JPH04165640A - Temperature measurement - Google Patents

Temperature measurement

Info

Publication number
JPH04165640A
JPH04165640A JP29275490A JP29275490A JPH04165640A JP H04165640 A JPH04165640 A JP H04165640A JP 29275490 A JP29275490 A JP 29275490A JP 29275490 A JP29275490 A JP 29275490A JP H04165640 A JPH04165640 A JP H04165640A
Authority
JP
Japan
Prior art keywords
temperature
signals
voltage values
reference signals
temperature measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29275490A
Other languages
Japanese (ja)
Other versions
JP3246737B2 (en
Inventor
Fujio Suzuki
鈴木 富士雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Sagami Ltd
Original Assignee
Tokyo Electron Sagami Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Sagami Ltd filed Critical Tokyo Electron Sagami Ltd
Priority to JP29275490A priority Critical patent/JP3246737B2/en
Priority to US07/760,919 priority patent/US5228114A/en
Priority to KR1019910018890A priority patent/KR0147045B1/en
Publication of JPH04165640A publication Critical patent/JPH04165640A/en
Application granted granted Critical
Publication of JP3246737B2 publication Critical patent/JP3246737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To accurately and easily measure temperatures at a plurality of points by inputting a plurality of detecting signals and at least two reference signals to signal switching means and making the temperature measurements on the basis of the plurality of detecting signals by correcting a temperature measurement circuit on the basis of the reference signals. CONSTITUTION:Reference signals C01 and C02 are successively sent to a temperature measurement circuit 20 while the signals are switched to each other by means of multiplexers 13 similarly to detecting signals C1-C18. When the voltage values obtained by measuring the signals C01 and C02 are deviated from set voltage values A and B and become A' and B' due to the variation of the turning-on or turning-off resistance of the multiplexers 13, temperature drift in the amplification degree of a detecting signal amplifier 23, etc., outputting voltage values by means of the setting signals C1-C18 are outputted after the output voltage values are corrected on the basis of the difference between the set and measured voltage values A and A' and the difference between the set and measured voltage values B and B'. Therefore, when temperature measurements are successively performed at a plurality of points by using the signal switching means, the temperature at each point can accurately and easily be measured.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、温度測定方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a temperature measuring method.

(従来の技術) 一般に、半導体デバイスの製造工程における成膜工程や
熱拡散工程では、例えば被処理物である半導体ウェハを
収容する反応管の周囲にヒータを配置して構成した熱処
理装置か使用されている。
(Prior Art) Generally, in the film forming process and thermal diffusion process in the manufacturing process of semiconductor devices, a heat treatment apparatus is used, for example, which is configured by arranging a heater around a reaction tube that houses a semiconductor wafer, which is an object to be processed. ing.

このような熱処理装置においては、反応管外部や内部に
複数配置された温度検出器からの信号を順次測定回路に
送り、各温度検出器の配置位置の温度を測定し、この測
定温度に基づいてヒータに印加する電力を制御しており
、これにより反応管内の温度を所定の温度に制御してい
る。
In such heat treatment equipment, signals from multiple temperature detectors placed outside and inside the reaction tube are sequentially sent to a measurement circuit, the temperature at the location of each temperature detector is measured, and the temperature is calculated based on this measured temperature. The electric power applied to the heater is controlled, thereby controlling the temperature inside the reaction tube to a predetermined temperature.

ところで、上記したように複数の温度検出器、例えば熱
電対を配置する際には、例えばマルチプレクサ等によっ
て複数の検出信号を順次切り替えながら測定回路に送る
ことにより、それぞれの温度測定を行うことが行われて
いる。
By the way, when arranging multiple temperature detectors, such as thermocouples, as described above, it is possible to measure the temperature of each by sequentially switching multiple detection signals and sending them to the measurement circuit using, for example, a multiplexer. It is being said.

(発明が解決しようとする課題) しかしながら、複数箇所の温度測定を行う際に、上記し
たようなマルチプレクサ等によって検出信号の切り替え
を行うと、例えばマルチプレクサのオン抵抗やオフ抵抗
の温度変化や接続部の異種金属部から発生する熱起電力
や検出信号を増幅する際の増幅器のドリフト等によって
、測定誤差か牛しやすいという問題かあった。例えば熱
電対による温度測定では、検出信号か10数μV / 
℃程度と極めて小さいため、僅かな熱起電力によっても
測定誤差か極めて大きくなってしまう。
(Problem to be Solved by the Invention) However, when performing temperature measurements at multiple locations, switching the detection signal using a multiplexer as described above may cause problems such as temperature changes in the on-resistance and off-resistance of the multiplexer, There was a problem that measurement errors were easily caused by thermal electromotive force generated from dissimilar metal parts and drift of the amplifier when amplifying the detection signal. For example, in temperature measurement using a thermocouple, the detection signal is approximately 10-odd μV/
Since it is extremely small at around ℃, even a small thermoelectromotive force can cause an extremely large measurement error.

本発明は、このような従来技術の課題に対処するために
なされたもので、複数箇所の温度測定を正確かつ容易に
行うことを可能とした温度測定方法を提供することを目
的としている。
The present invention has been made to address the problems of the prior art, and an object of the present invention is to provide a temperature measurement method that allows temperature measurements at multiple locations to be performed accurately and easily.

[発明の構成] (課題を解決するための手段) ずな4つも本発明の温度測定方法は、複数の温度検出器
からの検出信号を信号切替え手段によって順次温度測定
回路に送り、個々の検出信号に基づいて前記複数の温度
検出器が設置されたそれぞれの箇所の温度を測定するに
際し、前記信号切替え手段に前記複数の検出信号および
少なくとも2つの基準信号を入力し、これら基準信号に
基づいて前記温度測定回路を補正しつつ、前記複数の検
出信号に基づく温度測定をそれぞれ行うことを特徴とし
ている。
[Structure of the Invention] (Means for Solving the Problems) The temperature measuring method of the present invention sequentially sends detection signals from a plurality of temperature detectors to a temperature measurement circuit by a signal switching means, and performs individual detection. When measuring the temperature at each location where the plurality of temperature detectors are installed based on the signals, inputting the plurality of detection signals and at least two reference signals to the signal switching means, and measuring the temperature based on these reference signals. The present invention is characterized in that temperature measurements are performed based on the plurality of detection signals while correcting the temperature measurement circuit.

(作 用) 本発明の温度測定方法においては、複数の温度検出器か
らの検出信号と共に、少なくとも 2つの基準信号を信
号切替え手段に入力し、検出信号と同様に基準信号の測
定を行うことにより、信号経路例えばマルチプレクサや
増幅器等によって生じた誤差を測定することかできる。
(Function) In the temperature measurement method of the present invention, at least two reference signals are input to the signal switching means together with detection signals from a plurality of temperature detectors, and the reference signals are measured in the same manner as the detection signals. , errors introduced by the signal path, such as multiplexers and amplifiers, can be measured.

そ(、で、少なくとも 2つの基準信号からの出力に基
づいて、個々の検出(j4号による出力の補正を行うこ
とにより、正確な温度測定を行うことか可能となる。ま
た、このような正確な温度測定を、検出信号と共に基準
信号を信号切替え手段に入力するたけて行うことかでき
る。
By correcting the outputs of individual detections (j4) based on the outputs from at least two reference signals, it is possible to perform accurate temperature measurements. Temperature measurements can be carried out by inputting the reference signal together with the detection signal to the signal switching means.

(実施例) 以下、本発明方法を熱処理装置の温度測定に適用した実
施例について図面を参照して説明する。
(Example) Hereinafter, an example in which the method of the present invention is applied to temperature measurement of a heat treatment apparatus will be described with reference to the drawings.

第1図は、本発明の温度測定方法を適用した熱処理装置
の概略構成を示す図であり、同図に示す熱処理装置]は
、例えば円筒形状の石英等からなる反応管2の周囲に、
加熱用ヒータ3か配置されて構成されており、上記反応
管2内に例えばウェハホード4に収納された多数の半導
体ウエノ\5か収容され、所望の熱処理か施される。
FIG. 1 is a diagram showing a schematic configuration of a heat treatment apparatus to which the temperature measurement method of the present invention is applied.
A heating heater 3 is arranged, and a large number of semiconductor wafers 5 housed in, for example, a wafer holder 4 are accommodated in the reaction tube 2 and subjected to desired heat treatment.

上記熱処理装置]ては、例えば反応管2の長手刀向に5
分割された領域A、B、C,D、、E毎にヒータ3に印
加する電力を制御し、これらの領域A、 −E毎に反応
管2内の温度を制御する、5ゾ一ン温度制御方式を採用
している。
In the heat treatment apparatus, for example, 5
A 5-zone temperature control system that controls the power applied to the heater 3 for each of the divided regions A, B, C, D, and E, and controls the temperature inside the reaction tube 2 for each of these regions A and -E. A control method is adopted.

そして、上記5ゾ一ン温度制御方式を実施するために、
反応管2外部の加熱用ヒータ3の近傍には、各領域AS
B、C,D、E毎に、温度検出器例えば熱電対6.7が
それぞれ2本づつ設置されている。また、反応管2の内
部にも、各領域A、B、CSD、E毎にそれぞれ温度検
出器例えば熱電対8が設置されている。
In order to implement the above five-zone temperature control method,
In the vicinity of the heater 3 outside the reaction tube 2, each area AS
Two temperature detectors such as thermocouples 6.7 are installed in each of B, C, D, and E. Furthermore, inside the reaction tube 2, temperature detectors such as thermocouples 8 are installed in each of the regions A, B, CSD, and E, respectively.

各熱電対6.7.8は、補償導線9を介してコネクタで
ある接続器10と接続されている。この際、反応管2の
外部に設置された熱電対のうち、第1の熱電対6はそれ
ぞれ第1の接続器10aと、第2の熱電対7はそれぞれ
第2の接続器]、 Obと接続されており、反応管2の
内部に設置された熱電対8はそれぞれ第3の接続器]、
 OCと接続されている。各接続器10a、10b、1
0cには、これら接続器自体の温度測定を行うための補
償用温度センサ11がそれぞれ設置されている。
Each thermocouple 6.7.8 is connected via a compensation conductor 9 to a connector 10. At this time, among the thermocouples installed outside the reaction tube 2, the first thermocouple 6 is connected to the first connector 10a, and the second thermocouple 7 is connected to the second connector], Ob and and each thermocouple 8 installed inside the reaction tube 2 is a third connector],
Connected to OC. Each connector 10a, 10b, 1
Compensation temperature sensors 11 are installed at 0c to measure the temperature of these connectors themselves.

各熱電対6.7.8からの検出信号は、第2図に示すよ
うに、上記補償用温度センサ11からの出力信号と共に
、信号切替え手段例えば半導体からなるアナログマルチ
プレクサ]2へと送られる。
As shown in FIG. 2, the detection signals from each thermocouple 6, 7, 8 are sent together with the output signal from the compensating temperature sensor 11 to a signal switching means, such as an analog multiplexer made of semiconductor 2.

なお、第1の接続器10aからの検出信号は第1のマル
チプレクサ12aへ、第2の接続器10bからの検出信
号は第2のマルチプレクサ12bへ、第3の接続器10
eからの検出信号は第3のマルチプレクサ12cへと送
られる。
Note that the detection signal from the first connector 10a is sent to the first multiplexer 12a, the detection signal from the second connector 10b is sent to the second multiplexer 12b, and the detection signal is sent to the third connector 10.
The detection signal from e is sent to the third multiplexer 12c.

上記各マルチプレクサ12a、12b、12cには、上
記各熱電対6.7.8からの検出信号等と共に、少なく
とも2つの基準信号C81、CO2がそれぞれ入力され
ている。
At least two reference signals C81 and CO2 are input to each of the multiplexers 12a, 12b, and 12c, respectively, along with detection signals from the thermocouples 6, 7, and 8, respectively.

これら基準信号C83、CO2としては、例えば測定対
象に応じた最大温度に相当する電圧と零電圧等か使用さ
れる。この実施例では、測定温度範囲は0℃〜1399
.9℃であり、Cotには測定最大温度以上の約141
2℃に相当する+16.2a+Vの基準電源13を接続
し、CO2はアース電位に接続した。なお、この基準信
号は2つに限られるものではなく、基準信号数を増加す
ることによって、より正確な測定が期待できるか、α1
定対象の信号入力数の低下を招くため、通常は2つの基
準信号で十分である。
As these reference signals C83 and CO2, for example, a voltage corresponding to the maximum temperature depending on the object to be measured, a zero voltage, etc. are used. In this example, the measurement temperature range is 0°C to 1399°C.
.. 9℃, and Cot has a temperature of about 141℃, which is higher than the maximum temperature measured.
A reference power supply 13 of +16.2a+V corresponding to 2°C was connected, and CO2 was connected to ground potential. Note that the number of reference signals is not limited to two, and whether more accurate measurement can be expected by increasing the number of reference signals, α1
Two reference signals are usually sufficient since this results in a reduction in the number of signal inputs to be determined.

そして、各マルチプレクサ12a、12b、12Cは、
温度測定回路20と接続されており、これらマルチプレ
クサ12に入力された熱電対6.7.8からの検出信号
C2〜C18や基準信号C81、CO2等は、各マルチ
プレクサ12a、12b、12Cで切り替えられて、順
次温度測定回路20側に送られる。
Each multiplexer 12a, 12b, 12C is
The detection signals C2 to C18 from the thermocouples 6.7.8, reference signals C81, CO2, etc., which are connected to the temperature measurement circuit 20 and input to the multiplexer 12, are switched by the multiplexers 12a, 12b, and 12C. and are sequentially sent to the temperature measurement circuit 20 side.

上記温度測定回路20は、3台のマルチプレクサ12a
、12b、12cからの信号を切り替える半導体アナロ
グスイッチ21.22と、検出信号等を増幅するための
アンプ23と、A/Dコンバータ24と、検出信号や基
準信号等を温度に変換する演算式や基準信号C81、C
O2からの出力温度値に応じて検出信号からの出力温度
値を補正する演算式等が予め記憶されているROM25
と、これら演算過程での出力値を一時記憶するRAM2
6と、上記ROM25に記憶されている演算式に基づい
て、検出信号や基準信号等を温度に変換し、かつ検出信
号からの出力温度値を補正して、測定温度として出力す
ると共に、この補正後の測定温度に基づいて加熱用ヒー
タ3に印加する電力値の指令信号を出力するCPU27
と、この指令信号に応じて加熱用ヒータ3への印加電力
を制御する5CR28等とから構成されている。
The temperature measurement circuit 20 includes three multiplexers 12a.
, 12b, 12c, an amplifier 23 for amplifying the detection signal, an A/D converter 24, and an arithmetic equation for converting the detection signal, reference signal, etc. into temperature. Reference signal C81, C
ROM25 in which calculation formulas, etc. for correcting the output temperature value from the detection signal according to the output temperature value from O2 are stored in advance.
and RAM2 which temporarily stores the output values during these calculation processes.
6, and convert the detection signal, reference signal, etc. into temperature based on the calculation formula stored in the ROM 25, correct the output temperature value from the detection signal, output it as the measured temperature, and perform this correction. A CPU 27 that outputs a command signal for a power value to be applied to the heating heater 3 based on the later measured temperature.
and 5CR28, etc., which control the power applied to the heating heater 3 in accordance with this command signal.

ここで、上記基準信号C63、CO2を利用した熱電対
6.7.8からの検出信号C1〜crsの温度補正につ
いて説明する。
Here, temperature correction of the detection signals C1 to crs from the thermocouples 6.7.8 using the reference signal C63 and CO2 will be explained.

まず、マルチプレクサ12によって切り替えられて、検
出信号01〜C18と同様に順次温度測定回路20へと
基準信号C81、CO2が送られると、これら基準信号
C8い C82に基づく電圧が出力される。この際、第
3図に示すように、これら基準信号C81、CO2によ
る出力電圧値が予め定められた値ASBであれば、検出
信号01〜C18による温度に相当する電圧Cはそのま
ま測定温度に相当した電圧として出力される。また、基
準信号C81、CO2を測定した電圧の値が、例えばマ
ルチプレクサ12のオン抵抗、オフ抵抗の変動や、接続
器10の異種金属部から発生する熱起電力や、検出器ア
ンプ23の増幅度の温度ドリフト等によって、設定電圧
値A、BからずれてA’ 、B’ と測定された場合に
は、設定電圧Aと測定電圧値A′とのおよび設定電圧B
と測定電圧値B′の差に基づいて検出信号C3〜C18
による出力電圧値は所定の補正がなされ、例えば補正前
の電圧C′は電圧Cと補正されて出力される。
First, when the reference signals C81 and CO2 are switched by the multiplexer 12 and sent sequentially to the temperature measurement circuit 20 in the same way as the detection signals 01 to C18, a voltage based on these reference signals C8 to C82 is output. At this time, as shown in Fig. 3, if the output voltage value from these reference signals C81 and CO2 is the predetermined value ASB, the voltage C corresponding to the temperature from the detection signals 01 to C18 directly corresponds to the measured temperature. output as a voltage. In addition, the voltage values obtained by measuring the reference signals C81 and CO2 may be affected by, for example, fluctuations in the on-resistance and off-resistance of the multiplexer 12, thermoelectromotive force generated from dissimilar metal parts of the connector 10, or the amplification level of the detector amplifier 23. If the measured voltages A' and B' deviate from the set voltage values A and B due to temperature drift, etc., the difference between the set voltage A and the measured voltage value A' and the set voltage B
Detection signals C3 to C18 are generated based on the difference between and measured voltage value B'.
The output voltage value is subjected to a predetermined correction, for example, the voltage C' before correction is corrected to the voltage C and output.

上記温度補正は、例えば基準信号C83、CO2により
測定した電圧A′、B′と設定電圧A、Bとの差に基づ
いた比例計算によって行うことができる。このような温
度補正は、検出信号CI ”’−C10と共に基準信号
C3ls  CO2を順次入力して行ってもよいし、温
度測定回路20を例えば毎秒校正するように構成しても
よい。
The above temperature correction can be performed, for example, by proportional calculation based on the difference between the voltages A' and B' measured using the reference signals C83 and CO2 and the set voltages A and B. Such temperature correction may be performed by sequentially inputting the reference signal C3lsCO2 together with the detection signal CI'''-C10, or the temperature measurement circuit 20 may be configured to be calibrated every second, for example.

上述したような温度補正によって、各熱電対6.7.8
からの検出信号01〜C18は、信号経路等の例えば温
度ドリフトに起因して生じた誤差が補正されて、正確な
温度値として出力される。
By temperature correction as described above, each thermocouple 6.7.8
Detection signals 01 to C18 are corrected for errors caused by temperature drift in the signal path, etc., and are output as accurate temperature values.

なお、上記した外部温度検出器(6,7)と内部温度検
出器(8)とによる反応管2内の温度制御は、例えば内
部温度検出器(8)からの出力温度値と外部温度検出器
(6,7)からの出力温度値との平均値を所定の比率に
よって演算し、この平均値に応じて加熱用ヒータ3に印
加する電力を制御することにより行う。
Note that temperature control inside the reaction tube 2 by the above-mentioned external temperature detectors (6, 7) and internal temperature detector (8) is performed using, for example, the output temperature value from the internal temperature detector (8) and the external temperature detector. This is done by calculating the average value of the output temperature values from (6, 7) according to a predetermined ratio, and controlling the electric power applied to the heating heater 3 according to this average value.

このように、上記実施例の熱処理装置1においては、複
数の熱電対6.7.8からの検出信号CI−(+sと共
に、2つ)基準信号COI、CO2を各マルチプレクサ
12に入力し、上記基準信号Cot、CO2による出力
温度値に基づいて、温度測定回路20を校正しているた
め、検出信号がマルチプレクサ12に入力されてからA
/Dコンバータ24によってデジタル変換されるまでに
生じた誤差が補正され、正確な温度測定を行うことかで
き、よって反応管2の温度フントロールをより正確に行
うことか可能となる。
In this way, in the heat treatment apparatus 1 of the above embodiment, the detection signals CI- (along with +s, two) reference signals COI and CO2 from the plurality of thermocouples 6, 7, 8 are inputted to each multiplexer 12, and the Since the temperature measurement circuit 20 is calibrated based on the output temperature value from the reference signals Cot and CO2, the A
Errors that occur before digital conversion by the /D converter 24 are corrected, and accurate temperature measurements can be made, thereby making it possible to more accurately control the temperature of the reaction tube 2.

また、このような正確な温度測定が、検出信号C+ −
CIsと共に2つの基準信号COI、Co2を各マルチ
プレクサ〕2に入力するという簡単な操作で行えるため
、装置上の負担等も少なくてすむ。
In addition, such accurate temperature measurement is possible using the detection signal C+ −
This can be done by a simple operation of inputting the two reference signals COI and Co2 together with CIs to each multiplexer] 2, which reduces the burden on the device.

なお、上記実施例においては、本発明の温度測定方法を
熱処理装置の温度制御に適用した例について説明したが
、本発明はこれに限定されるものではなく、複数の温度
検出器からの検出信号を順次温度測定回路に送るような
、各種の温度測定に適用することができる。
In addition, in the above embodiment, an example was explained in which the temperature measurement method of the present invention is applied to temperature control of a heat treatment apparatus, but the present invention is not limited to this. It can be applied to various types of temperature measurements, such as sequentially sending data to a temperature measurement circuit.

[発明の効果] 以上説明したように、本発明の温度測定方法によれば、
複数箇所の温度測定を信号切替え手段を用いて順次行う
ような場合に、それぞれの温度測定を正確かつ容品に行
うことが可能となる。
[Effects of the Invention] As explained above, according to the temperature measurement method of the present invention,
When temperature measurements at multiple locations are sequentially performed using the signal switching means, each temperature measurement can be performed accurately and efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の温度測定方法を適用した熱
処理理装置の概略構成を示す図、第2図はその温度測定
回路を示す図、第3図は本発明による温度の補正方法を
説明するための図である。 1・・・・熱処理装置、2・・・反応管、3・・・・・
加熱用ヒータ、6.7.8・・・・・・熱電対、10・
・・・・接続器、]2・・・・・マルチプレクサ、13
・・・・・基準電源、20・・・・・・温度測定回路。 出願人   東京エレクトロン相模株式会打代理人 弁
理士  須 山 佐 − (ほか1名) ta1口 ↓ 第2図
Fig. 1 is a diagram showing a schematic configuration of a heat treatment equipment to which a temperature measurement method according to an embodiment of the present invention is applied, Fig. 2 is a diagram showing its temperature measurement circuit, and Fig. 3 is a diagram showing a temperature correction method according to the present invention. FIG. 1...Heat treatment device, 2...Reaction tube, 3...
Heating heater, 6.7.8...Thermocouple, 10.
... Connector, ]2 ... Multiplexer, 13
...Reference power supply, 20...Temperature measurement circuit. Applicant Tokyo Electron Sagami Co., Ltd. Agent Patent Attorney Sasa Suyama - (1 other person) TA1 mouth↓ Figure 2

Claims (1)

【特許請求の範囲】[Claims] 複数の温度検出器からの検出信号を信号切替え手段によ
って順次温度測定回路に送り、個々の検出信号に基づい
て前記複数の温度検出器が設置されたそれぞれの箇所の
温度を測定するに際し、前記信号切替え手段に前記複数
の検出信号および少なくとも2つの基準信号を入力し、
これら基準信号に基づいて前記温度測定回路を補正しつ
つ、前記複数の検出信号に基づく温度測定をそれぞれ行
うことを特徴とする温度測定方法。
Detection signals from a plurality of temperature detectors are sequentially sent to a temperature measurement circuit by a signal switching means, and when measuring the temperature at each location where the plurality of temperature detectors are installed based on the individual detection signals, the signal inputting the plurality of detection signals and at least two reference signals to a switching means;
A temperature measuring method characterized in that temperature measurements are performed based on each of the plurality of detection signals while correcting the temperature measurement circuit based on these reference signals.
JP29275490A 1990-10-30 1990-10-30 Temperature measuring method, temperature measuring device and heat treatment device Expired - Lifetime JP3246737B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP29275490A JP3246737B2 (en) 1990-10-30 1990-10-30 Temperature measuring method, temperature measuring device and heat treatment device
US07/760,919 US5228114A (en) 1990-10-30 1991-09-17 Heat-treating apparatus with batch scheme having improved heat controlling capability
KR1019910018890A KR0147045B1 (en) 1990-10-30 1991-10-25 Heat-treating apparatus with batch scheme having improved heat controlling capability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29275490A JP3246737B2 (en) 1990-10-30 1990-10-30 Temperature measuring method, temperature measuring device and heat treatment device

Publications (2)

Publication Number Publication Date
JPH04165640A true JPH04165640A (en) 1992-06-11
JP3246737B2 JP3246737B2 (en) 2002-01-15

Family

ID=17785905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29275490A Expired - Lifetime JP3246737B2 (en) 1990-10-30 1990-10-30 Temperature measuring method, temperature measuring device and heat treatment device

Country Status (1)

Country Link
JP (1) JP3246737B2 (en)

Also Published As

Publication number Publication date
JP3246737B2 (en) 2002-01-15

Similar Documents

Publication Publication Date Title
KR0147045B1 (en) Heat-treating apparatus with batch scheme having improved heat controlling capability
US10228294B2 (en) System and method for temperature sensing
US6746908B2 (en) Temperature controlling method, thermal treating apparatus, and method of manufacturing semiconductor device
JPS6215818B2 (en)
US4061870A (en) Temperature control system
US6158887A (en) Correction for parasitic voltages in resistance thermometry
JPH04165640A (en) Temperature measurement
JPH0664678B2 (en) Analog input device
JPH04165643A (en) Temperature measurement
JP6865911B1 (en) Analog-to-digital converter and analog-to-digital converter control program
JPH06105191B2 (en) Input circuit of temperature measuring device
JPH04165642A (en) Temperature measurement
KR101073973B1 (en) Thermo-couple signal error correction device
JP3107219B2 (en) Heat treatment equipment
JPS6215817B2 (en)
JPH04165290A (en) Heat-treatment apparatus
JP2001174489A (en) Digital voltmeter
JPH11118617A (en) Temperature controller
JPH02173534A (en) Temperature measuring instrument
JPS6283627A (en) Digital temperature detector
JP2732270B2 (en) Temperature control method
JPS6319003A (en) Temperature adjusting device
JP3985366B2 (en) Sensor device
JP2729599B2 (en) Thermocouple temperature compensator
CN117490859A (en) Ambient temperature compensation method and device for radiation thermometer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

EXPY Cancellation because of completion of term