing the same
JPH03295811A (en) Bi-containing oxide superconducting thin film
JPH0465346A (en) Superconducting composition
JPH03290315A (en) Production of bi-based oxide superconductor thin film
JPH025581A (en) Manufacture of superconducting thin film
JPH054819A (en) Electrically conductive oxide