JPH04164978A - Manufacture of color pencil lead - Google Patents

Manufacture of color pencil lead

Info

Publication number
JPH04164978A
JPH04164978A JP29106890A JP29106890A JPH04164978A JP H04164978 A JPH04164978 A JP H04164978A JP 29106890 A JP29106890 A JP 29106890A JP 29106890 A JP29106890 A JP 29106890A JP H04164978 A JPH04164978 A JP H04164978A
Authority
JP
Japan
Prior art keywords
ink
pores
pencil lead
color
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29106890A
Other languages
Japanese (ja)
Other versions
JP2938178B2 (en
Inventor
Kenji Koyaizu
小柳出 健二
Taro Inui
太郎 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pilot Precision KK
Original Assignee
Pilot Precision KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pilot Precision KK filed Critical Pilot Precision KK
Priority to JP29106890A priority Critical patent/JP2938178B2/en
Publication of JPH04164978A publication Critical patent/JPH04164978A/en
Application granted granted Critical
Publication of JP2938178B2 publication Critical patent/JP2938178B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

PURPOSE:To obtain a good color pencil lead having high strength and high density and excellent in color forming properties by oxidizing a color pencil lead material filled with carbon fibers when it is extruded and baked at high temperature, and filling an ink into the formed pores. CONSTITUTION:In the manufacture of a color pencil lead wherein an ink is filled into the pores of a sinter obtained by kneading and baking a sinterable color pencil lead material, the pencil lead material is filled with carbon fibers and extruded, oxidized to remove the carbon fibers before or after baking at high temperature, and an ink is filled into the obtained pores. This pencil lead has high porosity for its strength and is dense and excellent in color forming properties. Further, since a series of continuous pores can be obtained, the ink can sufficiently penetrate deep into the interior of the pencil lead body to thereby give a color pencil lead having a very high density. Also, in spite of its high porosity, it has high strength. In this manufacturing method, the control of porosity can be facilitated, and the process control is very easy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、焼結型の色鉛芯に関するもので、さらに詳し
くは、多孔質化するための気孔形成材として、炭素繊維
を用いることを特徴とするものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a sintered colored lead core, and more specifically, the present invention relates to the use of carbon fiber as a pore-forming material to make it porous. This is a characteristic feature.

〔従来の技術〕[Conventional technology]

いわゆる焼結呈色鉛芯としては、従来窒化硼素などの体
質材と粘土などの結合材および必要に応じて耐熱性の顔
料を添加して成る芯体と、この芯体の気孔中に染料から
成るインキを含浸させて色鉛芯としていた。この時、色
鉛芯の重要な特性としては、強度はもとより特に優れた
発色性を有する濃い色目のものが要求されている。とこ
ろが従来の色鉛芯は、濃度および発色性に充分なものが
得られていない。そこで上記の目的を達成するために、
筆記に耐え得る十分な強度を保持しつつ、芯体に含浸さ
せるインキの量を多くすればよいという考えから、芯体
を多孔質化する方法が種々知られている。その例を示す
と、 1)体質材および結合材に樹脂を添加し、焼成中にこの
樹脂を昇華あるいは酸化雰囲気により燃焼させて多孔質
化する。(特公昭64−4555、特公昭5l−413
76) 2)気孔形成材として炭素粒状物質を使用し、これを酸
化除去して多孔質化する。(特開昭6l−〔発明が解決
しようとする課題〕 1)の方法で得られた芯体は、樹脂を添加しないものと
比べると、たしかに多孔質化する。しかし、その色目、
濃さはいまだ充分とはいえない。
So-called sintered colored lead cores conventionally consist of a core made of a bulking material such as boron nitride, a binder such as clay, and heat-resistant pigment added as needed, and a dye contained in the pores of this core. It was impregnated with ink to form a colored lead core. At this time, the important characteristics of the colored lead core are not only strength, but also a dark color with particularly excellent coloring properties. However, conventional colored lead cores do not have sufficient density and color development. Therefore, in order to achieve the above purpose,
Various methods are known for making the core porous, based on the idea that it is sufficient to increase the amount of ink impregnated into the core while maintaining sufficient strength to withstand writing. Examples include: 1) A resin is added to the extender and the binder, and during firing the resin is sublimed or burned in an oxidizing atmosphere to make it porous. (Tokuko Shou 64-4555, Sho 5l-413
76) 2) Use carbon particulate material as a pore-forming material and remove it by oxidation to make it porous. (Unexamined Japanese Patent Publication No. 1986-61- [Problems to be Solved by the Invention]) The core obtained by the method 1) is certainly more porous than the core obtained without adding resin. However, that look,
The density is still not sufficient.

その理由として、樹脂を除去したあとの気孔はその径が
きわめて小さく、インキが気孔の深奥部まで入り難いと
同時に、インキの絶対量が少ないためと思われる。そこ
で、樹脂を多量に用いてさらに多孔質化しようとすると
、強度が大幅に劣化し、使用に耐え得ないものとなるの
である。
The reason for this seems to be that the diameter of the pores after the resin is removed is extremely small, making it difficult for ink to penetrate deep into the pores, and at the same time, the absolute amount of ink is small. Therefore, if a large amount of resin is used to make the material even more porous, the strength will be significantly degraded, making it unusable.

また、次のような問題もある。つまり熱分解性あるいは
昇華性の樹脂を、気孔形成材として色鉛芯に用いた場合
、通常色鉛芯素材である無機系結合材が収縮する前に、
これらの樹脂は概ね200〜300℃前後で昇華、分解
してしまうのである。
There are also the following problems. In other words, when a pyrolyzable or sublimable resin is used as a pore-forming material in the colored lead core, before the inorganic binder that is the colored lead core material shrinks,
These resins sublime and decompose at about 200 to 300°C.

つまり樹脂の場合、その分子形状はリニアーで2次元的
な結合であるため分子どうしが切れ易く、反応性が高い
ので、比較的低い温度から分解、昇華が始まるのである
。さらに熱分解、熱昇華性の樹脂は、酸素や水素を含む
ためより酸化し易いという事情もある。従って、樹脂が
飛散したのちに結合材が1000℃前後まで収縮するた
め、−旦得られた気孔が小さくなったり、寸断されたり
、つぶれたりして、気孔としての充分な効果を呈するこ
とが困難となるという問題がある。従って、目的とする
気孔率の確保が難しく、制御が困難となるのである。ま
た、酸化処理により多孔質化する方法は、焼結の内部に
存在する炭化成分を十分に除去するまで長時間を有し、
また短時間で終了させようとして高温で処理すると、焼
結体の割れや脹れの原因となる。
In other words, in the case of resin, its molecular shape is linear and two-dimensional bonds, so the molecules easily break together, and the reactivity is high, so decomposition and sublimation begin at a relatively low temperature. Furthermore, thermally decomposable and thermally sublimable resins contain oxygen and hydrogen and are therefore more easily oxidized. Therefore, after the resin is scattered, the binding material shrinks to around 1000 degrees Celsius, and the pores that have already been obtained become smaller, shredded, or crushed, making it difficult for them to exhibit sufficient effects as pores. There is a problem that. Therefore, it is difficult to ensure the desired porosity and control becomes difficult. In addition, the method of making it porous by oxidation treatment takes a long time to sufficiently remove the carbonized components present inside the sintered material.
Furthermore, if the treatment is carried out at a high temperature in order to complete the process in a short time, it may cause cracking or swelling of the sintered body.

2)は、上記問題を解決する方法であって、炭素粒状物
質の径に応じた気孔が得られるため、1)の方法と比べ
、はるかに大きな気孔径や気孔率が得られるのである。
Method 2) is a method to solve the above problem, and because pores are obtained according to the diameter of the carbon particulate material, a much larger pore diameter and porosity can be obtained compared to method 1).

従って気孔径が大きくなれば、当然インキも入り易くな
り、しかも多量に充填できるという好ましい特徴が生ず
ることになる。
Therefore, as the pore size becomes larger, it becomes easier for ink to enter the pores, and a large amount of the pores can be filled, which is a desirable characteristic.

ところがこの方法においても、粉末どうしが関連なく芯
体中に分散するため、気孔としての効率はきわめて低下
するのである。そこで、効率のよい気孔とするためには
、連続気孔としなければならないが、そのためには多量
の粒状物質を必要とし、結果として強度低下は免れ得す
、使用に耐え得ないものとなるのである。また上記理由
により、気孔率の制御と芯径の安定性が得られ難いとい
う問題もある。さらに、酸化処理により炭素粉末を除去
するのであるが、芯体中に分散された粉末すべてを除去
するのは難しく、インキを充填する前の素材自体が灰〜
黒色系となり易く、鮮やかな色目を有する色鉛芯が得ら
れ難いのである。
However, even in this method, the powders are dispersed in the core without any relation to each other, so the efficiency of the pores is extremely reduced. Therefore, in order to have efficient pores, the pores must be continuous, but this requires a large amount of particulate matter, which results in a loss of strength and makes it unusable. . Further, for the above-mentioned reasons, there is also the problem that it is difficult to control the porosity and obtain stability of the core diameter. Furthermore, carbon powder is removed by oxidation treatment, but it is difficult to remove all the powder dispersed in the core, and the material itself before being filled with ink becomes ash.
This tends to result in a blackish color, making it difficult to obtain a colored lead core with a vivid color.

また、1)、2)に共通する問題として樹脂もしくは炭
素が気散される際、芯の側面より気散されるため、この
気孔にインキを含浸した時、インキの溶剤が芯の側面よ
り蒸発し易くなって、経時安定性が悪くなり易いのであ
る。
In addition, a common problem with 1) and 2) is that when the resin or carbon is diffused, it is diffused from the side of the core, so when these pores are impregnated with ink, the ink solvent evaporates from the side of the core. As a result, stability over time tends to deteriorate.

以上、要するに従来の色鉛芯の問題点であった濃さや発
色性を向上させようとすると、強度が使用に耐え得ない
ものとなり、また強度を向上させようとすると、濃さ、
発色性が劣化してしまうのである。
In short, if you try to improve the density and color development, which are the problems with conventional colored lead cores, the strength will become unusable.
Color development deteriorates.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記問題を解決したものであって、色鉛芯素
材中に炭素繊維を充填し、押出後焼成時において、酸化
処理により炭素繊維を除去し、得られた気孔中にインキ
を含浸させることにより、高強度、高濃度で発色性に優
れ、かつ経時変化の良好な色鉛芯が得られると同時に、
工程管理の容易な製造法を提供するものである。
The present invention solves the above problem by filling carbon fibers into a colored lead core material, removing the carbon fibers by oxidation treatment during firing after extrusion, and impregnating ink into the resulting pores. By doing so, it is possible to obtain a colored lead core with high strength, high concentration, excellent color development, and good change over time.
This provides a manufacturing method with easy process control.

次に、本発明の色鉛芯の製造法について、具体的に説明
する。
Next, the method for manufacturing the colored lead core of the present invention will be specifically explained.

本発明に用いる色鉛芯素材とは、色鉛芯に使用される従
来公知の材料すべてが挙げられ、たとえば体質材として
は酸化チタン、雲母、タルク、窒化硼素、シリカ、アル
ミナ、炭酸カルシウム等白色系のものや、色相によって
は二硫化モリブデン、二硫化タングステン等有色系のも
のも使用でき、使用目的によりこれらを単独あるいは組
み合わせて使用することができる。また、必要に応じて
耐熱性顔料を配合してもよい。さらに、体質材を焼きし
めるたtの無機系結合材としては、たとえばカオリナイ
ト系、セリサイト系、モンモリ口ナイト系、ベントナイ
ト系等の粘土類、ゼオライト、ケイソウ土、活性白土、
シリカ、リン酸アルミニウム、シリコーン樹脂、シリコ
ーンゴム等が挙げられ、これらを単独あるいは組み合わ
せて使用することができる。さらには、無機系結合材と
してたとえば酸化硼素を用い、成形したのち窒素雰囲気
中で焼成する色鉛芯素材としてもよい。なお、これら無
機系体質材と無機系結合材とは、使用される状況によっ
ては、相互にまたがるものもあり、同じ物質でも上記両
者に分類されるものも存在する。
The colored lead core material used in the present invention includes all conventionally known materials used for colored lead cores, including white materials such as titanium oxide, mica, talc, boron nitride, silica, alumina, and calcium carbonate. Depending on the hue, colored materials such as molybdenum disulfide and tungsten disulfide can also be used, and these can be used alone or in combination depending on the purpose of use. Furthermore, a heat-resistant pigment may be added as necessary. Further, as the inorganic binder for baking the structural material, for example, clays such as kaolinite, sericite, montmorite, bentonite, zeolite, diatomaceous earth, activated clay,
Examples include silica, aluminum phosphate, silicone resin, silicone rubber, etc., and these can be used alone or in combination. Furthermore, a colored lead core material may be used, for example, using boron oxide as an inorganic binder, molded and then fired in a nitrogen atmosphere. Note that these inorganic structural materials and inorganic binding materials may overlap each other depending on the usage situation, and there are also substances that are the same that are classified into both of the above.

また、上記体質材および無機系結合材以外に、有機高分
子化合物を添加してもよい。添加することにより、押出
時の結合力が向上する。有機高分子化合物としては、ワ
ックス類、合成樹脂、天然樹脂、天然および合成ゴム類
、解重合型樹脂、ピッチ、アスファルト等が挙げられる
Furthermore, an organic polymer compound may be added in addition to the above-mentioned extender and inorganic binder. By adding it, the bonding strength during extrusion is improved. Examples of the organic polymer compound include waxes, synthetic resins, natural resins, natural and synthetic rubbers, depolymerized resins, pitch, asphalt, and the like.

次に、色鉛芯素材である体質材および無機系結合材を混
練して押出成形する際、炭素繊維を充填する。この時炭
素繊維として、いわゆる炭素質の繊維ばかりでなく、黒
鉛質のものも含み、さらに炭素ウィスカー、黒鉛ウィス
カーなども含まれる。
Next, when kneading and extruding the colored lead core material and the inorganic binder, carbon fibers are filled. At this time, carbon fibers include not only so-called carbonaceous fibers, but also graphite fibers, as well as carbon whiskers, graphite whiskers, and the like.

特にウィスカーは細いため、練合、成形時の剪断応力に
よる切断が非常に少ないので、長手方向への形状安定性
がよく、強度が向上し、より気孔の制御が容易となる。
In particular, since the whiskers are thin, there is very little breakage due to shear stress during kneading and molding, so the shape stability in the longitudinal direction is good, the strength is improved, and the pores can be controlled more easily.

炭素繊維を充填する方法としては、ニーダ−1三本ロー
ルで混練する時に、短繊維状のものを添加して混練、押
出成形するか、あるいはクロスヘツド法を用い、体質材
と無機系結合材から成る混線物を押し出す際に、長繊維
を混線物中に含有させたまま、同時に押し出す方法が挙
げられ、いずれを用いてもよい。
The method for filling carbon fibers is to add short fibers when kneading with one three-roll kneader and then knead and extrude, or to fill carbon fibers by using a crosshead method to fill carbon fibers with a filler material and an inorganic binder. When extruding the mixed wire material, there is a method in which long fibers are simultaneously extruded while being contained in the mixed wire material, and any method may be used.

炭素繊維の外径は任意であり、強度とのバランスを考慮
した上で、インキが多量に含浸できるように、目的ある
いはインキの性状に応じて適宜設定すればよい。つまり
、粘性の高い染料インキや樹脂が添加されたもの、もし
くは粒径の大きい顔料を主成分としたインキなどを含浸
する場合は、含浸し易いように炭素繊維の外径の大きい
ものを用いればよい。このインキを用いることにより、
より濃さや発色性の優れた色鉛芯が得られ、さらに耐久
性も向上するのである。この場合、外径としてはたとえ
ば0.05μm以上が好ましい。勿論、通常のインキも
しくは粘性の低いインキの場合には、0.05μm以下
でも何等問題はない。
The outer diameter of the carbon fiber is arbitrary, and may be set appropriately depending on the purpose or the properties of the ink so that a large amount of ink can be impregnated with the balance with strength. In other words, when impregnating highly viscous dye ink, resin-added ink, or ink whose main component is pigment with large particle size, use carbon fiber with a large outer diameter to facilitate impregnation. good. By using this ink,
A colored lead core with superior color density and color development can be obtained, and its durability can also be improved. In this case, the outer diameter is preferably 0.05 μm or more, for example. Of course, in the case of ordinary ink or ink with low viscosity, there is no problem even if the thickness is 0.05 μm or less.

また、外径の上限についても定めはなく、インキの粘度
により適宜設定する必要があり、インキが高い粘度を有
する場合には、比較的太い外径が必要である。その時の
外径としては、たとえば100μm以下、特には50μ
m以下が強度との関連において好ましい。
Further, there is no set limit for the outer diameter, and it needs to be set appropriately depending on the viscosity of the ink. If the ink has a high viscosity, a relatively large outer diameter is required. The outer diameter at that time is, for example, 100 μm or less, particularly 50 μm.
m or less is preferable in relation to strength.

炭素繊維の添加量も任意であり、強度および繊維の径に
応じて適宜設定すればよいが、好ましくは効率的な連続
気孔を設けるために、全成分に対して10〜80重量%
、特には10〜60重量%が良好である。10重量%以
下であると、単独気孔となり易く、しかも酸化処理によ
り抜は難くなり、また80重量%以上の場合には、強度
上折れ易くなる。
The amount of carbon fiber added is also arbitrary and may be set appropriately depending on the strength and diameter of the fiber, but preferably 10 to 80% by weight based on the total components in order to provide efficient continuous pores.
, particularly preferably 10 to 60% by weight. If it is less than 10% by weight, single pores are likely to form and it becomes difficult to remove by oxidation treatment, and if it is more than 80% by weight, it becomes easy to break due to strength.

炭素繊維を含有する色鉛芯素材を押し出したのち、高温
で焼成する。焼成する際、炭素繊維を除去するために酸
化処理を行うのであるが、その焼成方法としては、不活
性ガス中で無機結合材を焼結させ、そののち酸化処理す
るか、あるいは酸化処理したのち不活性ガス中で無機結
合材を焼結させてもよい。さらに酸化処理だけで、繊維
を除去すると同時に無機結合材を焼結させることも可能
である。上記焼成方法における酸化処理温度としては概
ね500℃以上が好ましい。炭素繊維は、三次元的に結
合した炭素から成る微結晶の集合体であるため、加熱に
よる分解は起こさず。さらに酸化に対しても強い。すな
わち、無機系結合材がかなりの程度収縮した後に炭素繊
維が酸化されるため、炭素繊維とほぼ同形状の気孔が得
られるのである。
After extruding a colored lead core material containing carbon fiber, it is fired at a high temperature. When firing, oxidation treatment is performed to remove carbon fibers.The firing method is to sinter the inorganic binder in an inert gas and then oxidize it, or to oxidize it and then oxidize it. The inorganic binder may be sintered in an inert gas. Furthermore, it is also possible to remove the fibers and sinter the inorganic binder at the same time by performing oxidation treatment alone. The oxidation treatment temperature in the above firing method is preferably approximately 500°C or higher. Carbon fiber is an aggregate of microcrystals made of three-dimensionally bonded carbon, so it does not decompose when heated. Furthermore, it is resistant to oxidation. That is, since the carbon fibers are oxidized after the inorganic binder has shrunk to a considerable extent, pores having approximately the same shape as the carbon fibers are obtained.

以上の方法で得られた芯体は、その気孔率が多い程好ま
しく、強度、濃度の点から適宜設定する必要があるが、
特には30〜80%が良好である。
The higher the porosity of the core obtained by the above method, the better, and it is necessary to set it appropriately from the viewpoint of strength and density.
In particular, 30 to 80% is good.

30%以下では、強度は強いものの濃度に劣り、80%
以上では濃度は濃くなるものの、強度が劣化する。
Below 30%, the strength is strong but the concentration is poor, and 80%
If the concentration is higher than that, the concentration will become higher, but the strength will deteriorate.

次に、上記方法にて得られた気孔中に、インキを含浸す
る。含浸する方法としては、焼結体をインキ中に浸漬し
、加熱、減圧、加圧等の条件下で気孔中に浸透させる。
Next, ink is impregnated into the pores obtained by the above method. The impregnation method involves immersing the sintered body in ink and allowing it to penetrate into the pores under conditions such as heating, reduced pressure, and pressurization.

また本発明に用いられるインキとしては、上述した含浸
方法で簡単に気孔中に浸透し、はとんどの気孔を充填さ
せるような性質を有するインキであればよく、たとえば
染料、顔料等の着色剤を動植物油、合成油、アルコール
類、炭化水素油、水等に溶解または分散させ、あるいは
必要に応じて樹脂、界面活性剤等をさらに添加し製造さ
れた一般的に用いられている印刷用インキ、スタンプイ
ンキ、ボールペンインキ、水性筆記用インキ等が用いら
れる。特に、本発明で得られる気孔は、炭素繊維の径を
選定することにより、従来充填することが困難となって
いた高粘度の染料あるいは高分子量の染料を含むインキ
や、顔料を含むインキ等を容易に充填することができる
。これらのインキを充填することにより、経時変化が小
さく、濃度、発色性の優れた色鉛芯が得られるのである
Further, the ink used in the present invention may be any ink that easily penetrates into pores by the above-mentioned impregnation method and has the property of filling most pores, such as colorants such as dyes and pigments. Commonly used printing ink manufactured by dissolving or dispersing in animal and vegetable oils, synthetic oils, alcohols, hydrocarbon oils, water, etc., or by further adding resins, surfactants, etc. as necessary. , stamp ink, ballpoint pen ink, water-based writing ink, etc. are used. In particular, by selecting the diameter of the carbon fibers, the pores obtained in the present invention can be used for inks containing high viscosity dyes or high molecular weight dyes, inks containing pigments, etc., which were previously difficult to fill. Can be easily filled. By filling these inks, colored lead cores with little change over time and excellent density and color development can be obtained.

〔実施例〕〔Example〕

実施例1 体質材としての窒化硼素30部と無機系結合材としての
粘土30部と炭素繊維(外径12μm1長さ3mm)3
0部とを、ポリビニルアルコール10部を溶解させた1
00部の水に加え、ニーダ−1三本ロールで練合し、水
分量を調整した。これを細線状に押出成形し、色鉛芯の
押出素材を作製した。次に、この色鉛芯押出素材を10
0℃で24時間以上乾燥した後、不活性雰囲気中で昇温
速度50℃/hr、900℃まで昇温し、900℃で1
時間焼成して、粘土を焼結させ、ポリビニルアルコール
を炭化させた。次に、空気中で昇温速度100℃/hr
、 700℃まで昇温し、700℃で5時間焼成して炭
素分を除去し、白色の多孔質焼結体を得た。この多孔質
焼結体は、SEM観察によると充填した炭素繊維と同程
度の径の連続気孔の存在が認められた。
Example 1 30 parts of boron nitride as a structural material, 30 parts of clay as an inorganic binder, and carbon fiber (outer diameter 12 μm 1 length 3 mm) 3
0 parts and 1 in which 10 parts of polyvinyl alcohol was dissolved.
In addition to 0.00 parts of water, the mixture was kneaded using three rolls of a kneader to adjust the moisture content. This was extruded into a thin wire shape to produce an extruded material with a colored lead core. Next, 10 pieces of this colored lead core extruded material
After drying at 0°C for 24 hours or more, the temperature was increased to 900°C at a temperature increase rate of 50°C/hr in an inert atmosphere, and the temperature was increased to 900°C for 1
The clay was sintered and the polyvinyl alcohol was carbonized by firing for an hour. Next, the heating rate was 100°C/hr in air.
The temperature was raised to 700°C, and the carbon content was removed by firing at 700°C for 5 hours to obtain a white porous sintered body. According to SEM observation, this porous sintered body had continuous pores with a diameter comparable to that of the filled carbon fibers.

次に、ボールペンインキ系の赤色インキに上記多孔質焼
結体を浸し、70℃、減圧下で24時間放置した。この
インキが含浸された多孔質焼結体をアルコールで洗浄し
、呼び寸法0.9nonΦの赤色の色鉛芯を完成させた
Next, the porous sintered body was immersed in red ballpoint pen ink and left at 70° C. under reduced pressure for 24 hours. The porous sintered body impregnated with this ink was washed with alcohol to complete a red colored lead core with a nominal size of 0.9 nonΦ.

比較例1 実施例1の炭素繊維の代わりに、粒径5μmの黒鉛を添
加し、実施例1と同様の工程で多孔質焼結体と成し、赤
いインキを含浸して赤色の色鉛芯を作製した。
Comparative Example 1 Instead of the carbon fiber in Example 1, graphite with a particle size of 5 μm was added, a porous sintered body was formed in the same process as in Example 1, and it was impregnated with red ink to form a red colored lead core. was created.

〔発明の効果〕〔Effect of the invention〕

以上、実施例1、比較例1について性能を比較した結果
を次の表に示す。
The results of comparing the performance of Example 1 and Comparative Example 1 are shown in the following table.

筆跡の発色性:3oog荷重により画線したサンプルで
の比較。
Color development of handwriting: Comparison of samples drawn with a 30og load.

筆跡の耐光性+300g荷重により画線したサンプルを
蛍光灯下に30cmに設 置し、1力月間暴露した。
Light resistance of handwriting + A sample marked with a 300 g load was placed under a fluorescent lamp at a distance of 30 cm and exposed for one month.

以上、表に示したように本発明の色鉛芯は、強度の割に
気孔率が多く、濃く、発色性に優れたものとなっている
。さらに、次のような種々の特徴を有するものである。
As shown in the table above, the colored lead core of the present invention has a high porosity in relation to its strength, is dark, and has excellent color development. Furthermore, it has the following various features.

1、連続した一通の孔が得られるため、インキが芯体の
内奥部まで充分に浸透でき、きわめて高濃度の色鉛芯と
なる。
1. Since one continuous hole is obtained, the ink can sufficiently penetrate deep into the core, resulting in a colored lead core with extremely high concentration.

2、気孔率が大きいにも係わらず、本発明の色鉛芯は強
度が強い。その理由は定かでないが、たとえば従来の黒
鉛等の微粉を添加した場合には、微粉が芯体中に均一に
分散し、そのため焼成後に微粉が除去された時、体質材
の間に空隙が生じるので、強固な結合が得られないもの
と考えられ、これに対し本発明の場合は、繊維の部分だ
けが空洞となるため、芯体がセル構造となり、そのため
強固な骨格となるためと思われる。
2. Despite the high porosity, the colored lead core of the present invention has high strength. The reason for this is not clear, but for example, when fine powder such as conventional graphite is added, the fine powder is uniformly dispersed in the core, so when the fine powder is removed after firing, voids are created between the core materials. Therefore, it is thought that a strong bond cannot be obtained.On the other hand, in the case of the present invention, only the fiber portion is hollow, so the core body has a cellular structure, which makes it a strong skeleton. .

3.従来の気孔と比べ径が大きくできるので、いままで
含浸が困難であった高粘度の染料あるいは高分子量の染
料を含むインキや顔料インキなども容易に含浸でき、そ
のため発色が良好で、耐光性の優れた色鉛芯が得られる
3. Since the diameter of the pores can be made larger than that of conventional pores, it can be easily impregnated with inks containing high viscosity dyes, high molecular weight dyes, and pigment inks, which were difficult to impregnate until now. An excellent colored lead core can be obtained.

4、従来の色鉛芯のように、芯の側面に気孔が通じてい
ると、インキの溶剤が変化を起こし、蒸発し易くなって
経時安定性が劣化する。それに対し、本発明の色鉛芯の
気孔は、押出の配向軸に沿っているため、君側面からの
溶剤の蒸発が生じ難くなり、経時安定性が良好となる。
4. If there are pores on the side of the core, as with conventional colored lead cores, the ink solvent will change and easily evaporate, resulting in poor stability over time. On the other hand, since the pores of the colored lead core of the present invention are along the orientation axis of extrusion, evaporation of the solvent from the side surface is less likely to occur, resulting in good stability over time.

55本発明の色鉛芯は、炭素繊維とほぼ同形状の、目的
とする実質的な気孔率の確保が容易となり、しかもその
形状や径のばらつきの少ない気孔が得られるのである。
55 With the colored lead core of the present invention, it is easy to ensure the desired substantial porosity that is approximately the same shape as that of the carbon fiber, and moreover, pores with less variation in shape and diameter can be obtained.

従って、気孔の制御が容易となり、工程管理上極tで容
易な製造法となる。
Therefore, the pores can be easily controlled, and the manufacturing method is extremely simple and easy in terms of process control.

Claims (1)

【特許請求の範囲】[Claims] 1、焼結型の色鉛芯素材を混練、焼成して得られた焼結
体の気孔中にインキを充填して成る色鉛芯の製造法にお
いて、該色鉛芯素材中に炭素繊維を充填させたのち押出
成形し、高温で焼成する前あるいは焼成後に、酸化処理
して炭素繊維を除去し、得られた気孔中にインキを充填
することを特徴とする色鉛芯の製造法。
1. In a method for manufacturing a colored lead core, which is obtained by kneading and firing a sintered colored lead core material and filling the pores of the sintered body with ink, carbon fibers are added to the colored lead core material. A method for producing a colored lead core, which is characterized by filling, extruding, oxidizing to remove carbon fibers before or after firing at a high temperature, and filling the resulting pores with ink.
JP29106890A 1990-10-29 1990-10-29 Manufacturing method of colored lead core Expired - Lifetime JP2938178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29106890A JP2938178B2 (en) 1990-10-29 1990-10-29 Manufacturing method of colored lead core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29106890A JP2938178B2 (en) 1990-10-29 1990-10-29 Manufacturing method of colored lead core

Publications (2)

Publication Number Publication Date
JPH04164978A true JPH04164978A (en) 1992-06-10
JP2938178B2 JP2938178B2 (en) 1999-08-23

Family

ID=17764008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29106890A Expired - Lifetime JP2938178B2 (en) 1990-10-29 1990-10-29 Manufacturing method of colored lead core

Country Status (1)

Country Link
JP (1) JP2938178B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3181645A1 (en) * 2015-12-18 2017-06-21 Mitsubishi Pencil Company, Limited Pencil lead

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110452554B (en) * 2019-08-24 2021-07-09 深圳市交通工程试验检测中心有限公司 Prefabricated asphalt cement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3181645A1 (en) * 2015-12-18 2017-06-21 Mitsubishi Pencil Company, Limited Pencil lead
US9896591B2 (en) 2015-12-18 2018-02-20 Mitsubishi Pencil Company, Limited Pencil lead

Also Published As

Publication number Publication date
JP2938178B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
JP2641810B2 (en) Non-fired colored pencil lead and its manufacturing method
US5595589A (en) Baked color pencil lead and method of manufacturing the same
JP3200292B2 (en) Fired colored pencil lead and method for producing the same
JP2938178B2 (en) Manufacturing method of colored lead core
JP4986336B2 (en) Firing colored pencil lead and method for producing the same
JP4282116B2 (en) Manufacturing method of fired colored pencil lead
JP3957404B2 (en) Firing colored pencil lead
JP3907315B2 (en) Manufacturing method of fired colored pencil lead
JP2000017221A (en) Calcined colored pencil lead and preparation thereof
JP2000119582A (en) Production of fired lead of color pencil
JP2000017220A (en) Calcined colored pencil lead and preparation thereof
JPS6123667A (en) Colored pencil lead and production thereof
JPH1088057A (en) Fired pencil lead
JPH05302054A (en) Color pencil lead
JP3938243B2 (en) Manufacturing method of fired colored pencil lead
JPH09208878A (en) Baked colored lead and its production
JP2001115077A (en) Production of calcinated color pencil lead
JP2000072999A (en) Preparation of calcined colored lead
JP2000072997A (en) Preparation of calcined colored lead
KR20030078423A (en) Pencil Lead Composition and Pencil Lead Manufacturing Thereby
JP3628076B2 (en) Firing colored pencil lead and manufacturing method thereof
JP2002265846A (en) Calcined colored pencil lead and method for producing the same
JP2002302633A (en) Baked color pencil lead and its manufacture process
JP2003119416A (en) Baked color pencil lead and method for producing the same
JPH09208879A (en) Production of baked colored lead