JPH0416442A - Paper feed and carrier member - Google Patents

Paper feed and carrier member

Info

Publication number
JPH0416442A
JPH0416442A JP11810590A JP11810590A JPH0416442A JP H0416442 A JPH0416442 A JP H0416442A JP 11810590 A JP11810590 A JP 11810590A JP 11810590 A JP11810590 A JP 11810590A JP H0416442 A JPH0416442 A JP H0416442A
Authority
JP
Japan
Prior art keywords
powder
pulverulent body
electrodeposition
paper passing
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11810590A
Other languages
Japanese (ja)
Inventor
Yoshiaki Tomari
慶明 泊
Susumu Sumikura
角倉 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11810590A priority Critical patent/JPH0416442A/en
Publication of JPH0416442A publication Critical patent/JPH0416442A/en
Pending legal-status Critical Current

Links

Landscapes

  • Delivering By Means Of Belts And Rollers (AREA)
  • Sheets, Magazines, And Separation Thereof (AREA)

Abstract

PURPOSE:To obtain a paper feed and carrier member having an excellent abrasion resistance by forming, an electrodeposition painting coat including an ultrafine particulate metalic pulverulent body of an average particulate diameter between 0.01 and 3.0mum, a pulverulent body obtained through metal plating on a ceramic pulverulent body surface of an average particulate diameter between 0.1 and 3.0mum and a pulverulent body obtained through metal plating on a natural mica pulverulent body surface, on a base material. CONSTITUTION:An electrodeposition painting coat 1 obtained by means of electrophoresis is formed on a paper feed and carrier member such as a roller member consisting of a metalic member or a nonmetalic member 4 by using an electrodeposition paint including an ultrafine particulate metalic pulverulent body of an average particulate diameter 0.01 and 3.0mum, a pulverulent body obtained through metal plating on a ceramic pulverulent body surface of an average particulate diameter between 0.1 and 3.0mum and a pulverulent body obtained through metal plating on a natural mica pulverulent body surface in electrodeposition-capable resin. Owing to this, a paper feed and carrier member having homogeneously dispersed particulate inclusion, a small secular change, an excellent abrasion resistance, satisfactory surface homogeneity and furthermore excellently controllable electrical conductivity can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は通紙および搬送部材(以下、「通紙・搬送部材
」と略記する)に関し、詳しくはOA機器、家電製品、
印刷機器などの通紙部材、または紙状フィルム、紙状プ
ラスチック、その他のシート状部材もしくは紙を搬送す
る部位に用いられる搬送部材に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a paper passing and conveying member (hereinafter abbreviated as "paper passing and conveying member"), and more specifically, to office automation equipment, home appliances,
The present invention relates to a conveying member used in a paper passing member such as a printing device, or a portion that conveys paper-like film, paper-like plastic, other sheet-like members, or paper.

〔従来の技術〕[Conventional technology]

従来、OA機器、家電製品、あるいは印刷機等に搬送用
として用いられているローラ一部材等の通紙・搬送部材
には、例えば鋼材上にめっきを施した後にゴムを被覆し
、テフロン(登録商標)などをコーティングしたもの、
あるいは鋼材上にめっきを施した後にアルミナを静電吸
着させるか、SICやダイヤモンド等を含有する複合め
っきを施したもの、さらには鋼材の表面をサンドブラス
ト、レーザー等で粗面にしたもの、粗面化した後めっき
を施したもの、または鋼材上に塗料中に金属微粒子やフ
ィラーを混入させた塗布液を用いて吹付塗装を行ったも
のなどが用いられている。
Conventionally, paper passing and conveying members such as rollers used for conveyance in office automation equipment, home appliances, and printing machines are coated with rubber after plating on steel materials, and are coated with Teflon (registered material). Trademark) etc. coated,
Alternatively, after plating the steel material, alumina is electrostatically adsorbed, or composite plating containing SIC or diamond is applied, or the surface of the steel material is roughened by sandblasting, laser, etc. These methods include those that are plated after being oxidized, or those that are spray-painted onto steel using a coating solution containing fine metal particles and fillers.

さらに、これらの通紙・搬送部材は、その通紙部分の抵
抗値を中間抵抗に制御するために、これらに定電圧素子
を介して接地させたもの等が用いられている。
Further, these paper passing/conveying members are grounded through a constant voltage element in order to control the resistance value of the paper passing portion to an intermediate resistance.

〔発明が解決しよ〜うとする課題〕[Problem that the invention attempts to solve]

しかしながら、従来の通紙・搬送部材には以下のような
欠点がある。
However, conventional paper passing and conveying members have the following drawbacks.

まず、塗料中に金属微粒子やフィラーを混入し、ローラ
一部材に吹付塗装した通紙・搬送部材では、製造工程に
自動化ラインを使用するとしても、搬送部材のような高
度の表面均一性が要求される場合には、塗装ロボット1
台で同時に複数個を塗装するには限界があり、しかも塗
料の拡散の点から塗膜の表面状態が不均一となり、量産
性および表面特性の両面に大きな問題がある。
First, paper passing and conveying parts, in which fine metal particles and fillers are mixed into the paint and spray-painted onto the rollers, require a high level of surface uniformity like the conveying parts, even if an automated line is used in the manufacturing process. Painting robot 1
There is a limit to the ability to coat multiple pieces at the same time using a stand, and furthermore, the surface condition of the coating film becomes uneven due to the diffusion of the paint, which poses a major problem in terms of both mass production and surface properties.

また、ローラ一部材の鋼材上にめっきを施した後、ゴム
を被覆し、テフロンコーティングを施した通紙・搬送部
材では、繰り返しの使用による経時変化でゴムが変形し
、外径精度が低下し、給・排紙不良が発生する問題があ
り、商品価値が低下すると共に加工工程が長く、また作
業能率が低く、製造コストも高(なるので、量産性に大
きな問題がある。
In addition, in paper passing and conveying parts that are coated with rubber after being plated on the steel material of the roller and then coated with Teflon, the rubber deforms over time due to repeated use, resulting in a decrease in the accuracy of the outer diameter. However, there is a problem of poor paper feeding and ejection, which reduces the product value, requires a long processing process, has low work efficiency, and increases manufacturing costs, which poses a major problem in mass production.

次に、ローラ一部材の表面、例えばステンレス面にサン
ドブラストを施し、表面摩擦係数を大きくした通紙・搬
送部材では、素材硬度が大きい為、加工精度を高くする
事が困難であり、しかも材料費および加工費がともに高
くなるなどの問題がある。
Next, in paper passing and conveying parts where the surface of a roller member, for example a stainless steel surface, is sandblasted to increase the surface friction coefficient, the hardness of the material is large, so it is difficult to achieve high processing accuracy, and the material cost is high. There are also problems such as increased processing costs.

同様に、鋼材上にサンドブラストを行い粗面を形成した
通紙・搬送部材では、表面から発錆しやすいために、防
食の目的で次工程でめっき等の防錆処理を行う必要があ
る。この場合、外径精度が低いサンドブラスト表面へ鍍
金するために、さらに外径精度が低下し、しかも工程数
が増加することによりコストが上昇するため量産性では
ない。
Similarly, paper passing and conveying members that have a roughened surface formed by sandblasting on a steel material are susceptible to rust from the surface, so it is necessary to perform rust prevention treatment such as plating in the next step for the purpose of corrosion prevention. In this case, since the sandblasted surface with low outer diameter accuracy is plated, the outer diameter precision further decreases, and the cost increases due to an increase in the number of steps, which is not suitable for mass production.

また、鋼材表面をレーザーにより粗面化し、摩擦係数を
上昇させた通紙・搬送部材では、ローラーなどの場合、
1度に1本しか加工することができず、しかも処理時間
が長いために量産性ではない。
In addition, in the case of paper passing and conveying parts such as rollers, the steel surface has been roughened with a laser to increase the coefficient of friction.
Only one piece can be processed at a time, and the processing time is long, so it is not suitable for mass production.

さらに、鋼材上に鍍金を施し、その上にアルミナを静電
吸着させ、表面の耐摩耗性や硬度を上げた通紙・搬送部
材では、アルミナの密着性、均一性、および最終外径精
度等が不安定であり、また均一な品質の製品を大量に安
(製造するには限界がある。
Furthermore, paper passing and conveying parts are made by plating steel and electrostatically adsorbing alumina onto the plate to increase the wear resistance and hardness of the surface. is unstable, and there is a limit to the ability to produce products of uniform quality in large quantities at low prices.

その他、金属部材表面に無電解めっきを施し、さらに次
工程でSiCやダイヤモンドその他を含有する複合めっ
きを施した通紙・搬送部材では、例えば複合めっきの場
合、浴中に不純物が混入して不安定化しやすく、連続使
用に耐えられない問題がある。しかも、めっき液のコス
トが高い欠点と、均一分散性が劣る問題もあり、加工コ
ス・トに大きな問題を生じる。
In addition, in paper passing and conveying parts where the surface of the metal member is electroless plated and then composite plating containing SiC, diamond, etc. is applied in the next process, for example, in the case of composite plating, impurities may be mixed into the bath. There is a problem that it is easy to stabilize and cannot withstand continuous use. Furthermore, there are also disadvantages of high cost of the plating solution and poor uniform dispersibility, resulting in a major problem in processing costs.

一方、通紙・搬送部材には、導電性を付与することが重
要な要因となっている。導電性の通紙・搬送部材は複写
機その他で多数の通紙部分に使用されており、その通紙
部分では抵抗値の制御を行っている。
On the other hand, it is an important factor to impart electrical conductivity to paper passing and conveying members. Conductive paper passing/conveying members are used in many paper passing parts in copying machines and other devices, and the resistance value of the paper passing parts is controlled.

すなわち、紙と接触する通紙部分の通紙・搬送部材が絶
縁性の場合には、低湿度の環境で紙との摩擦により通紙
・搬送部材が帯電をおこし、その部材にトナーが付着し
て紙の汚れが発生する。また、通紙部分の通紙・搬送部
材が低抵抗の場合には、高湿度の環境では、紙が吸湿す
るために紙自体が低抵抗体となり、転写帯電機によりコ
ピー紙に帯電させた電荷が転写ガイドを通ってリークし
てしまい画像の抜けが発生する。
In other words, if the paper passing/conveying member in the paper passing part that comes into contact with the paper is insulating, the paper passing/conveying member will become charged due to friction with the paper in a low humidity environment, and toner will adhere to that member. The paper becomes smudged. In addition, if the paper passing/conveying member in the paper passing section has low resistance, in a high humidity environment, the paper absorbs moisture, so the paper itself becomes a low resistance material, and the charge charged to the copy paper by the transfer charging machine leaks through the transfer guide, resulting in missing images.

第4図は複写機における転写カイトの使用部位を示す模
式図である。同図に示す様に、従来の複写機では、鉄玉
にNiめっきをした転写ガイド14や定着入口ガイドな
どに定電圧素子(バリスタ)12を介して接地させるこ
とにより、中間抵抗に制御してトナー汚れや転写抜けを
防止していた。しがし、この方法では、部品点数が増加
し、作業工程も増えるので量産的ではない。なお、9は
感光体、10はトナー、11は転写材、13は転写帯電
機を示す。
FIG. 4 is a schematic diagram showing the parts where the transfer kite is used in the copying machine. As shown in the figure, in the conventional copying machine, the transfer guide 14, which is a Ni-plated iron ball, the fixing entrance guide, etc. are grounded via a constant voltage element (varistor) 12 to control the intermediate resistance. This prevented toner stains and transfer omissions. However, this method is not suitable for mass production because the number of parts and work steps increase. In addition, 9 is a photoreceptor, 10 is a toner, 11 is a transfer material, and 13 is a transfer charging machine.

本発明は、この様な従来技術の問題点を解決するために
なされたものであり、耐摩耗性に優れ、表面の均一性が
良好で、しかも導電性のコントロールが可能な通紙およ
び搬送部材を提供することを目的とするものである。
The present invention was made in order to solve the problems of the prior art, and provides a paper passing and conveying member that has excellent wear resistance, good surface uniformity, and can control conductivity. The purpose is to provide the following.

〔課題を解決するための手段〕[Means to solve the problem]

即ち、本発明は、基材上に、平均粒子径0.01〜3.
0 amの超微粒金属粉体、平均粒子径0.1〜3.0
μmのセラミック粉体表面に金属めっきした粉体および
天然マイカ粉体表面に金属めっきした粉体を含有する電
着塗装被膜を形成してなることを特徴とする通紙・搬送
部材である。
That is, in the present invention, an average particle size of 0.01 to 3.
0 am ultrafine metal powder, average particle size 0.1-3.0
This paper passing/conveying member is characterized by forming an electrodeposited coating containing metal-plated powder on the surface of micrometer ceramic powder and metal-plated powder on the surface of natural mica powder.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、電着可能な樹脂中に超微粒金属粉体、セラミ
ック粉体表面に金属めっきした粉体および天然マイカ(
以下、単にマイカと云う)粉体表面に金属めっきした粉
体を含有する電着塗料を用いて、金属部材または非金属
部材からなるローラー部材等の通紙・搬送部材上に電気
泳動による電着塗装被膜を形成することにより、含有微
粒子が均一に分散し、経時変化が少なく、耐摩耗性に優
れ、表面の均一性が良好で、しかも導電性の制御が優れ
た通紙・搬送部材を得る事を特徴とする。
The present invention consists of ultrafine metal powder in an electrodepositable resin, powder with metal plating on the surface of ceramic powder, and natural mica (
Using an electrodeposition coating containing powder whose surface is metal-plated (hereinafter simply referred to as mica), it is electrophoretically deposited onto paper passing and conveying members such as roller members made of metal or non-metallic members. By forming a coating film, the fine particles contained therein are uniformly dispersed, and a paper passing/conveying member with little change over time, excellent wear resistance, good surface uniformity, and excellent conductivity control is obtained. characterized by things.

第1図(a)〜(C)は、各々本発明の通紙・搬送部材
の構成の一例を示す部分断面図である。同第1図(a)
において、本発明の通紙・搬送部材は、ABS樹脂等の
非金属部材4からなるローラ一部材の表面に、一般に知
られているプラスチック上のめっき工程を行うことによ
り、触媒処理層3および金属めっき層2を順次形成し、
これをベース材としてその上に電着塗装被膜1を形成し
てなるものである。
FIGS. 1(a) to 1(C) are partial cross-sectional views each showing an example of the structure of the paper passing/conveying member of the present invention. Figure 1(a)
In the paper passing/conveying member of the present invention, the catalyst treatment layer 3 and the metal are formed by performing a generally known plastic plating process on the surface of the roller member made of the non-metallic member 4 such as ABS resin. Forming plating layers 2 in sequence,
This is used as a base material and an electrodeposition coating film 1 is formed thereon.

次に、第1図(b)は本発明の通紙・搬送部材の他の構
成を示す部分断面図であり、アルミニウム等の金属部材
6の表面に、アルミニウム陽極酸化被膜層5を形成し、
これをベース材としてその上に電着塗装被膜lを形成し
てなるものである。
Next, FIG. 1(b) is a partial sectional view showing another configuration of the paper passing/conveying member of the present invention, in which an aluminum anodic oxide film layer 5 is formed on the surface of a metal member 6 such as aluminum,
This is used as a base material and an electrodeposition coating film l is formed thereon.

また、第1図(C)は、鉄素材等からなる金属部材80
表面に、一般に知られている防錆を目的とした化成被膜
層7を形成し、これをベース材としてその上に電着塗装
被膜lを形成した通紙・搬送部材を示す。
Further, FIG. 1(C) shows a metal member 80 made of iron material or the like.
A paper passing/conveying member is shown in which a generally known chemical conversion film layer 7 for rust prevention is formed on the surface, and an electrodeposition coating film l is formed thereon using this as a base material.

本発明の通紙・搬送部材に用いる基材としては、アルミ
ニウムや鉄などの金属部材およびプラスチック等の非金
属部材のいずれでも良く、その特性により、電着塗装前
の下地処理として、第1図(a)〜(C)に示す様な処
理、またはその他の通常の処理を行う。非金属部材とし
ては、特に制限することはなく、OA機器、家電製品、
印刷機器などの通紙・搬送部材に用いられているプラス
チック材料が用いられ、例えばABS、CF/ABS、
変成PPE。
The base material used for the paper passing/conveying member of the present invention may be either a metal member such as aluminum or iron or a non-metal member such as plastic. The processes shown in (a) to (C) or other normal processes are performed. There are no particular restrictions on non-metallic components, such as office automation equipment, home appliances,
Plastic materials used for paper passing and conveyance members of printing equipment etc. are used, such as ABS, CF/ABS,
Modified PPE.

変成PPO,GF/PC等が挙げられる。Examples include modified PPO, GF/PC, etc.

次に、電着塗装被膜を形成した本発明の通紙・搬送部材
の製造方法は、前記の金属部材または非金属部材に電着
塗装前の下地処理を行い、その上に電着塗装により電着
塗装被膜を形成する。
Next, in the method of manufacturing a paper passing/conveying member of the present invention on which an electrodeposited coating is formed, the metal member or non-metallic member is subjected to a base treatment before electrodeposition coating, and then the electrodeposited coating is applied to Forms a coating film.

電着塗装に用いられる電着塗料には、電着可能な樹脂中
に、平均粒子径0.01〜3.0μmの超微粒金属粉体
および平均粒子径0.1〜3.0μmのセラミック粉体
表面に金属めっきした粉体およびマイカ粉体表面に金属
めっきした粉体を含有するものが用いられる。また、こ
の電着塗料はアニオン系あるいはカチオン系が適用でき
る。
The electrodeposition paint used for electrodeposition coating contains ultrafine metal powder with an average particle size of 0.01 to 3.0 μm and ceramic powder with an average particle size of 0.1 to 3.0 μm in an electrodepositable resin. Powder whose body surface is plated with metal and mica powder which contains powder whose surface is plated with metal are used. Further, this electrodeposition paint can be anionic or cationic.

電着可能な樹脂としては、一般に知られている低温硬化
型樹脂が用いられ、例えばアクリル・メラミン系、アク
リル系、エポキシ系、ウレタン系、アルキッド系樹脂等
が挙げられる。
As the resin that can be electrodeposited, generally known low temperature curing resins are used, such as acrylic/melamine resins, acrylic resins, epoxy resins, urethane resins, and alkyd resins.

電着可能な樹脂中に含有される超微粒金属粉体としては
、特に制限はないが、例えばAg、  Co。
The ultrafine metal powder contained in the electrodepositable resin is not particularly limited, but includes, for example, Ag and Co.

Cu、 Fe、 Mn、  Ni、  Pd、 Sn、
  Te等が挙げられる。超微粒金属粉体の粒径は、通
常平均粒子径0.01〜3.0 μm、好ましくは0.
Of〜1.0 p mの範囲が望ましく、0.01μm
未満ては電着塗料中に分散した場合2次凝集が発生し、
3.0μmを越えると塗装被膜中への均一分散性が低下
するので好ましくない。
Cu, Fe, Mn, Ni, Pd, Sn,
Examples include Te. The particle size of the ultrafine metal powder is usually an average particle size of 0.01 to 3.0 μm, preferably 0.01 to 3.0 μm.
Of ~1.0 p m is desirable, and 0.01 μm
However, when dispersed in electrodeposition paint, secondary aggregation occurs,
If it exceeds 3.0 μm, it is not preferable because the uniform dispersibility in the paint film decreases.

また、セラミック粉体表面に金属めっきした粉体(以下
、金属化セラミック粉体と記す)としては、セラミック
粉体の表面に、Ag、Ni、Cu等で金属めっきを施し
た粉体が用いられる。また、セラミック粉体表面の金属
めっきは、コスト面から見てニッケル、銅の無電解めっ
きが適している。
In addition, as the powder whose surface is metal-plated (hereinafter referred to as metallized ceramic powder), a powder whose surface is metal-plated with Ag, Ni, Cu, etc. is used. . Further, from the viewpoint of cost, electroless plating of nickel and copper is suitable for metal plating on the surface of the ceramic powder.

セラミック粉体の粒径は通常平均粒子径0.1〜3.0
μm1好ましくは0.3〜1.5μmの範囲が望ましく
、0.1μm未満ではセラミックへのメッキコストが高
(なり、3.0μmを越えると塗装被膜中での均一分散
性が低下するので好ましくない。また、セラミック粉体
表面に施される金属めっきの厚さは、通常0.05〜0
.9μm1好ましくは0.1〜0.5μmの範囲が望ま
しい。
The particle size of ceramic powder is usually an average particle size of 0.1 to 3.0.
μm1 is preferably in the range of 0.3 to 1.5 μm; if it is less than 0.1 μm, the cost of plating the ceramic will be high (if it exceeds 3.0 μm, the uniform dispersibility in the paint film will decrease, so it is not preferable) In addition, the thickness of metal plating applied to the surface of ceramic powder is usually 0.05 to 0.
.. The thickness is desirably 9 μm, preferably in the range of 0.1 to 0.5 μm.

さらに、マイカ粉体表面に金属めっきした粉体(以下金
属化マイカ粉体と記す)も同様に、マイカ粉体の表面に
、Ag、 Ni、 Cu等で金属めっきした粉体が用い
られるが、コスト面から見てニッケル、銅の無電解めっ
きが適している。
Furthermore, mica powder whose surface is plated with metal (hereinafter referred to as metallized mica powder) is also used, as is powder whose surface is plated with metal such as Ag, Ni, Cu, etc. From a cost standpoint, electroless plating of nickel and copper is suitable.

マイカ粉体の大きさは(長径ll1m、厚さ0.1μm
)〜(長径10μm1厚さ3μm)、特には(長径2μ
m1厚さ0.1 μm) 〜(長径5pm、厚さ1μm
)の範囲が望ましく、(長径1μm、厚さ0.1μm)
より小さいとマイカ粉体へのメツキコストが高(なり、
(長径10μm1厚さ3μm)よりも大きいと電着塗装
被膜中での金属化マイカの均一分散性の低下および電着
塗装被膜の耐摩耗性が低下する。またマイカ粉体表面に
施される金属めっきの厚さは、通常0.05〜0.9μ
m、好ましくは0.1〜0.5μmである。ここで述べ
ているマイカ粉体とは白雲母、黒震母、絹雲器、ウロコ
雲母、スチルプノメレンなどのめっき可能な鉱物の事で
ある。
The size of the mica powder is (length: 1 m, thickness: 0.1 μm)
) ~ (longer diameter 10 μm 1 thickness 3 μm), especially (longer diameter 2 μm
m1 thickness 0.1 μm) ~ (longer diameter 5pm, thickness 1μm)
) range is desirable, (long diameter 1 μm, thickness 0.1 μm)
If the size is smaller, the cost of plating mica powder will be high.
If the diameter is larger than 10 μm in length and 3 μm in thickness, the uniform dispersibility of metallized mica in the electrocoated film and the abrasion resistance of the electrocoated film will decrease. In addition, the thickness of the metal plating applied to the mica powder surface is usually 0.05 to 0.9μ.
m, preferably 0.1 to 0.5 μm. The mica powder mentioned here refers to minerals that can be plated, such as muscovite, black seismite, sericite, scaly mica, and stilpnomelene.

この超微粒金属粉体およびセラミック粉体の粒径及びマ
イカ粉体の長径は、遠心沈降式粒度分布測定器を用いて
測定した値である。この測定器として実際に用いたもの
は5ACP−3(島津製作所製)である。また、超微粒
金属粉体は、例えば熱プラズマ蒸発法等を用いて製造さ
れたものが好ましい。
The particle diameters of the ultrafine metal powder and ceramic powder and the major axis of the mica powder are values measured using a centrifugal sedimentation type particle size distribution analyzer. The measuring device actually used was 5ACP-3 (manufactured by Shimadzu Corporation). Further, the ultrafine metal powder is preferably manufactured using, for example, a thermal plasma evaporation method.

またマイカ粉体は所定厚さの市販品を使用し、長径がさ
らに小さなものが必要な場合には、市販品の湿式粉砕を
実施して使用に供した。
In addition, a commercially available mica powder having a predetermined thickness was used, and when a smaller major axis was required, the commercially available product was wet-pulverized for use.

この超微粒金属粉体および金属化セラミック粉体および
金属化マイカ粉体の混合割合は金属化セラミック粉体1
00重量部に対して超微粒金属粉体30〜300重量部
および金属化マイカ粉体30〜300重量部の範囲が好
ましい。
The mixing ratio of this ultrafine metal powder, metallized ceramic powder, and metallized mica powder is 1
The preferred range is 30 to 300 parts by weight of the ultrafine metal powder and 30 to 300 parts by weight of the metallized mica powder per 00 parts by weight.

また、電着塗料中における超微粒金属粉体および金属化
セラミック粉体および金属化マイカ粉体の混合物の含有
量は、電着可能な樹脂100重量部に対して5〜40重
量部、好ましくは5〜20重量部の範囲が望ましく、こ
の範囲内で混合粉体の添加量を適宜コントロールするこ
とにより、電着塗装被膜の導電性を任意の値に制御する
ことができる。
Further, the content of the mixture of ultrafine metal powder, metallized ceramic powder, and metalized mica powder in the electrodeposition paint is 5 to 40 parts by weight, preferably 5 to 40 parts by weight based on 100 parts by weight of the electrodepositable resin. A range of 5 to 20 parts by weight is desirable, and by appropriately controlling the amount of the mixed powder added within this range, the conductivity of the electrodeposited film can be controlled to an arbitrary value.

また、混合粉体の含有量が5重量部未満では導電性が低
く、50重量部を越えると母材への塗膜の密着性が低下
するので好ましくない。
Further, if the content of the mixed powder is less than 5 parts by weight, the conductivity will be low, and if it exceeds 50 parts by weight, the adhesion of the coating film to the base material will decrease, which is not preferable.

なお、超微粒金属粉体および金属化セラミック粉体およ
び金属化マイカ粉体の共析はX線マイクロアナライザー
により確認され、その含有量は熱重量分析で解析するこ
とにより測定することができる。
Note that the eutectoid of the ultrafine metal powder, metallized ceramic powder, and metallized mica powder is confirmed by an X-ray microanalyzer, and the content thereof can be measured by thermogravimetric analysis.

電着塗料中に超微粒金属粉体および金属化セラミック粉
体および金属化マイカ粉体を分散する方法は、ボールミ
ルを用いて24〜35時間程度の分散で良く、その後、
脱塩水を用いて一般に用いられている電着塗装法と同様
の固形分として3〜20重量%、好ましくは6〜17重
量%になるように希釈して電着塗装液を調製する。電着
塗装に関しては、アニオン系あるいはカチオン系が適用
できる。
The method of dispersing the ultrafine metal powder, metallized ceramic powder, and metallized mica powder in the electrodeposition paint can be carried out by using a ball mill for about 24 to 35 hours, and then
An electrodeposition coating solution is prepared by diluting the solution with demineralized water to a solid content of 3 to 20% by weight, preferably 6 to 17% by weight, similar to the generally used electrodeposition coating method. Regarding electrodeposition coating, anionic or cationic coatings can be applied.

電解条件としては、アニオン系では被塗物を陽極とし、
カチオン系では陰極とし、液温20〜25°Cの範囲で
、pH8〜9て、印加電圧50〜200V、電流密度0
.5〜3A/dr+(、処理時間3〜6分が望ましい。
For anionic electrolysis conditions, the object to be coated is the anode;
For cationic systems, it is used as a cathode, at a liquid temperature of 20 to 25°C, a pH of 8 to 9, an applied voltage of 50 to 200 V, and a current density of 0.
.. 5 to 3 A/dr+ (and a treatment time of 3 to 6 minutes is desirable.

次いで、水洗後、水切りをして、100〜140°Cの
オーブンにて20〜180分間硬化し完成する。このと
きの塗膜中の共析量は5〜50重量%で、好ましくは2
0〜40重量%である。尚、共析量は熱重量分析装置で
分析した。
Next, after washing with water, drain the water and harden in an oven at 100 to 140°C for 20 to 180 minutes to complete. The amount of eutectoid in the coating film at this time is 5 to 50% by weight, preferably 2% by weight.
It is 0 to 40% by weight. The amount of eutectoid was analyzed using a thermogravimetric analyzer.

電着塗装被膜の膜厚は、通常5μm以上、好ましくは7
〜15μmであることが望ましく、膜厚を5μm以上に
することにより、任意の導電率を持つ被膜を通紙・搬送
部材に塗着する拳が可能であり、耐摩耗性についても塗
膜全体にわたって均一で優秀な物性を得ることができる
The thickness of the electrodeposition coating is usually 5 μm or more, preferably 7 μm or more.
It is desirable that the film thickness is 15 μm or more, and by making the film thickness 5 μm or more, it is possible to apply a film with any conductivity to the paper passing/conveying member, and the abrasion resistance can be improved over the entire coating film. Uniform and excellent physical properties can be obtained.

本発明においては、前記超微粒金属粉体および金属化セ
ラミック粉体および金属化マイカ微粉体を樹脂中に分散
し、電気泳動作用によって電着塗装被膜中に共析するこ
とにより、塗膜物性が低温硬化温度(100℃)にもか
かわらず、硬化反応が完壁となり、高温硬化膜と同一ま
たはそれ以上の物性が得られる。
In the present invention, the physical properties of the coating film are improved by dispersing the ultrafine metal powder, metallized ceramic powder, and metallized mica fine powder in a resin and eutectoiding them into the electrodeposition coating film by electrophoresis. Despite the low curing temperature (100° C.), the curing reaction is complete and physical properties equal to or better than those of the high temperature cured film can be obtained.

次に、第2図は、アルミ53Sのテストピース(サイズ
5 c m x 5 c m St == 1 、0 
m m )の片面に、アクリル樹脂12重量%を含有し
、平均粒子径0.3μmのNiの超微粒金属粉体および
平均粒子径1μmの微小粒径セラミック粉体(A120
3)表面に厚さ0.1μmのニッケルめっきした粉体お
よび長径2.5μm1厚さ0.3μmのマイカ粉体表面
に厚さ0.1μmのニッケルめっきした金属化マイカ粉
体を混合(混合割合1:1:1)した混合物を添加した
電着塗料を用いて、膜厚20μmの塗装被膜を形成した
ときの体積固有抵抗を接触式絶縁抵抗計にて測定した結
果を示すグラフである。測定は測定面積1ciとなる4
点接点式プローブを電着塗装膜に接触させることにより
行った。
Next, Fig. 2 shows a test piece of aluminum 53S (size 5 cm x 5 cm St == 1, 0
m m ) containing 12% by weight of acrylic resin, Ni ultrafine metal powder with an average particle size of 0.3 μm and microparticle ceramic powder (A120) with an average particle size of 1 μm.
3) Mix nickel-plated powder with a thickness of 0.1 μm on the surface and mica powder with a major axis of 2.5 μm and a thickness of 0.3 μm with metallized mica powder with a 0.1 μm thick nickel plating on the surface (mixing ratio 1:1:1) is a graph showing the results of measuring the volume resistivity using a contact insulation resistance meter when a coating film with a thickness of 20 μm was formed using an electrodeposition paint containing a mixture of 1:1:1). The measurement area will be 1ci4
This was done by bringing a point contact type probe into contact with the electrodeposition coating film.

また、ABS、CF/ABS、変成PPE、変成PP0
1GF/PCなどのプラスチック中へ、アルミニウムフ
レーク(サイズ1,0mmX1.4mm、厚さ25〜3
0μm)を混入して形成した導電性プラスチックの体積
固有抵抗を測定した結果も示す。このときプラスチック
中へのアルミニウム混練物の体、積固有抵抗測定方法は
日刊工業新聞社刊行「工業材料」第30巻、第10号、
54頁に示されている方法を用いた。
In addition, ABS, CF/ABS, modified PPE, modified PP0
Aluminum flakes (size 1.0 mm x 1.4 mm, thickness 25-3
The results of measuring the volume resistivity of a conductive plastic formed by mixing 0 μm) are also shown. At this time, the method for measuring the body and product resistivity of aluminum kneaded material in plastic is described in "Industrial Materials" Vol. 30, No. 10, published by Nikkan Kogyo Shimbun.
The method shown on page 54 was used.

アルミニウムフレークをプラスチックに混練した場合、
アルミニウムフレーク充填率の増加とともに体積固有抵
抗の急激な低下が0−10”Ω・cmの範囲で見られる
のに対し、電着塗料中へNiの超微粒金属粉体および微
小粒径セラミック粉体表面にニッケルめっきした粉体お
よび金属化マイカ粉体の混合物を混入したものを添加し
て形成した電着塗装被膜の体積固有抵抗の変化は緩やか
であり、任意の固有抵抗を持つ通紙・搬送部材を精度良
く作成する事が可能である。
When aluminum flakes are mixed into plastic,
A rapid decrease in volume resistivity is observed in the range of 0-10''Ωcm as the aluminum flake filling rate increases, whereas ultrafine metal powder of Ni and ceramic powder of fine particle size are mixed into the electrodeposition paint. The change in volume resistivity of the electrodeposited coating formed by adding a mixture of nickel-plated powder and metallized mica powder to the surface is gradual, and paper feeding and conveyance with arbitrary resistivity is possible. It is possible to create parts with high precision.

しかも、電気泳動によって塗着が行われるため、混練を
行う場合のような添加フィラーの局在化現象も起らず、
通紙・搬送部材の表面全体にわたって均一な塗膜が得ら
れる。
Moreover, since the application is carried out by electrophoresis, there is no localization of the added filler, which occurs when kneading is performed.
A uniform coating film can be obtained over the entire surface of the paper passing/conveying member.

次に、各種のローラ一部材の耐久試験を行った試験結果
を表1に示す。試験を行ったローラ一部材の外径は30
 m mに統一した。
Next, Table 1 shows the test results of durability tests of various roller members. The outer diameter of the roller member tested was 30
Unified into mm.

表1において、電着塗膜中に共析させる物質は、各種添
加粉体をそれぞれアクリル樹脂100重量部に対して6
〜11重量部となるように分散したアニオン型電着塗料
を用意し、各ローラ一部材へ膜厚10μmとなるように
電着を行った。このとき液温20〜25℃、硬化温度1
00 ’Cのオーブンにて60分間硬化を行った。
In Table 1, the substances to be eutectoided in the electrodeposited coating are 6 parts by weight of various additive powders per 100 parts by weight of the acrylic resin.
An anionic electrodeposition paint dispersed in an amount of ~11 parts by weight was prepared, and electrodeposition was performed on each roller member to a film thickness of 10 μm. At this time, the liquid temperature is 20-25℃, the curing temperature is 1
Curing was performed in an oven at 00'C for 60 minutes.

第3図は、耐久試験におけるローラ一部材の耐摩耗性を
評価するために使用した表面性試験器の模式図である。
FIG. 3 is a schematic diagram of a surface property tester used to evaluate the wear resistance of a roller member in the durability test.

この試験器により、ローラ一部材の静止摩擦係数を耐久
試験前後で計測し、耐摩耗性の評価を行った。
Using this testing device, the static friction coefficient of the roller member was measured before and after the durability test, and the wear resistance was evaluated.

なお、ローラ一部材耐久試験は、同一種のローラ一部材
2本を用意し、これをコピー機に装着してコピー用普通
紙15万枚の通紙を行った。
In the roller member durability test, two roller members of the same type were prepared, and these were attached to a copying machine, and 150,000 sheets of plain paper for copying were passed through the machine.

耐久試験前後におけるローラ一部材の静止摩擦係数測定
方法としては、第3図において、表面が平滑なるコピー
用紙固定板18下面にコピー用紙(A4サイズ)19を
固定し、それを外径30 m m 、長さ230 m 
mのローラ一部材16に接触させ、その際上部より1〜
2kgの最大負荷を与え、ローラ一部材を角速度ω=1
.5rad/secにて矢印方向に回転させ、静止摩擦
係数を測定した。
To measure the coefficient of static friction of the roller member before and after the durability test, as shown in Fig. 3, copy paper (A4 size) 19 is fixed to the lower surface of the copy paper fixing plate 18 with a smooth surface, and the copy paper (A4 size) is fixed with an outer diameter of 30 mm. , length 230 m
1 to 1 from the top.
A maximum load of 2 kg is applied, and the roller member is moved at an angular velocity of ω = 1.
.. It was rotated in the direction of the arrow at 5 rad/sec and the static friction coefficient was measured.

また、ローラ一部材がゴム製の場合には、耐久時におけ
る通紙不良の発生があるか否かによってのみ判断を行っ
た。
In addition, when the roller member was made of rubber, the judgment was made only based on whether or not paper passing failure occurred during durability.

平均長径2.5μm、平均厚さ0.3μmのマイカ粉体
表面に厚さ0.1μmのニッケルめっきした金属化マイ
カ粉体に各種の微粉体を混合した場合の試験結果を表1
に示す。
Table 1 shows the test results when various fine powders were mixed with metallized mica powder with an average length of 2.5 μm and an average thickness of 0.3 μm, and the surface was plated with nickel to a thickness of 0.1 μm.
Shown below.

(注) (1)耐久試験枚数は15万枚。(note) (1) Durability test number of sheets is 150,000 sheets.

(2)■はAl2O3表面にニッケルめっきを行ったも
のであり、そのめっき膜厚は0.1μmである。
(2) ■ is one in which nickel plating is applied to the Al2O3 surface, and the plating film thickness is 0.1 μm.

(3)■はAl2O3表面に銅めっきを行ったものであ
り、そのめっき膜厚は0.1μmである。
(3) ■ is one in which the Al2O3 surface is plated with copper, and the thickness of the plating film is 0.1 μm.

(4)表面性試験器により測定される静止摩擦係数が1
.2以下のものについては搬送不良が発生した。
(4) Static friction coefficient measured by surface property tester is 1
.. For those with a score of 2 or less, transport defects occurred.

この表1の結果から、超微粒粉体を共析させた搬送ロー
ラ一部材の耐摩耗性がステンレスにブラスト処理を施し
たローラ一部材と同等もしくはそれより優れた値である
ことが判明した。
From the results shown in Table 1, it was found that the abrasion resistance of the transport roller member made of eutectoid ultrafine powder was equal to or better than that of the roller member made of blasted stainless steel.

また、下地ローラ一部材として、鋼材、アルミ材、AB
S樹脂材のどの場合でも変化がなかった。
In addition, steel materials, aluminum materials, AB
There was no change in any case of S resin material.

また、第4図に示す複写機における転写ガイドに、本発
明の通紙・搬送部材を使用すると、定電圧素子を用いて
部材の抵抗値を制御するのと同様の効果が得られるので
好適である。
Furthermore, it is preferable to use the paper passing/conveying member of the present invention in the transfer guide of the copying machine shown in FIG. 4, since the same effect as controlling the resistance value of the member using a constant voltage element can be obtained. be.

以上のことから、本発明の通紙・搬送部材は、電着塗装
により超微粒金属粉体および金属化セラミック粉体およ
び金属化マイカ粉体を共析することによって、粉体の接
触面積が大となり密度が高くなり、巨視的な面でも微視
的な面でも表面全体にわたり均一な塗膜を得る事ができ
るので、特に高精度な表面均一性を要求され、しかも同
時に耐摩耗性や導電性を要求される通紙・搬送部材の問
題点を解決するものであり、しかも特性だけにとどまら
ずコスト面でも大きく寄与する。
From the above, the paper passing/conveying member of the present invention has a large contact area between powders by eutectoiding ultrafine metal powder, metallized ceramic powder, and metallized mica powder by electrodeposition coating. This increases the density and allows a uniform coating to be obtained over the entire surface, both macroscopically and microscopically, so particularly high precision surface uniformity is required, and at the same time, it is also highly abrasion resistant and conductive. This solves the problems of paper passing and conveying members that require the following, and it also contributes greatly not only in terms of characteristics but also in terms of cost.

さらに、通紙・搬送部材をゴムおよびプラスチック中に
導電性フィラーを混練して成型する場合に比べて、本発
明の通紙・搬送部材を用いると導電性フィラーの消費量
が極端に少ないにもかかわらず、より優れた耐摩耗性や
任意の導電率を得る事が可能であり、経済的な効果にも
優れている。
Furthermore, compared to the case where the paper passing/conveying member is molded by kneading conductive filler into rubber or plastic, the consumption of conductive filler is extremely low when using the paper passing/conveying member of the present invention. Regardless, it is possible to obtain superior wear resistance and arbitrary conductivity, and it is also excellent in economical effects.

〔実施例〕〔Example〕

以下、本発明を実施例に従ってより具体的に説明するが
、本発明は係る実施例のみに限定されるものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail according to Examples, but the present invention is not limited to these Examples.

実施例1 0一ラ一部材としてABS樹脂を外径30mm、長さ2
30 m mに形成したものを用い被塗装物とした。
Example 1 ABS resin was used as a 0-lance member with an outer diameter of 30 mm and a length of 2
A piece formed to a thickness of 30 mm was used as an object to be coated.

このABS樹脂ローラ一部材をCrO3−H2SO4H
20系エツチング液で1分間処理し、次いでセンシタイ
ザ液として、塩化第一スズ30g/7.塩酸20m1/
I!を用いて室内で2分間処理し、次いでパラジウムに
より触媒処理した後、無電解ニッケルめっきを0.5μ
mの厚さに施し、無水クロム酸0.01g/j!で1分
間処理し供試片とした。
This ABS resin roller part is CrO3-H2SO4H
20 series etching solution for 1 minute, and then as a sensitizer solution, 30 g of stannous chloride/7. Hydrochloric acid 20ml/
I! After 2 minutes of treatment indoors using
m thickness, chromic anhydride 0.01g/j! It was treated for 1 minute and used as a test piece.

アクリル・メラミン系樹脂(商品名:ハニブライトC−
IL、ハニー化成社製)100重量部に対して平均粒子
径1μmのアルミナ表面に無電解ニッケルめっき0.1
μmを施したもの7重量部と、平均粒子径0.3μmの
Coの5重量部及び平均長径2.0μm1平均厚さ0.
3μmのマイカ粉体表面に厚さ0.1μmのニッケルめ
っきした金属化マイカ粉体4重量部をボールミルにて3
0時間分散させた後、脱塩水にて15重量%に稀釈し塗
液とした。
Acrylic/melamine resin (product name: Honeybright C-
IL, manufactured by Honey Kasei Co., Ltd.) 0.1 electroless nickel plating on the alumina surface with an average particle size of 1 μm per 100 parts by weight
7 parts by weight of Co with an average particle diameter of 0.3 μm, and 5 parts by weight of Co with an average major diameter of 2.0 μm and 0.5 parts by weight of Co with an average length of 2.0 μm.
4 parts by weight of nickel-plated metalized mica powder with a thickness of 0.1 μm was added to the surface of the 3 μm mica powder using a ball mill.
After being dispersed for 0 hours, it was diluted to 15% by weight with demineralized water to prepare a coating liquid.

この塗液を用いて、浴温25℃、pH8〜9の条件で、
被塗装物を陽極とし、対極として0.51ステンレス板
を用いて、印加電圧100−150Vの範囲で3分間電
着した。
Using this coating liquid, under the conditions of bath temperature 25°C and pH 8-9,
Electrodeposition was carried out for 3 minutes at an applied voltage of 100 to 150 V using the object to be coated as an anode and a 0.51 stainless steel plate as a counter electrode.

電着後に水洗し、97℃±1℃のオーブンにて60分間
硬化し完成した。形成された電着塗装被膜の膜厚は10
〜12μmであり、また塗膜中の共析量は35〜40重
量%であった。
After electrodeposition, it was washed with water and cured in an oven at 97°C±1°C for 60 minutes to complete the process. The thickness of the formed electrodeposition coating was 10
~12 μm, and the amount of eutectoid in the coating film was 35 to 40% by weight.

この形成された電着塗装被膜の耐摩耗性の試験をしたと
ころ、コピー用普通紙15万枚の耐久試験後でも、ロー
ラーの静止摩擦係数は1.4〜1.5という良好な結果
が得られた。なお、耐久試験前の静止摩擦係数は1.7
〜1.8であった。
When we tested the abrasion resistance of the electrocoated film that had been formed, we found that the coefficient of static friction of the roller was 1.4 to 1.5, which was a good result even after a durability test on 150,000 sheets of plain paper for copying. It was done. The coefficient of static friction before the durability test was 1.7.
It was ~1.8.

実施例2 ABS樹脂により形成された転写ガイドに、アクリル・
メラミン系樹脂(商品名:ハニブライトC−IL。
Example 2 Acrylic was added to the transfer guide made of ABS resin.
Melamine resin (product name: Honeybright C-IL.

ハニー化成社製)100重量部に対して平均粒子径1μ
mのAI!2o3に0.1μmのニッケルめっきしたも
の2.0重量部と、平均粒子径0.3μmのW微粉末4
重量部及び平均長径2.5μm、平均厚さ0.2μm(
7)マイカ粉9体表面に厚さ0.1μmのニッケルめっ
きした金属化マイカ粉体2.5重量部を加え、印加電圧
100〜l 50Vで、その他の条件は実施例1と同一
にして、電着塗装被膜を形成した。形成された電着塗装
被膜の膜厚は10〜12μmであり、また塗膜中の共析
量は22〜27重量%であった。
(Manufactured by Honey Kasei Co., Ltd.) Average particle size 1μ per 100 parts by weight
AI of m! 2.0 parts by weight of 2o3 plated with 0.1 μm nickel and W fine powder with an average particle size of 0.3 μm 4
Weight part and average major axis 2.5 μm, average thickness 0.2 μm (
7) Add 2.5 parts by weight of nickel-plated metallized mica powder with a thickness of 0.1 μm to the surface of the nine mica powder bodies, apply an applied voltage of 100 to 50 V, and keep the other conditions the same as in Example 1. An electrodeposition coating was formed. The thickness of the electrodeposition coating film formed was 10 to 12 μm, and the amount of eutectoid in the coating film was 22 to 27% by weight.

このようにして形成された電着塗装被膜を有する転写ガ
イドは、体積固有抵抗として10’〜109(Ω・cm
)の値を持ち、複写機に組み込み、低湿(25%RH)
時の環境にて、複写を1万回繰り返してもトナー付着に
よる紙の汚れは発生せず、また高湿(85%RH)時の
環境においても画像抜けなどの動作不良は発生せず、通
紙部材としての良好な性能が得られた。
The transfer guide having the electrocoated film formed in this way has a volume resistivity of 10' to 109 (Ωcm).
) and is installed in a copying machine with low humidity (25% RH).
Even after repeated copying 10,000 times under normal conditions, the paper does not become stained due to toner adhesion, and even under high humidity (85% RH) conditions, no malfunctions such as image dropout occur, and the machine can be used normally. Good performance as a paper member was obtained.

この性能は15万枚の普通紙コピーによる耐久試験間に
変化しなかった。
This performance did not change during a durability test with 150,000 plain paper copies.

また耐摩耗性の変化を表わす物性値である静止摩擦係数
は耐久試験後に1.4〜1,5と良好な値が得られた。
In addition, the coefficient of static friction, which is a physical property value that indicates a change in wear resistance, had a good value of 1.4 to 1.5 after the durability test.

なお、耐久試験前の静止摩擦係数は1.7〜1.8であ
った。
Note that the static friction coefficient before the durability test was 1.7 to 1.8.

実施例3 0−ラ一部材として鉛快削鋼S−L S U Mを外径
30 m m 。
Example 3 A lead free-cutting steel S-L SUM with an outer diameter of 30 mm was used as a zero-lug member.

長さ230 m mに加工し被塗装物とした。このロー
ラ一部材を一般に知られているアルカリ系脱脂剤で、6
0℃、5分間脱脂し、次に充分に水洗を行った後、りん
酸鉄化成被膜を3μmの厚さに施し、純水にて充分に水
洗後、水切りおよび乾燥を行い供試片とした。
It was processed into a length of 230 mm and used as an object to be painted. This roller part was treated with a commonly known alkaline degreaser for 6 hours.
After degreasing at 0°C for 5 minutes, and then thoroughly rinsing with water, an iron phosphate conversion coating was applied to a thickness of 3 μm, and after thoroughly rinsing with pure water, draining and drying were performed to prepare test pieces. .

アクリル・メラミン系樹脂(商品名:ハニブライトC,
−IL、ハニー化成社製>100重量部に対して平均粒
子径1μmのアルミナ表面に無電解ニッケルめっき0.
1μmを施したちの3重量部と、平均粒子径0,3μm
のTi粉体4重量部及び平均長径2.0μm1平均厚さ
0.2μmのマイカ粉体表面に厚さ0.1μmのニッケ
ルめっきした金属化マイカ粉体3重量部とをボールミル
で30時間分散させた後、脱塩水にて15重量%に稀釈
し塗液とした。
Acrylic/melamine resin (product name: Honeybright C,
-IL, manufactured by Honey Kasei Co., Ltd. Electroless nickel plating on the alumina surface with an average particle size of 1 μm for >100 parts by weight.
3 parts by weight of 1 μm grain and 0.3 μm average particle size
4 parts by weight of Ti powder and 3 parts by weight of nickel-plated metallized mica powder with a thickness of 0.1 μm were dispersed on the surface of mica powder with an average length of 2.0 μm and an average thickness of 0.2 μm using a ball mill for 30 hours. After that, it was diluted to 15% by weight with demineralized water to prepare a coating liquid.

この塗液を用いて浴温25℃、pH8〜9の条件で、被
塗装物を陽極とし、対極として0.5tステンレス板を
用いて、印加電圧1.00〜150Vの範囲で3分間電
着した。
Using this coating liquid, electrodeposition was carried out for 3 minutes at a bath temperature of 25°C and pH of 8 to 9, using the object to be coated as an anode and a 0.5t stainless steel plate as a counter electrode at an applied voltage of 1.00 to 150V. did.

電着後に水洗し、120°C±1°Cのオーブンにて5
0分間硬化し完成した。形成された電着塗装被膜の膜厚
は12〜13μmであり、また塗膜中の共析量は25〜
29重量%であった。
After electrodeposition, wash with water and heat in an oven at 120°C ± 1°C for 5 days.
It was cured for 0 minutes and completed. The thickness of the formed electrodeposited film is 12 to 13 μm, and the amount of eutectoid in the coating is 25 to 13 μm.
It was 29% by weight.

この形成された電着塗装被膜の耐摩耗性の試験をしたと
ころ、コピー用普通紙15万枚の耐久試験後でも、ロー
ラーの静止摩擦係数は1.4〜1.5という良好な結果
が得られた。なお、耐久試験前の静止摩擦係数は1.7
〜1.8であった。
When we tested the abrasion resistance of the electrocoated film that had been formed, we found that the coefficient of static friction of the roller was 1.4 to 1.5, which was a good result even after a durability test on 150,000 sheets of plain paper for copying. It was done. The coefficient of static friction before the durability test was 1.7.
It was ~1.8.

実施例4 0一ラ一部材としてアルミ53Sを外径30 m m 
Example 4 Aluminum 53S was used as a 0-lance member with an outer diameter of 30 mm.
.

長さ230 m mに加工し被塗装物とした。このアル
ミローラ一部材上に陽極酸化によりアルマイト被膜を3
μmの厚さに施し供試片とした。
It was processed into a length of 230 mm and used as an object to be painted. An alumite coating is applied to this aluminum roller by anodizing.
It was applied to a thickness of μm and used as a test piece.

アクリル・メラミン系樹脂(商品名:)xニブライトC
−IL、ハニー化成社製)100重量部に対して平均粒
子径1μmのアルミナ表面に無電解銅めっき0.1μm
を施したちの4重量部と、平均粒子径0.3μmのCo
 9重量部と平均長径2.5μm1平均厚さ0.15μ
mのマイカ粉体表面に厚さ0.1μmのニッケルめっき
した金属化マイカ粉体3重量部を混合し、ボールミルで
30時間分散させた後、脱塩水にて15重量%に稀釈し
塗液とした。
Acrylic/melamine resin (product name:) x Nibrite C
-IL, produced by Honey Kasei Co., Ltd.) Electroless copper plating of 0.1 μm on the alumina surface with an average particle size of 1 μm per 100 parts by weight
and 4 parts by weight of Co with an average particle size of 0.3 μm.
9 parts by weight, average length 2.5μm, average thickness 0.15μ
Mix 3 parts by weight of nickel-plated metallized mica powder with a thickness of 0.1 μm on the mica powder surface, disperse it in a ball mill for 30 hours, dilute to 15% by weight with demineralized water, and mix it with the coating liquid. did.

この塗液を用いて浴温25℃、pH8〜9の条件で、被
塗装物を陽極とし、対極として0.5tステンレス板を
用いて、印加電圧100〜150Vの範囲で3分間電着
した。
Using this coating liquid, electrodeposition was carried out for 3 minutes at a bath temperature of 25 DEG C. and a pH of 8 to 9, using the object to be coated as an anode and a 0.5 t stainless steel plate as a counter electrode at an applied voltage of 100 to 150 V.

電着後に水洗し、120℃±1℃のオーブンにて50分
間硬化し完成した。形成された電着塗装被膜の膜厚は1
0〜12μmであり、また塗膜中の共析量は33〜37
重量%であった。
After electrodeposition, it was washed with water and cured in an oven at 120°C±1°C for 50 minutes to complete the process. The thickness of the formed electrodeposited film is 1
0 to 12 μm, and the amount of eutectoid in the coating is 33 to 37
% by weight.

この形成された電着塗装被膜の耐摩耗性の試験をしたと
ころ、コピー用普通紙15万枚の耐久試験後でも、ロー
ラーの静止摩擦係数は1.4〜1.6という良好な結果
が得られた。なお、耐久試験前の静止摩擦係数は1.6
〜1.7であった。
When we tested the abrasion resistance of this electrocoated film, we found that the coefficient of static friction of the roller was 1.4 to 1.6, which was a good result even after a durability test on 150,000 sheets of plain paper for copying. It was done. The coefficient of static friction before the durability test was 1.6.
It was ~1.7.

実施例5 被塗物として5pcc−D材(t=0.5mmの鋼板)
にて加工を行った転写ガイドおよび定着入口ガイドを用
いた。また、実施例3と同様の方法にて電着塗装前の前
処理を行った。
Example 5 5pcc-D material (t=0.5mm steel plate) as the object to be coated
We used a transfer guide and a fixing entrance guide that had been processed by. In addition, pretreatment before electrodeposition coating was performed in the same manner as in Example 3.

アクリル・メラミン系樹脂(商品名;ハニブライトC−
IL、ハニー化成社製) 100重量部に対して平均粒
子径1μmのアルミナ表面に無電解ニッケルめっき0.
1μmを施したちの3重量部と、平均粒子径0.3μm
の銀粉体4重量部及び平均長径2.5μm1平均厚さ0
.1μmのマイカ粉体表面に厚さ0.1μmのニッケル
めっきした金属化マイカ粉体2重量部とを加え、ボール
ミルで30時間分散した後、脱塩水にて15重量%に稀
釈し塗液とした。
Acrylic/melamine resin (product name: Honeybright C-
IL, manufactured by Honey Kasei Co., Ltd.) Electroless nickel plating on the alumina surface with an average particle size of 1 μm per 100 parts by weight.
3 parts by weight of 1 μm grain and 0.3 μm average particle size
4 parts by weight of silver powder and average major diameter 2.5 μm 1 average thickness 0
.. 2 parts by weight of 0.1 μm thick nickel-plated metallized mica powder was added to the surface of 1 μm mica powder, dispersed in a ball mill for 30 hours, and then diluted to 15% by weight with demineralized water to form a coating liquid. .

この塗液を用いて浴温25℃、pH8〜9の条件で、被
塗装物を陽極とし、対極として0.5tステンレス板を
用いて、印加電圧100〜150vの範囲で3分間電着
した。
Using this coating liquid, electrodeposition was carried out for 3 minutes at a bath temperature of 25 DEG C. and a pH of 8 to 9, using the object to be coated as an anode and a 0.5 t stainless steel plate as a counter electrode at an applied voltage of 100 to 150 V.

電着後に水洗し、120℃±1℃のオーブンにて50分
間硬化し完成した。形成された電着塗装被膜の膜厚は1
1−13μmであり、また塗膜中の共析量は24〜28
重量%であった。
After electrodeposition, it was washed with water and cured in an oven at 120°C±1°C for 50 minutes to complete the process. The thickness of the formed electrodeposited film is 1
1-13 μm, and the amount of eutectoid in the coating film is 24-28
% by weight.

このようにして形成された電着塗装被膜を有する転写ガ
イドおよび定着入口ガイドは、体積固有抵抗として、1
07〜10’(Ω・c m )の値を持ち、複写機に組
み込み、低湿(25%RH)時の環境にて、複写を1万
回繰り返してもトナー付着による紙の汚れは発生せず、
また高湿(85%RH)時の環境においても画像抜けな
どの動作不良は発生せず、通紙部材としての良好な性能
が得られた。
The transfer guide and fixing entrance guide having the electrocoated film formed in this way have a volume resistivity of 1
It has a value of 07 to 10' (Ω・cm), and even if it is installed in a copying machine and copied 10,000 times in a low humidity (25% RH) environment, it will not stain the paper due to toner adhesion. ,
Further, even in a high humidity (85% RH) environment, no malfunctions such as image omission occurred, and good performance as a paper passing member was obtained.

この性能は15万枚の普通紙コピーによる耐久試験間に
変化しなかった。
This performance did not change during a durability test with 150,000 plain paper copies.

また、耐摩耗性の変化を表わす物性値である静止摩擦係
数は耐久試験後に1.3〜1.4という良好な結果が得
られた。なお、耐久試験前の静止摩擦係数は1.6〜1
.7であった。
In addition, good results were obtained for the coefficient of static friction, which is a physical property value that indicates changes in wear resistance, of 1.3 to 1.4 after the durability test. The coefficient of static friction before the durability test was 1.6 to 1.
.. It was 7.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、通紙・搬送部材
の母材自体の耐摩耗性に左右されることなく、母材上に
超微粒金属粉体および金属化セラミック粉体と金属化マ
イカ粉体とを複合した電着塗装被膜を形成することによ
り、均一な表面状態をもち、耐摩耗性に優れ、しかも任
意の体積固有抵抗に制御することが容易な通紙・搬送部
材を提供することができる。
As explained above, according to the present invention, ultrafine metal powder and metallized ceramic powder are coated on the base material without being affected by the wear resistance of the base material itself of the paper passing/conveying member. By forming an electrodeposited coating film composited with mica powder, we provide paper passing and conveying members that have a uniform surface condition, excellent wear resistance, and can be easily controlled to any specific volume resistivity. can do.

また、本発明の通紙・搬送部材を製造する工程は著しく
簡略化されており、経済効果に大きく寄与することがで
きる。
Further, the process of manufacturing the paper passing/conveying member of the present invention is significantly simplified, and can greatly contribute to economical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(C)は、各々本発明の通紙・搬送部材
の構成の一例を示す部分断面図、第2図は平板に電着塗
装被膜を施したものおよびプラスチックにアルミフレー
クを充填したものの体積固有抵抗の測定値を示すグラフ
、第3図は通紙・搬送部材の耐摩耗性を計測するために
用いる表面性試験器の模式図および第4図は複写機にお
ける転写ガイドの使用部位を示す模式図である。 1・・・電着塗装被膜 2・・・金属めっき層 3・・・接触処理層 4・・・非金属部材 5・・・酸化被膜層 6.8・・・金属部材 7・・・化成被膜層 9・・・感光体(ドラム) lO・・・トナー 11・・・転写材(コピー用紙) 12・・・定電圧素子(バリスタ) I3・・・転写帯電機 14・・・転写ガイド 15・・・センサー 16・・・ローラ一部材 17・・・記録計 1B・・・コピー用紙固定板 19・・・コピー用紙 東2図
Figures 1 (a) to (C) are partial cross-sectional views showing an example of the structure of the paper passing/conveying member of the present invention, and Figure 2 is a flat plate coated with an electrodeposition coating and a plastic coated with aluminum flakes. Figure 3 is a schematic diagram of a surface property tester used to measure the abrasion resistance of paper passing and conveying members, and Figure 4 is a transfer guide in a copying machine. FIG. 1... Electrodeposition coating film 2... Metal plating layer 3... Contact treatment layer 4... Non-metallic member 5... Oxide coating layer 6.8... Metal member 7... Chemical conversion coating Layer 9... Photoreceptor (drum) lO... Toner 11... Transfer material (copy paper) 12... Constant voltage element (varistor) I3... Transfer charging machine 14... Transfer guide 15. ...Sensor 16...Roller member 17...Recorder 1B...Copy paper fixing plate 19...Copy paper East 2 figure

Claims (3)

【特許請求の範囲】[Claims] (1)基材上に、平均粒子径0.01〜3.0μmの超
微粒金属粉体、平均粒子径0.1〜3.0μmのセラミ
ック粉体表面に金属めっきした粉体および天然マイカ粉
体表面に金属めっきした粉体を含有する電着塗装被膜を
形成してなることを特徴とする通紙および搬送部材。
(1) Ultrafine metal powder with an average particle size of 0.01 to 3.0 μm, ceramic powder with an average particle size of 0.1 to 3.0 μm, metal-plated powder and natural mica powder on the base material A paper passing and conveying member characterized by forming an electrodeposited film containing metal-plated powder on the body surface.
(2)前記基材が金属部材または非金属部材である請求
項1記載の通紙および搬送部材。
(2) The paper passing and conveying member according to claim 1, wherein the base material is a metal member or a non-metal member.
(3)前記電着塗装被膜の膜厚が5μm以上である請求
項1記載の通紙および搬送部材。
(3) The paper passing and conveying member according to claim 1, wherein the electrodeposited coating has a thickness of 5 μm or more.
JP11810590A 1990-05-07 1990-05-07 Paper feed and carrier member Pending JPH0416442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11810590A JPH0416442A (en) 1990-05-07 1990-05-07 Paper feed and carrier member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11810590A JPH0416442A (en) 1990-05-07 1990-05-07 Paper feed and carrier member

Publications (1)

Publication Number Publication Date
JPH0416442A true JPH0416442A (en) 1992-01-21

Family

ID=14728141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11810590A Pending JPH0416442A (en) 1990-05-07 1990-05-07 Paper feed and carrier member

Country Status (1)

Country Link
JP (1) JPH0416442A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179310A (en) * 2000-12-14 2002-06-26 Asahi Kasei Corp Roller for web
US9389551B2 (en) 2010-08-05 2016-07-12 Ricoh Company, Ltd. Fixing unit and image forming apparatus including same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179310A (en) * 2000-12-14 2002-06-26 Asahi Kasei Corp Roller for web
US9389551B2 (en) 2010-08-05 2016-07-12 Ricoh Company, Ltd. Fixing unit and image forming apparatus including same

Similar Documents

Publication Publication Date Title
US5563690A (en) Developing sleeve having an outer ceramic layer developing device for developing electrostatic latent images, and image-forming apparatus
EP0230448B1 (en) Conductive compositions and conductive powders for use therein
US5283116A (en) Sheet feeding member having a film containing inorganic powder
US4490282A (en) Conductive paint composition
JP7297498B2 (en) CONDUCTIVE MEMBER, PROCESS CARTRIDGE, AND IMAGE FORMING APPARATUS
JPH0416442A (en) Paper feed and carrier member
CA2021291C (en) Conductive heating unit
JPH0416441A (en) Paper feed and carrier member
JPH0416440A (en) Paper feed and carrier member
JPH0394078A (en) Production of electrically conductive particles
EP0453090A1 (en) Electro-deposition coated member, process for producing it, and electro-deposition coating composition
JPH04223948A (en) Carrying member and device using it
EP0545707B1 (en) Delivery member, and apparatus employing the same
JP3262466B2 (en) Developing sleeve and developing device
EP1366124B1 (en) Conductive coating composition
JP3236148B2 (en) Electroplated member and method of manufacturing electrodeposited member
US5523833A (en) Delivery member and apparatus making use of the same
JP3262467B2 (en) Developing sleeve and developing device
JPS60136775A (en) Developer carrying body and its manufacture
JP7242395B2 (en) Development member, process cartridge and electrophotographic apparatus
CN104263120A (en) Polytetrafluoroethylene coating and preparation method thereof
JPS5952432A (en) Manufacture of magnetic recording medium
JPH03223372A (en) Electrodeposition-coated member, preparation of the same, and electrodeposition coating material employed therein
JPH11143213A (en) Developing sleeve and developing device
JPH04184346A (en) Organic electrophotographic sensitive body