JPH04165054A - Method for continuous ageing head treatment of aluminum alloy - Google Patents

Method for continuous ageing head treatment of aluminum alloy

Info

Publication number
JPH04165054A
JPH04165054A JP8923090A JP8923090A JPH04165054A JP H04165054 A JPH04165054 A JP H04165054A JP 8923090 A JP8923090 A JP 8923090A JP 8923090 A JP8923090 A JP 8923090A JP H04165054 A JPH04165054 A JP H04165054A
Authority
JP
Japan
Prior art keywords
treatment
temp
temperature
ageing
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8923090A
Other languages
Japanese (ja)
Inventor
Takashi Kimura
木村 隆嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8923090A priority Critical patent/JPH04165054A/en
Publication of JPH04165054A publication Critical patent/JPH04165054A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To improve working efficiency and to enable cost reduction by continuously executing three-step ageing treatments instead of cooling to the room temp. after each completion of ageing treatment at the time of executing the continuous ageing heat treatment to a 7000 series Al alloy. CONSTITUTION:After executing solution treatment to the Al-Zn-Mg (-Cu) series Al alloy, the first stage ageing treatment is executed at 50-160 deg.C for 1-100hr and successively, this is continuously raised to 190-200 deg.C at >=1 deg.C/min temp. raising velocity and the second stage ageing treatment is executed at this temp. for 30min-3hr and successively, this is continuously dropped to 50-160 deg.C at >=1 deg.C/min temp. dropping velocity and the third stage ageing treatment is executed at this temp. for 1-100hr. By this method, the strength corresponding to T6 material and the stress corrosive cracking resistance corresponding to T7 material in the same degree as the conventional method, can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアルミニウム合金の熱処理方法に関し、特にA
j! −Zn−Mg系及びA l −Zn−Mg−Cu
系の所it!f7000系アルミニウム合金の連続時効
熱処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for heat treatment of aluminum alloys, and in particular to a method for heat treatment of aluminum alloys.
j! -Zn-Mg system and Al -Zn-Mg-Cu
It's the place for the system! This invention relates to a continuous aging heat treatment method for f7000 series aluminum alloy.

〔従来の技術〕[Conventional technology]

従来、アルミニウム合金は時効熱処理方法は、第2図に
示すように各時効処理が終了する毎に、室温まで冷却(
例えば水冷)していた。
Conventionally, the aging heat treatment method for aluminum alloys involves cooling (cooling) to room temperature after each aging treatment, as shown in Figure 2.
For example, water cooling).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来技術では、各時効処理が終了する毎に室温まで冷却
していたため、実用化を考えた場合、作業工程の増加に
よるコストアップが問題となっていた。
In the conventional technology, the material was cooled to room temperature after each aging treatment, and therefore, when considering practical use, an increase in cost due to an increase in the number of work steps became a problem.

そこで、本発明は上記技術水準に鑑み、アルミニウム合
金の3段階の時効処理を一貫して連続的に行い、T6材
相当の強度とT7材相当の耐応力腐食割れ性を得ること
のできるアルミニウム合金の熱処理方法を提供しようと
するものである。
Therefore, in view of the above-mentioned technical level, the present invention has been developed to consistently and continuously perform three-stage aging treatment on an aluminum alloy to obtain an aluminum alloy that can obtain strength equivalent to T6 material and stress corrosion cracking resistance equivalent to T7 material. The purpose of this invention is to provide a heat treatment method.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はAl−Zn−Mg系及びAl−Zn−Mg−C
u系のアルミニウム合金を溶体化処理した後、50〜1
60℃で1〜100時間第1段時効処理を行い、続いて
連続的に1℃/min以上の昇温速度で190〜200
℃に昇温し、該温度で309〜3時間第2段時効処理を
行い、続いて連続的に1℃/min以上の降温速度で5
O−160t’に降温して、該温度で1〜100時間第
3段時効処理を行うことを特徴とするアルミニウム合金
の連続時効熱処理方法である。
The present invention is based on Al-Zn-Mg system and Al-Zn-Mg-C
After solution treatment of U-based aluminum alloy, 50-1
A first stage aging treatment is performed at 60°C for 1 to 100 hours, followed by a continuous aging treatment of 190 to 200°C at a temperature increase rate of 1°C/min or more.
The temperature was raised to 1°C, and the second stage aging treatment was performed at this temperature for 3 to 3 hours, followed by continuous aging at a cooling rate of 1°C/min or more for 5
This is a continuous aging heat treatment method for an aluminum alloy, characterized in that the temperature is lowered to O-160t' and a third stage aging treatment is performed at that temperature for 1 to 100 hours.

〔作 用〕[For production]

本発明における各熱処理の作用を以下に説明する。 The effects of each heat treatment in the present invention will be explained below.

溶体化処理により、固溶した溶質原子は第1段時効処理
により析出し、GPゾーンを形成し硬化する。この場合
、処理温度が160を以上になることはGPゾーンでは
ない中間相が析出することから好ましくない。
The solute atoms dissolved in solid solution by the solution treatment are precipitated by the first aging treatment, forming a GP zone and hardening. In this case, it is not preferable for the treatment temperature to exceed 160°C because an intermediate phase other than the GP zone will precipitate.

次に第2段時効処理では、第2段時効処理温度よりも高
温(19o〜200t’)に保持することによって、粒
内析出物(GPゾーン)を再固溶させ、粒界には析出物
の核を生成させることを目的としている。この場合、昇
温、及び降温速度が遅すぎると、昇降温中に時効処理が
進行し過ぎてしまい、高温安定相が粒内に析出して好ま
しくなく、昇降温速度は1℃/min以上が望ましい。
Next, in the second stage aging treatment, the intragranular precipitates (GP zone) are re-dissolved by maintaining the temperature at a higher temperature (19o~200t') than the second stage aging treatment temperature, and the precipitates are present at the grain boundaries. The purpose is to generate the nucleus of. In this case, if the rate of temperature increase and decrease is too slow, the aging treatment will progress too much during the temperature increase and decrease, and a high temperature stable phase will precipitate inside the grains, which is undesirable. desirable.

次いで第3段時効処理では、第1段時効処理とほぼ同等
の条件で時効処理することにより、粒内では再固溶した
溶質原子が析出しGPゾーンを形成し、粒界では生成し
た核が成長粗大化する。
Next, in the third stage aging treatment, the aging treatment is performed under almost the same conditions as the first stage aging treatment, so that the solute atoms re-dissolved in the grains precipitate to form a GP zone, and the generated nuclei at the grain boundaries. Growth and coarsening.

以上のように、粒内にGPゾーンを析出させることによ
ってT6材相当の強度を、粒界析出物を粗大化させるこ
とによってT7材相当の耐応力腐食割れ性を得られる。
As described above, by precipitating GP zones within the grains, strength equivalent to T6 material can be obtained, and by coarsening grain boundary precipitates, stress corrosion cracking resistance equivalent to T7 material can be obtained.

〔実施例〕〔Example〕

供試材合金として、市販の7075合金を用いた。その
組成を第1表に示す。供試材合金を通常法で溶体化処理
、水冷後121℃で24時間第1段時効を行い、続いて
200℃迄45分で昇温(1゜76℃/m1n) L、
200℃で30分間第2段時効処理を行い、121℃迄
45分で降温(1,76℃/m1n) L、121℃で
24時間第3段時効処理を行った。
Commercially available 7075 alloy was used as the test material alloy. Its composition is shown in Table 1. The test material alloy was solution-treated in the usual manner, and after water cooling, the first stage aging was performed at 121°C for 24 hours, and then the temperature was raised to 200°C in 45 minutes (1°76°C/m1n).
The second stage aging treatment was performed at 200°C for 30 minutes, the temperature was lowered to 121°C in 45 minutes (1,76°C/m1n), and the third stage aging treatment was performed at 121°C for 24 hours.

供試材合金の強度と耐応力腐食割れ性を、硬度、電気伝
導度により評価した。結果を第2表に示す。
The strength and stress corrosion cracking resistance of the sample alloys were evaluated by hardness and electrical conductivity. The results are shown in Table 2.

第  1  表 第  2  表 上表の結果から分かるように、本発明の規定条件内でT
6材相当の硬度とT7材相当の電気伝導度が得られたこ
とから、本発明により、T6材相当の強度とT7材相当
の耐応力腐食割れ性を得ることができる。
As can be seen from the results in Table 1 and Table 2 above, T
Since the hardness equivalent to the T6 material and the electrical conductivity equivalent to the T7 material were obtained, the present invention makes it possible to obtain the strength equivalent to the T6 material and the stress corrosion cracking resistance equivalent to the T7 material.

C発明の効果〕 本発明の規定条件内で、3段時効処理を連続的に施すこ
とにより、従来法と同等のT6材相当の強度とT7材相
当の耐応力腐食割れ性を得ることできる。従って、本発
明を適用することにより、3段階時効処理を実用化する
際の作業効率の向上によるコストダウンが可能となる。
C Effects of the Invention] By continuously performing the three-stage aging treatment within the specified conditions of the present invention, it is possible to obtain strength equivalent to T6 material and stress corrosion cracking resistance equivalent to T7 material, which are equivalent to the conventional method. Therefore, by applying the present invention, it is possible to reduce costs by improving work efficiency when putting three-stage aging treatment into practical use.

【図面の簡単な説明】[Brief explanation of drawings]

第11!Iは本発明の熱処理履歴の模式図、第2図は従
来の熱処理履歴を示す模式図である。
11th! I is a schematic diagram showing the heat treatment history of the present invention, and FIG. 2 is a schematic diagram showing the conventional heat treatment history.

Claims (1)

【特許請求の範囲】[Claims] Al−Zn−Mg系及びAl−Zn−Mg−Cu系のア
ルミニウム合金を溶体化した後、50〜160℃で1〜
100時間第1段時効処理を行い、続いて連続的に1℃
/min以上の昇温速度で190〜200℃に昇温し、
該温度で30分〜3時間第2段時効処理を行い、続いて
連続的に1℃/min以上の降温速度で50〜160℃
に降温して、該温度で1〜100時間第3段時効処理を
行うことを特徴とするアルミニウム合金の連続時効熱処
理方法。
After solutionizing Al-Zn-Mg-based and Al-Zn-Mg-Cu-based aluminum alloys, the
First stage aging treatment for 100 hours, followed by continuous aging at 1℃
The temperature is raised to 190 to 200 °C at a temperature increase rate of /min or more,
A second stage aging treatment is performed at this temperature for 30 minutes to 3 hours, followed by a continuous aging treatment of 50 to 160°C at a cooling rate of 1°C/min or more.
1. A continuous aging heat treatment method for an aluminum alloy, characterized in that the temperature is lowered to a temperature of 100.degree.
JP8923090A 1990-04-05 1990-04-05 Method for continuous ageing head treatment of aluminum alloy Pending JPH04165054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8923090A JPH04165054A (en) 1990-04-05 1990-04-05 Method for continuous ageing head treatment of aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8923090A JPH04165054A (en) 1990-04-05 1990-04-05 Method for continuous ageing head treatment of aluminum alloy

Publications (1)

Publication Number Publication Date
JPH04165054A true JPH04165054A (en) 1992-06-10

Family

ID=13964948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8923090A Pending JPH04165054A (en) 1990-04-05 1990-04-05 Method for continuous ageing head treatment of aluminum alloy

Country Status (1)

Country Link
JP (1) JPH04165054A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072435A (en) * 2010-09-28 2012-04-12 Rinascimetalli:Kk Metal material and working method therefor
CN105734466A (en) * 2014-12-09 2016-07-06 北京有色金属研究总院 Solid solution heat treatment method for improving structure and performance of 7xxx wrought aluminum alloy
CN111074123A (en) * 2020-01-19 2020-04-28 天津忠旺铝业有限公司 Production method of 7055 alloy for aviation
CN113981343A (en) * 2021-10-21 2022-01-28 常熟市恒泰精密金属制品有限公司 Heat treatment method of aluminum alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072435A (en) * 2010-09-28 2012-04-12 Rinascimetalli:Kk Metal material and working method therefor
CN105734466A (en) * 2014-12-09 2016-07-06 北京有色金属研究总院 Solid solution heat treatment method for improving structure and performance of 7xxx wrought aluminum alloy
CN105734466B (en) * 2014-12-09 2017-10-27 北京有色金属研究总院 A kind of solid solution heat treatment method of improvement 7xxx systems wrought aluminium alloy microstructure and property
CN111074123A (en) * 2020-01-19 2020-04-28 天津忠旺铝业有限公司 Production method of 7055 alloy for aviation
CN113981343A (en) * 2021-10-21 2022-01-28 常熟市恒泰精密金属制品有限公司 Heat treatment method of aluminum alloy

Similar Documents

Publication Publication Date Title
NO149741B (en) PROCEDURE FOR AA BIBLES AN ALUMINUM KNOB ALLOY CONTAINING A SEPARATION COMPONENT, A FINE CORN STRUCTURE
CN1434877A (en) Heat treatment of age-hardenable aluminium Alloys
JP2001517735A (en) Aluminum alloy and heat treatment method thereof
US7704339B2 (en) Method of heat treating titanium aluminide
JP2004530043A (en) Heat treatment of age hardenable aluminum alloy using secondary precipitation
US7033448B2 (en) Method for preparing a nickel-base superalloy article using a two-step salt quench
JP2000064005A (en) HEAT TREATMENT OF Ni-BASE HEAT RESISTANT ALLOY
JPH04165054A (en) Method for continuous ageing head treatment of aluminum alloy
US5415712A (en) Method of forging in 706 components
CN108690943B (en) Method for improving mechanical property of Cu-Ni-Mn-Fe alloy
CN110699531A (en) Method for mechanical heat treatment of high-temperature alloy
US2658845A (en) Heat treatment of aluminum alloys
JPH0967659A (en) Method for heat treating aluminum-magnesium-silicon base aluminum alloy
US20070267113A1 (en) Method and process of non-isothermal aging for aluminum alloys
JPH0559502A (en) Manufacture of aluminum alloy
JPS63145741A (en) Al-cu-mg high tensile aluminum alloy for casting and its production
JPH06240427A (en) Production of precipitation hardening superalloy
CN111719099A (en) Mg-RE alloy aging structure regulating and controlling method based on pre-deformation
JP3686146B2 (en) Method for producing aluminum alloy sheet for forming
JPH0588302B2 (en)
JPH06207254A (en) Production of high strength al-li series alloy casting
CN113046661B (en) Heat treatment method for improving structure and performance of 7xxx series aluminum alloy
JPH06272004A (en) Method for working titanium alloy
SU1177381A1 (en) Method of treating two-phase magnesium alloys
JPH01195265A (en) Manufacture of high-strength beta-type titanium alloy