JPH04163913A - Vertical type heat treat furnace - Google Patents

Vertical type heat treat furnace

Info

Publication number
JPH04163913A
JPH04163913A JP29117990A JP29117990A JPH04163913A JP H04163913 A JPH04163913 A JP H04163913A JP 29117990 A JP29117990 A JP 29117990A JP 29117990 A JP29117990 A JP 29117990A JP H04163913 A JPH04163913 A JP H04163913A
Authority
JP
Japan
Prior art keywords
core tube
furnace core
furnace
heat treatment
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29117990A
Other languages
Japanese (ja)
Inventor
Makoto Morita
信 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29117990A priority Critical patent/JPH04163913A/en
Publication of JPH04163913A publication Critical patent/JPH04163913A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to perform heat treatment under highly clean atmosphere by performing heat treatment for a semiconductor in a furnace core pipe at the inner side of two core pipes having a double construction thereby prohibiting the entrainment of atmospheric air into the furnace core pipe. CONSTITUTION:Nitrogen is supplied from a gas introducing hole 13 to a furnace core pipe 11. The introduced nitrogen moves through the inside of the pipe 11 and is released from an opening 11a at the lower end of the pipe 11. On the other hand, when nitrogen is introduced from a gas introducing hole 14 to a furnace core pipe 12, the nitrogen passes through the space between pipe 11 and pipe 12 and becomes confluent at the opening 11a at the lower end of the pipe 11 and then ejected to the outside of furnace. By this flow, the entrainment of atmospheric air to the inside of the pipe 11 can be prevented. Thus, heat treatment can be performed under highly clean atmosphere, the production process can be cleaned, process can be stabilized and the production cost can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は縦型熱処理炉に関し、特に半導体基板搬入時に
大気の巻き込みがない高清浄縦型熱処理炉に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vertical heat treatment furnace, and more particularly to a highly clean vertical heat treatment furnace that does not involve air when carrying in semiconductor substrates.

〔従来の技術] 従来、この種の縦型熱処理炉は第4図に示すように炉芯
管31が単筒式構造であった。また、32はヒータ、3
3はボート、34は半導体基板、35はガス導入口であ
る。
[Prior Art] Conventionally, in this type of vertical heat treatment furnace, the furnace core tube 31 has a single-tube structure, as shown in FIG. In addition, 32 is a heater, 3
3 is a boat, 34 is a semiconductor substrate, and 35 is a gas inlet.

半導体基板34は、ボート33に設置され、ボート33
と一緒に炉芯管31の内部に搬送される。
The semiconductor substrate 34 is installed on the boat 33 and
It is conveyed to the inside of the furnace core tube 31 together with the furnace core tube 31.

このとき、ガス導入口35から熱処理用気体が導入され
ており、炉芯管31の内部は熱処理用気体で満され、気
体は炉芯管31の下端部より排出される。同時に炉芯管
31はヒータ32により通常800℃から1000℃の
高温状態に維持され、熱処理が行われていた。
At this time, heat treatment gas is introduced from the gas inlet 35, the inside of the furnace core tube 31 is filled with the heat treatment gas, and the gas is discharged from the lower end of the furnace core tube 31. At the same time, the furnace core tube 31 was maintained at a high temperature of usually 800° C. to 1000° C. by a heater 32, and heat treatment was performed.

[発明が解決しようとする課題] 上述した従来の縦型熱処理炉では、炉芯管が単筒式構造
になっているため、炉芯管上部から気体を導入し炉芯管
内部を気体で充満させておいても、オーバーフローした
気体は速やかに拡散し、炉芯管外部での気体濃度は炉芯
管近傍であっても極めて薄い。そのため半導体基板を炉
芯管内部に搬入するとき、大気を巻き込むので、炉芯管
内部まで大気が混入するという問題がある。大気には約
20%酸素が含有され、かつ、炉芯管が高温であるため
、炉芯管内部に大気を巻き込むと、酸素により炉芯管内
部に搬入された半導体基板は速やかに酸化されてしまう
。このことは、酸化雰囲気を嫌うプロセス、例えばイオ
ン注入後の不純物活性化熱処理、シリサイド成膜後熱処
理にとっては、デバイスの信頼性の低下、製品歩留りの
低下を引き起こす。前者の場合には、半導体基板表面に
シリコン酸化膜が形成され、後者の場合には、シリサイ
ド膜が剥がれるという問題がある。
[Problem to be solved by the invention] In the conventional vertical heat treatment furnace described above, the furnace core tube has a monocylindrical structure, so gas is introduced from the upper part of the furnace core tube to fill the inside of the furnace core tube with gas. Even if the overflow gas is allowed to flow, it will quickly diffuse, and the gas concentration outside the furnace core tube will be extremely low even in the vicinity of the furnace core tube. Therefore, when the semiconductor substrate is carried into the furnace core tube, the atmosphere is drawn in, so there is a problem that the atmosphere gets mixed into the furnace core tube. Since the atmosphere contains approximately 20% oxygen and the furnace core tube is at a high temperature, when the atmosphere is drawn into the furnace core tube, the semiconductor substrate carried into the furnace core tube is quickly oxidized by oxygen. Put it away. This causes a decrease in device reliability and a decrease in product yield for processes that do not require an oxidizing atmosphere, such as impurity activation heat treatment after ion implantation or post-silicide film formation heat treatment. In the former case, a silicon oxide film is formed on the surface of the semiconductor substrate, and in the latter case, the silicide film is peeled off.

本発明の目的は、半導体基板搬入時の大気の巻き込みを
防止した縦型熱処理炉を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a vertical heat treatment furnace that prevents atmospheric air from being drawn in when semiconductor substrates are transported.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するため、本発明に係る縦型熱処理炉に
おいては、第1の炉芯管と、第2の炉芯管とを有する縦
型熱処理炉であって、 2つの炉芯管は、第1の炉芯管が内側に、第2の炉芯管
が外側に配置されて内外2重構造に組合されたものであ
り、 第1の炉芯管は、半導体基板の熱処理を行うものである
In order to achieve the above object, the vertical heat treatment furnace according to the present invention is a vertical heat treatment furnace having a first furnace core tube and a second furnace core tube, the two furnace core tubes having: The first furnace core tube is placed on the inside and the second furnace core tube is placed on the outside, resulting in a dual structure of inside and outside. The first furnace core tube is used for heat treatment of semiconductor substrates. be.

また、前記第2の炉芯管は、第1の炉芯管より長く、第
1の炉芯管の端部開口部より管軸方向に突出し、第1の
炉芯管の端部開口部分の周囲を包囲するものであり、 また、前記第2の炉芯管は、第1の炉芯管の端部開口部
側内径を縮径させたものであり、また、前記第1の炉芯
管と第2の炉芯管との間、及び前記第1の炉芯管内に、
不活性流体を流し、第1の炉芯管の端部開口部側にて合
流させて炉外に排出するようにしたものである。
The second furnace core tube is longer than the first furnace core tube, protrudes from the end opening of the first furnace core tube in the tube axis direction, and extends beyond the end opening of the first furnace core tube. The second furnace core tube has a reduced inner diameter on the end opening side of the first furnace core tube, and the first furnace core tube and the second furnace core tube, and within the first furnace core tube,
The inert fluid is made to flow, join together at the end opening side of the first furnace core tube, and be discharged outside the furnace.

[作用] 内外2重管構造をなす2つの炉芯管のそれぞれに不活性
気体を流して炉芯管の下端開口部で合流させ、炉外に排
出することにより、炉芯管内への大気の巻き込みを阻止
する。
[Function] By flowing inert gas into each of the two furnace core tubes that have a double inner and outer tube structure and merging them at the lower end opening of the furnace core tube and discharging them outside the furnace, atmospheric air can be released into the furnace core tube. Prevent entanglement.

〔実施例〕〔Example〕

以下、本発明について図面を参照して説明する。 Hereinafter, the present invention will be explained with reference to the drawings.

(実施例1) 第1図は、本発明の実施例1を示す断面図である。(Example 1) FIG. 1 is a sectional view showing Example 1 of the present invention.

図において、11は第1の炉芯管、12は第2の炉芯管
であり、内外2重に配設されている。また、内側の炉芯
管11は、外側の炉芯管12より短く設定されており、
外側の炉芯管12の下端部が内側の炉芯管11の下端開
口部11aより下方に突出してその周囲を包うように構
成しである。
In the figure, 11 is a first furnace core tube, and 12 is a second furnace core tube, which are arranged in double layers, inside and outside. In addition, the inner furnace core tube 11 is set shorter than the outer furnace core tube 12,
The lower end of the outer furnace core tube 12 projects downward from the lower end opening 11a of the inner furnace core tube 11 and wraps around it.

また、13は第1の気体導入口、14は第2の気体導入
口、15はヒータ、16はボート、17は半導体基板で
ある。本実施例では窒素雰囲気での熱処理について説明
する。第1の気体導入口13から窒素を第1の炉芯管l
l内へ導入する。導入された窒素は第1の炉芯管11の
内部を進み、第1の炉芯管11の下端開口部より放出さ
れる。−方、第2の気体導入口14から第2の炉芯管1
2の中へ窒素を導入すると、窒素は第1の炉芯管11と
第2の炉芯管12との間を通過し、第1の炉芯管11の
下端部に達し、雨戸芯管11.12内の窒素が下端開口
部側で合流し、炉外に排出され、その流れにより、炉芯
管11内への大気の巻き込みが防止される。
Further, 13 is a first gas inlet, 14 is a second gas inlet, 15 is a heater, 16 is a boat, and 17 is a semiconductor substrate. In this example, heat treatment in a nitrogen atmosphere will be described. Inject nitrogen from the first gas inlet 13 to the first furnace core tube l.
Introduce into l. The introduced nitrogen advances inside the first furnace core tube 11 and is released from the lower end opening of the first furnace core tube 11. - side, from the second gas inlet 14 to the second furnace core tube 1
When nitrogen is introduced into the furnace core tube 2, the nitrogen passes between the first furnace core tube 11 and the second furnace core tube 12, reaches the lower end of the first furnace core tube 11, and enters the shutter core tube 11. Nitrogen in the furnace tube 11 joins together at the lower end opening side and is discharged outside the furnace, and this flow prevents atmospheric air from being drawn into the furnace core tube 11.

第2図は、本発明の効果を示した図である。即ち、半導
体基板搬入時における炉芯管下端開口部からの距離とそ
の距離での炉芯管内の酸素濃度の関係を示したものであ
る。点線は従来技術の縦型炉芯管の場合、実線は本発明
の縦型炉芯管の場合である。
FIG. 2 is a diagram showing the effects of the present invention. That is, it shows the relationship between the distance from the lower end opening of the furnace core tube at the time of carrying in the semiconductor substrate and the oxygen concentration within the furnace core tube at that distance. The dotted line is for the vertical furnace tube of the prior art, and the solid line is for the vertical furnace tube of the present invention.

尚、本発明の縦型炉芯管の場合の距離は第1図の炉芯管
11の下端開口部からの距離である。従来技術による縦
型炉芯管の場合、下端開口部での酸素濃度が極めて高く
、かつ、高温度であるために搬入の過程で半導体基板の
表面は酸化される。
In addition, in the case of the vertical furnace core tube of the present invention, the distance is the distance from the lower end opening of the furnace core tube 11 in FIG. In the case of the conventional vertical furnace core tube, the oxygen concentration at the lower end opening is extremely high and the temperature is high, so that the surface of the semiconductor substrate is oxidized during the loading process.

一方、本発明の炉芯管は炉内全域にわたって酸素濃度が
低く、高清浄な熱処理ができる。
On the other hand, the furnace core tube of the present invention has a low oxygen concentration throughout the entire interior of the furnace, allowing highly clean heat treatment.

(実施例2) 第3図は、本発明の実施例2を示す断面図である。(Example 2) FIG. 3 is a sectional view showing a second embodiment of the present invention.

図において、21は第1の炉芯管、22は第2の炉芯管
、23は第1の気体導入口、24は第2の気体導入口、
25はヒータ、26はボート、27は半導体基板である
。本実施例では第2の炉芯管22の下端部の内径を縮径
させている。それ以外の構成は実施例1と同じである。
In the figure, 21 is a first furnace core tube, 22 is a second furnace core tube, 23 is a first gas inlet, 24 is a second gas inlet,
25 is a heater, 26 is a boat, and 27 is a semiconductor substrate. In this embodiment, the inner diameter of the lower end of the second furnace core tube 22 is reduced. The other configurations are the same as in the first embodiment.

本実施例によれば、第2の炉芯管22の下端部、すなわ
ち第1の炉芯管21の下端開口部21a側の内径を縮径
させたので、この部分での内外炉芯管21.22間の隙
間が狭くなり、そのため第2の気体導入口24より導入
する窒素の量を少なくでき、しかも実施例1と同様の効
果を得ることができる。このことは、半導体基板27の
直径が大口径化するのに伴って用いる縦型熱処理炉も大
型化するが、このときに使用する窒素の量を節約できる
ので、製造コストを下げることができるという利点があ
る。
According to this embodiment, since the inner diameter of the lower end portion of the second furnace core tube 22, that is, the lower end opening 21a side of the first furnace core tube 21 is reduced, the inner diameter of the inner and outer furnace core tubes 21 at this portion is reduced. .22 becomes narrower, so the amount of nitrogen introduced from the second gas inlet 24 can be reduced, and the same effect as in the first embodiment can be obtained. This means that as the diameter of the semiconductor substrate 27 increases, the size of the vertical heat treatment furnace used also increases, but the amount of nitrogen used at this time can be saved, so manufacturing costs can be reduced. There are advantages.

[発明の効果] 以上説明したように本発明は縦型熱処理炉として第1の
炉芯管の内側に第2の炉芯管を有し、第1の炉芯管は第
2の炉芯管より長さが長く、第1の炉芯管と第2の炉芯
管との間に不活性ガスを流し、第2の炉芯管の下端部で
合流後、第1の炉芯管より排出する構造とすることによ
り、半導体基板を炉芯管内部に搬入するときに炉芯管内
に巻き込む大気を完全になくすことができる。これによ
って、高清浄雰囲気での熱処理ができ、製造プロセスを
クリーン化し、結果的にプロセスの安定化。
[Effects of the Invention] As explained above, the present invention is a vertical heat treatment furnace having a second furnace core tube inside the first furnace core tube, and the first furnace core tube is connected to the second furnace core tube. The length is longer, and inert gas is passed between the first furnace core tube and the second furnace core tube, and after merging at the lower end of the second furnace core tube, it is discharged from the first furnace core tube. With this structure, it is possible to completely eliminate atmospheric air that is drawn into the furnace core tube when the semiconductor substrate is carried into the furnace core tube. This allows heat treatment to be performed in a highly clean atmosphere, making the manufacturing process cleaner and, as a result, more stable.

製造コストの低下及び半導体装置の信頼性を向上するこ
とができるという効果がある。
This has the effect of reducing manufacturing costs and improving the reliability of semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例1を示す断面図、第2図は、
本発明の縦型熱処理炉と従来技術の熱処理炉において半
導体基板搬入時における炉内酸素濃度を比較した図、第
3図は、本発明の実施例2を示す断面図、第4図は、従
来例の縦型熱処理炉を示す断面図である。 11.21・・・第1の炉芯管 12.22・・・第2の炉芯管 13.23・・・第1の気体導入口 14.24・・・第2の気体導入口 15.25・・・ヒータ    16,26・・・ボー
ト17.27・・・半導体基板
FIG. 1 is a sectional view showing Embodiment 1 of the present invention, and FIG.
A diagram comparing the in-furnace oxygen concentration at the time of loading semiconductor substrates between a vertical heat treatment furnace of the present invention and a conventional heat treatment furnace. FIG. 3 is a cross-sectional view showing Example 2 of the present invention, and FIG. 4 is a conventional heat treatment furnace. FIG. 2 is a cross-sectional view showing an example vertical heat treatment furnace. 11.21...First furnace core tube 12.22...Second furnace core tube 13.23...First gas inlet 14.24...Second gas inlet 15. 25...Heater 16,26...Boat 17.27...Semiconductor substrate

Claims (1)

【特許請求の範囲】 (1)第1の炉芯管と、第2の炉芯管とを有する縦型熱
処理炉であって、 2つの炉芯管は、第1の炉芯管が内側に、第2の炉芯管
が外側に配置されて内外2重構造に組合されたものであ
り、 第1の炉芯管は、半導体基板の熱処理を行うものである
ことを特徴とする縦型熱処理炉。(2)前記第2の炉芯
管は、第1の炉芯管より長く、第1の炉芯管の端部開口
部より管軸方向に突出し、第1の炉芯管の端部開口部分
の周囲を包囲するものであることを特徴とする請求項第
(1)項記載の縦型熱処理炉。 (3)前記第2の炉芯管は、第1の炉芯管の端部開口部
側内径を縮径させたものであることを特徴とする請求項
第(1)項、第(2)項記載の縦型熱処理炉。 (4)前記第1の炉芯管と第2の炉芯管との間、及び前
記第1の炉芯管内に、不活性流体を流し、第1の炉芯管
の端部開口部側にて合流させて炉外に排出するようにし
たものであることを特徴とする請求項第(1)項、第(
2)項、第(3)項記載の縦型熱処理炉。
[Scope of Claims] (1) A vertical heat treatment furnace having a first furnace core tube and a second furnace core tube, wherein the two furnace core tubes have the first furnace core tube on the inside. , a vertical heat treatment method characterized in that a second furnace core tube is placed on the outside and is combined into an inside and outside double structure, and the first furnace core tube is for heat-treating a semiconductor substrate. Furnace. (2) The second furnace core tube is longer than the first furnace core tube, protrudes in the tube axis direction from the end opening of the first furnace core tube, and the second furnace core tube is longer than the first furnace core tube, and extends from the end opening of the first furnace core tube. The vertical heat treatment furnace according to claim 1, wherein the vertical heat treatment furnace surrounds the periphery of the furnace. (3) Claims (1) and (2) characterized in that the second furnace core tube has a reduced inner diameter on the end opening side of the first furnace core tube. Vertical heat treatment furnace as described in section. (4) An inert fluid is caused to flow between the first furnace core tube and the second furnace core tube and within the first furnace core tube, and to the end opening side of the first furnace core tube. Claims (1) and (1) are characterized in that they are combined and discharged outside the furnace.
The vertical heat treatment furnace described in item 2) and item (3).
JP29117990A 1990-10-29 1990-10-29 Vertical type heat treat furnace Pending JPH04163913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29117990A JPH04163913A (en) 1990-10-29 1990-10-29 Vertical type heat treat furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29117990A JPH04163913A (en) 1990-10-29 1990-10-29 Vertical type heat treat furnace

Publications (1)

Publication Number Publication Date
JPH04163913A true JPH04163913A (en) 1992-06-09

Family

ID=17765482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29117990A Pending JPH04163913A (en) 1990-10-29 1990-10-29 Vertical type heat treat furnace

Country Status (1)

Country Link
JP (1) JPH04163913A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641228A (en) * 1987-06-23 1989-01-05 Toshiba Ceramics Co Ltd Jig for heat treating wafer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641228A (en) * 1987-06-23 1989-01-05 Toshiba Ceramics Co Ltd Jig for heat treating wafer

Similar Documents

Publication Publication Date Title
US6297172B1 (en) Method of forming oxide film
JPH04163913A (en) Vertical type heat treat furnace
JPS62245624A (en) Vertical type treating apparatus
JP3628825B2 (en) Manufacturing method of semiconductor device
JP2879047B2 (en) Heat treatment apparatus and heat treatment method
JPH02103934A (en) Vertical heat treatment device
JPS61182218A (en) Treating method and device of wafer
JP3340147B2 (en) Processing equipment
JPH0250619B2 (en)
JPH08130190A (en) Wafer vertically mounted type vertical oven
JP2002093730A (en) Semiconductor wafer diffusion device and method of manufacturing semiconductor device
JPS61198717A (en) Chemical vapor phase growth device
JPH01198034A (en) Manufacture of semiconductor device
JPS60211913A (en) Processing device
JP3844999B2 (en) Substrate processing method
JP2004022673A (en) Oxidation treatment equipment and method of oxidation treatment
JPS60233828A (en) Treatment device
JPS6367729A (en) Semiconductor heat-treating apparatus
JPH11145070A (en) Horizontal diffusion furnace
KR200185285Y1 (en) Diffusion system use in manufacturing process semiconductor
JPH01175728A (en) Processing equipment for semiconductor device
JPH06224205A (en) Heat treatment method and its device
JPH05121393A (en) Spin etcher
JPS6378518A (en) Manufasture of semiconductor device
JPS6235518A (en) Outside air mixture preventing method and device of vertical semiconductor heat treating apparatus