JPH04162504A - Superconducting magnet - Google Patents

Superconducting magnet

Info

Publication number
JPH04162504A
JPH04162504A JP28823890A JP28823890A JPH04162504A JP H04162504 A JPH04162504 A JP H04162504A JP 28823890 A JP28823890 A JP 28823890A JP 28823890 A JP28823890 A JP 28823890A JP H04162504 A JPH04162504 A JP H04162504A
Authority
JP
Japan
Prior art keywords
superconducting
wire
bobbin
linear expansion
winding frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28823890A
Other languages
Japanese (ja)
Inventor
Yoshio Kubo
久保 芳生
Fumio Fujiwara
藤原 二三夫
Takayuki Nagai
貴之 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP28823890A priority Critical patent/JPH04162504A/en
Publication of JPH04162504A publication Critical patent/JPH04162504A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconducting magnet whose superconducting characteristic is not deteriorated by a heating operation or a cooling operation by a method wherein a material whose coefficient of linear expansion within a temperature range of 4.2 to 1273 K is within a specific range is used for a bobbin on which a superconducting wire composed of a Chevrel-phase compound is wound. CONSTITUTION:At a superconducting magnet formed by winding a superconducting wire 2 composed of a Chevreal-phase compound on a bobbin 5, a material whose coefficient of linear expansion is at 10X10<-6> or higher and 14X10<-6> or within a temperature range of 4.2 to 1273 K is used for the bobbin 5. For example, a wire material by a composite body, for PbMo6S8-based compound superconducting wire use, which has been stretched up to a diameter of 1.00mm is knitted to form a bag by using a quartz fiber and is insulation-treated. Then, a bobbin 5 by a mica-based machinable ceramic whose coefficient of linear expansion is at about 12.3X10<-6> is manufactured; the wire material 2 which has been insulation-treated is wound on the bobbin 5 in a solenoid shape. Then, the wire material 2 which has not yet been heat-treated of a solenoid coil is heat-treated at 1000 deg.C for two hours in an argon atmosphere; a PbMo6S8-based compound is produced; after that, the coil is vacuum-impregnated with an epoxy material; the wire material is fixed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はシェブレル相化合物からなる超電導線を使用
した超電導マグネットに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a superconducting magnet using a superconducting wire made of a Chevrel phase compound.

〔従来の技術〕[Conventional technology]

第3図は例えば特開昭61−20304号公報に開示さ
れたこの種従来のPbhlQaSs系化合物超電導マグ
ネットの概略m造を示す断面図である。ここで、PbM
o6Ss系化合物は、一般にMXMO6X8で表わされ
るシェブレル化合物の中の代表的なもので、高い臨界温
度と転移温度とをもつ超電導材料である。
FIG. 3 is a sectional view schematically showing the construction of a conventional PbhlQaSs compound superconducting magnet of this kind disclosed in, for example, Japanese Patent Application Laid-Open No. 61-20304. Here, PbM
The o6Ss-based compound is a typical Chevrel compound generally represented by MXMO6X8, and is a superconducting material with a high critical temperature and high transition temperature.

図において、(1)はマグネットを構成する巻枠で、例
えば5US304等の非磁性のステンレス材からなる。
In the figure, (1) is a winding frame constituting the magnet, which is made of a non-magnetic stainless steel material such as 5US304.

(aはこの巻枠(1)に巻回されたPbMo1Ss系化
合物が′らなる超電導線、(3)は超電導線(2)の端
部で、電流リードとの接続部分である。(A)はマグネ
ットを固定するための治具である。
(a is a superconducting wire made of a PbMo1Ss compound wound around this winding frame (1), and (3) is the end of the superconducting wire (2), which is the connection part to the current lead. (A) is a jig for fixing the magnet.

上記のマグネットは、−旦約1000℃に加熱されて所
定の生成熱処理が施された後、冷却され極低温下での超
電導運転に供せられる。
The above-mentioned magnet is first heated to about 1000° C. and subjected to a predetermined formation heat treatment, and then cooled and subjected to superconducting operation at an extremely low temperature.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の超電導マグネットは以上のように構成されている
ので、その主要構成部材相互間の線膨張係数の差から、
加熱および冷却の温度条件で超電導特性が劣化するとい
う問題点があった。
Conventional superconducting magnets are constructed as described above, and due to the difference in linear expansion coefficient between their main components,
There was a problem in that the superconducting properties deteriorated under heating and cooling temperature conditions.

即ち、ステンレス材からなる巻枠(1)の線膨張係数は
約18×10−’と、PbMO6S++系化合物からな
る超電導線(2)のm膨張係数的lO〜+4XlO−’
に比較してがなり大きいため、超電導線[有]を巻枠(
1)に巻回した後加熱する同化合物の生成熱処理におい
て、超電導線(2)が巻枠(11に引張られて歪が発生
し超電導特性が劣化する。
That is, the linear expansion coefficient of the winding frame (1) made of stainless steel material is about 18×10-', and the m-expansion coefficient of the superconducting wire (2) made of PbMO6S++-based compound is 1O~+4XlO-'.
Since the current is larger than that of the superconducting wire, the winding frame (
In the heat treatment for forming the same compound in which the superconducting wire (2) is heated after being wound around the wire (1), the superconducting wire (2) is pulled by the winding frame (11), causing strain and deteriorating the superconducting properties.

また、その後の冷却過程では巻枠(1)の方が大きく縮
むため、液体ヘリウム温度において超電導線(至)と巻
枠(1)との間に隙間が生じて超電導線(23の固定が
不安定となりマグネットがクエンチを起し易くなる。
In addition, in the subsequent cooling process, the winding frame (1) shrinks more than the winding frame (1), so a gap is created between the superconducting wire (to) and the winding frame (1) at the liquid helium temperature, making it impossible to fix the superconducting wire (23). It becomes stable and the magnet is more likely to quench.

逆に、線11i5に係数が超電導線(21のそれより小
さいアルミナ(線膨張係数的7×10−’)を巻枠11
)として使用した例があるが、この場合には冷却過程に
おいて、巻枠(1)よりも超電導線図の方が大きく縮む
ため、超電導線(2)は巻枠(1)から引張りの歪を受
けて超電導特性が劣化することになる。
Conversely, a superconducting wire having a coefficient smaller than that of 21 (7 x 10-' in terms of linear expansion coefficient) is attached to the wire 11i5 on the winding frame 11.
), but in this case, during the cooling process, the superconducting wire diagram shrinks more than the winding frame (1), so the superconducting wire (2) receives the tensile strain from the winding frame (1). As a result, the superconducting properties deteriorate.

この発明は以上のような問題点を解消するためになされ
たもので、加熱または冷却に基づく超電導特性の劣化が
ない超電導マグネットを得ることを目的とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to obtain a superconducting magnet whose superconducting properties do not deteriorate due to heating or cooling.

〔課題を解決するための手段および作用〕この発明に係
る超電導マグネットは、その巻枠に、温度範囲4.2〜
1273Kにおける線膨張係数が10×10−6以上1
4XlO−6以下である材料を使用したものである。
[Means and effects for solving the problem] The superconducting magnet according to the present invention has a winding frame having a temperature range of 4.2 to 4.2.
Linear expansion coefficient at 1273K is 10 x 10-6 or more1
It uses a material with a molecular weight of 4XlO-6 or less.

この場合、超電導マグネットの製造段階における生成熱
処理の温度を上限としその使用段階における液体ヘリウ
ム温度を下限とする広い温度範囲において超電導線と巻
枠とのil膨張係数が近似しており、その線膨張係数の
差により温度昇降時に発生する歪が小さくなる。
In this case, the il expansion coefficients of the superconducting wire and the winding frame are similar over a wide temperature range with the upper limit being the temperature of the formation heat treatment in the superconducting magnet manufacturing stage and the lower limit being the liquid helium temperature in the use stage, and the linear expansion The difference in coefficients reduces the distortion that occurs when the temperature rises and falls.

また、具体的に巻枠をマイカ系マシナブルセラミックス
で構成すれば、その線膨張係数は約12.3×10−’
であり、超電導線の線膨張係数との差が小さく、従って
上記歪も小さくなる。
Furthermore, if the winding frame is specifically constructed of mica-based machinable ceramics, its linear expansion coefficient will be approximately 12.3 x 10-'
, the difference from the linear expansion coefficient of the superconducting wire is small, and therefore the above-mentioned strain is also small.

また、巻枠をマグネシアで構成すればその線膨張係数は
約13.8X10−’であり、同様に超電導線の線膨張
係数との差が小さくなる。
Further, if the winding frame is made of magnesia, its linear expansion coefficient is approximately 13.8×10-', and the difference from the linear expansion coefficient of the superconducting wire is similarly small.

〔実 施 例〕〔Example〕

以下、この発明の実施例をその製造方法を含めて説明す
る。
Examples of the present invention will be described below, including its manufacturing method.

実施例l PbMo63s系化合物の構成成分として、 Mo、P
b、MO2S!粉末(粒度はそれぞれ3μ層、44μ謄
以下、2μm、純度はいずれも99.9%)をPb:M
o:Mo25s=1.2:0.8:2.6のモル比でで
きるだけ均一に混合し、プレスにより成形して混合材と
した。この混合材を障壁材であるNb管、安定化材であ
るCu管、およびシース材であるCu−30%Ni管と
複合して冷間引抜き加工により断面縮小加工し、直径1
.00mw+まで伸線して長さ約1001のPbMOa
Sm系化合物超電導線用複合体を得た。この線材にクォ
ーツファイバーで袋編みして絶縁処理を施しな、   
      ・・次に、巻枠外径がS’Omm、高さが
50mmの材質でマイカ系マシナブルセラミックス(例
えば商品名:マコール)の巻枠を製作し、この巻枠に絶
縁処理を施した線材をソレノイド状に8層合計332タ
ーン巻回した。第1図はその構造を示す断面図で5図に
おいて、UはPbMo1Ss系化合物超電導線(熱処理
前)、((5)はマイカ系マシナブルセラミックスの巻
枠である。ここで、マイカ系マシナブルセラミックスの
線膨張係数は約12.3Xlo−’である。
Example 1 As constituent components of PbMo63s-based compound, Mo, P
b.MO2S! Pb:M
The mixture was mixed as uniformly as possible at a molar ratio of o:Mo25s=1.2:0.8:2.6, and then molded using a press to obtain a mixed material. This mixed material was combined with a Nb pipe as a barrier material, a Cu pipe as a stabilizing material, and a Cu-30%Ni pipe as a sheath material, and the cross section was reduced by cold drawing to a diameter of 1.
.. PbMOa with a length of about 1001 after being drawn to 00mw+
A composite for a Sm-based compound superconducting wire was obtained. This wire is insulated by bag-knitting it with quartz fiber.
...Next, a winding frame made of mica-based machinable ceramics (for example, product name: MAKOL) with an outer diameter of S'Omm and a height of 50 mm is made, and a wire material that has been insulated is attached to this winding frame. It was wound in 8 layers in a solenoid shape for a total of 332 turns. Figure 1 is a cross-sectional view showing its structure, and in Figure 5, U is a PbMo1Ss compound superconducting wire (before heat treatment), ((5) is a winding frame of mica-based machinable ceramics. The coefficient of linear expansion of ceramics is about 12.3Xlo-'.

このようにして成型したソレノイドコイルの未熱処理線
材を温度1000℃で2時間アルゴン雰囲気中で熱処理
を行い、PbMo6S、系化合物を生成した。
The unheated wire of the solenoid coil thus molded was heat treated in an argon atmosphere at a temperature of 1000° C. for 2 hours to produce PbMo6S and other compounds.

このようにして製作したソレノイドコイルについて、線
材の両端を電流リードにハンダ付けし、必要な電圧タッ
プを取り出したあとで、エポキシ材により真空含浸を行
い線材を固定し、液体ヘリウム中で外部磁界15Tのも
とて臨界を流の測定を行った。
For the solenoid coil manufactured in this way, after soldering both ends of the wire to the current leads and taking out the necessary voltage taps, the wire was vacuum impregnated with epoxy material to fix the wire, and an external magnetic field of 15 T was applied in liquid helium. The critical flow was measured under this condition.

その結果、臨界電流は57.8A・と−1この線材を約
10cmに切って短尺評価した時の最高値の93%の特
性が得られた。これに対し、従来ステンレス族の巻枠で
同様の実験を行った時の臨界電流は30Aで、この線材
の短尺評価での最高値の48%の特性しか得られなかっ
た。従って、この実施例1では従来の場合に比較して約
2倍の特性向上が得られたことになる。
As a result, the critical current was 57.8 A·1, which was 93% of the highest value when this wire was cut into approximately 10 cm lengths and evaluated in short lengths. On the other hand, when a similar experiment was conducted using a conventional stainless steel winding frame, the critical current was 30 A, and the characteristics were only 48% of the highest value in the short length evaluation of this wire. Therefore, in Example 1, the characteristics were improved by about twice as much as compared to the conventional case.

なお、このときのPbMo6S、系化合物ソレノイドコ
イルによる発生磁界を検出するため、コイルの中心部分
にホール素子をセットして磁界の測定を行ったところ、
0.387の磁界の発生が認められた0本実験ではバイ
アス磁界を発生するマグネ・ントの有効径の大きさの制
限から、シェブレル相化合物超電導マグネットの大きさ
は上記のサイズか限界であったが、この大きさについて
は制限を受けるものではなく、バイアスマグネットとし
て内径カ月20m程度の16Tマグネツトの使用を仮定
すれば、シェブレル相化合物超電導マグネットで3T程
度の磁界の発生が可能であり、全体で19Tの超電導マ
グネットとなり、従来のNb、Snマグネットでは発生
することができなかった高磁界の発生も可能となる。
In order to detect the magnetic field generated by the PbMo6S-based compound solenoid coil at this time, a Hall element was set in the center of the coil and the magnetic field was measured.
In this experiment, in which the generation of a magnetic field of 0.387 was observed, the size of the Chevrel phase compound superconducting magnet was within the above size or limit due to the limitation of the effective diameter of the magnet that generates the bias magnetic field. However, there is no restriction on this size, and assuming that a 16T magnet with an inner diameter of about 20 m is used as a bias magnet, it is possible to generate a magnetic field of about 3 T with a Chevrel phase compound superconducting magnet, and the total It becomes a 19T superconducting magnet and can generate a high magnetic field that could not be generated with conventional Nb or Sn magnets.

実施例2 実施例1に述べた製造方法と同様にして、線径1.0■
の線材を得た。この線材にクォーツファイバーで袋編み
して絶縁処理を施した。
Example 2 The wire diameter was 1.0 mm using the same manufacturing method as described in Example 1.
A wire rod was obtained. This wire was insulated by knitting it with quartz fiber.

次に、材質がマグネシアおよびステンレスで構成された
マグネット用の巻枠((5)を製作した。ここで、マグ
ネシアの線膨張係数は約13.8Xlo−’である。第
2図はこの巻枠(5)の断面図であり、図において、(
6)はマグネシア族のチューブ(外径30曽、内径24
am、長さ50mn、)であり、(7)はマグネシア族
のフランジ(直径50m、長さ3■)であり、(へ)は
ステンレス製(5US304 )の補強用の治具であり
、これをステンレス製(SLIS304)のナツト(9
)で締めることでチューブ(6)とフランシロとは一体
に固定される。この巻枠に絶縁処理を施した線材を実施
例1と同様にしてソレノイド状に8III合計332タ
ーン巻回した。このようにして成型したソレノイドコイ
ルの未熟処理線材を温度1000℃で2時間アルゴン雰
囲気中で熱処理を行い、PbMo6S++系化合物を生
成した。
Next, a magnet winding frame (5) made of magnesia and stainless steel was manufactured. Here, the linear expansion coefficient of magnesia is approximately 13.8Xlo-'. Figure 2 shows this winding frame. (5) is a cross-sectional view of (5).
6) is a magnesia group tube (outer diameter 30 mm, inner diameter 24 mm)
am, length 50mm, ), (7) is a magnesia flange (diameter 50m, length 3cm), and (f) is a stainless steel (5US304) reinforcing jig, which is Stainless steel (SLIS304) nuts (9)
), the tube (6) and Francillo are fixed together. This winding frame was insulated and then wound in the same manner as in Example 1 to form a solenoid with 8 turns for a total of 332 turns. The untreated wire of the solenoid coil thus formed was heat-treated in an argon atmosphere at a temperature of 1000° C. for 2 hours to produce a PbMo6S++-based compound.

このようにして製作したソレノイドコイルについて、線
材の両端を電流リードにハンダ付けし、必要な電圧タッ
プを出したあとで、エポキシ材により真空含浸を行い線
材を固定し、液体ヘリウム中で外部磁界15Tのもとて
臨界を流の測定を行った。
For the solenoid coil manufactured in this way, after soldering both ends of the wire to the current leads and providing the necessary voltage taps, the wire was vacuum impregnated with epoxy material to fix the wire, and an external magnetic field of 15 T was applied in liquid helium. The critical flow was measured under this condition.

その結果、臨界電流は58.2Aと、実施例1とほぼ同
じ特性が得られた。この特性は、線材を短尺評価した時
の最高値の94%に相当しており、従来のステンレス製
の巻枠で同様の実験を行った時に比べて、約2倍の特性
向上が認められた。
As a result, the critical current was 58.2 A, and almost the same characteristics as in Example 1 were obtained. This property is equivalent to 94% of the highest value when evaluating a short length of wire, and was approximately twice as improved as when similar experiments were conducted with a conventional stainless steel winding frame. .

なお、上記実施例ではシェブレル相化合物としてPbM
OgSs系化合物の超電導線を使用した場合について説
明したが、このPbMo、S、系化合物にはPb+、J
O6St、s、PbMOaSt、PbMo5−1s6な
どMoやSの値が変化したものも含まれる。更に、M′
として例えば、Ga、 Bi、 Sn、 La、 Ho
、Eu、 Cd、 Lu、 Y、 Nd、 Inなどを
少量添加したPbM’ MogS++化合物もPbMo
gSs系化合物に含まれると考えてよく、上記実施例と
同様、適用することができる。
In addition, in the above example, PbM was used as the Chevrel phase compound.
The case where a superconducting wire made of an OgSs-based compound is used has been explained, but this PbMo, S, and Pb+, J
It also includes those in which the values of Mo and S have changed, such as O6St, s, PbMOaSt, and PbMo5-1s6. Furthermore, M′
For example, Ga, Bi, Sn, La, Ho
, Eu, Cd, Lu, Y, Nd, In, etc. PbM' MogS++ compounds are also PbMo
It may be considered to be included in gSs-based compounds, and can be applied in the same manner as in the above embodiment.

また、巻枠に適用すべき他の材料として例えばジルコニ
ア(線膨張係数は約10.0×10−’ )がある。
Another material to be used for the winding frame is, for example, zirconia (having a coefficient of linear expansion of approximately 10.0×10 -' ).

更に、超電導線を構成する障壁材およびシース材として
、NbおよびCu−30%Ni以外に例えばTaおよび
5OS304、あるいはMoおよび5OS304などを
組合せるようにしても、上記実施例の材料と線膨張係数
が大きく異ならない限り本発明が同様に適用でき同等の
効果を奏する。
Furthermore, even if a combination of Ta and 5OS304, or Mo and 5OS304, etc. other than Nb and Cu-30%Ni is used as the barrier material and sheath material constituting the superconducting wire, the linear expansion coefficient of the material of the above example may be As long as they do not differ greatly, the present invention can be applied in the same way and the same effects will be achieved.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように、その巻枠に所定の線膨
張係数を有する材料を使用するようにしたので、シェブ
レル相化合物からなる超電導線と巻枠との線膨張係数が
互いに近似した値となり、加熱冷却時に超電導線が受け
る歪が大幅に低減して劣化のない良好な超電導特性が得
られる。
As explained above, in this invention, a material having a predetermined linear expansion coefficient is used for the winding frame, so that the linear expansion coefficients of the superconducting wire made of a Chevrel phase compound and the winding frame are close to each other. , the strain that the superconducting wire undergoes during heating and cooling is significantly reduced, and good superconducting properties without deterioration can be obtained.

また、巻枠にマイカ系マシナブルセラミックスやマグネ
シアを採用すれば、特性の良好な超電導マグネットを実
現させることができる。
Furthermore, if mica-based machinable ceramics or magnesia is used for the winding frame, a superconducting magnet with good characteristics can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による超電導マグネットの
構造を示す断面図、第2図は他の実施例による超電導マ
グネットの巻枠の構造を示す断面図、第3図は従来の超
電導マグネットの構造を示す断面図である。 図において、(2)はシェブレル相化合物からなる超電
導線、(51は巻枠である。 なお、各図中同一符号は同一または相当部分を示す。 代理人 弁理士  大 岩 増 雄
FIG. 1 is a sectional view showing the structure of a superconducting magnet according to an embodiment of the present invention, FIG. 2 is a sectional view showing the structure of a winding frame of a superconducting magnet according to another embodiment, and FIG. 3 is a sectional view of a conventional superconducting magnet. FIG. 3 is a cross-sectional view showing the structure. In the figure, (2) is a superconducting wire made of a Chevrel phase compound, (51 is a winding frame. The same reference numerals in each figure indicate the same or corresponding parts. Agent: Masuo Oiwa, patent attorney

Claims (3)

【特許請求の範囲】[Claims] (1)シェブレル相化合物からなる超電導線を巻枠に巻
回してなる超電導マグネットにおいて、上記巻粋に、温
度範囲4.2〜1273Kにおける線膨張係数が10×
10^−^6以上14×10^−^6以下である材料を
使用したことを特徴とする超電導マグネット。
(1) In a superconducting magnet formed by winding a superconducting wire made of a Chevrel phase compound around a winding frame, the above-mentioned winding has a linear expansion coefficient of 10× in a temperature range of 4.2 to 1273K.
A superconducting magnet characterized by using a material having a diameter of 10^-^6 or more and 14x10^-^6 or less.
(2)巻枠はマイカ系マシナブルセラミックスであるこ
とを特徴とする請求項1記載の超電導マグネット。
(2) The superconducting magnet according to claim 1, wherein the winding frame is made of mica-based machinable ceramics.
(3)巻枠はマグネシアであることを特徴とする請求項
1記載の超電導マグネット。
(3) The superconducting magnet according to claim 1, wherein the winding frame is made of magnesia.
JP28823890A 1990-10-24 1990-10-24 Superconducting magnet Pending JPH04162504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28823890A JPH04162504A (en) 1990-10-24 1990-10-24 Superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28823890A JPH04162504A (en) 1990-10-24 1990-10-24 Superconducting magnet

Publications (1)

Publication Number Publication Date
JPH04162504A true JPH04162504A (en) 1992-06-08

Family

ID=17727625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28823890A Pending JPH04162504A (en) 1990-10-24 1990-10-24 Superconducting magnet

Country Status (1)

Country Link
JP (1) JPH04162504A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115504509A (en) * 2022-09-22 2022-12-23 西北有色金属研究院 Preparation method of PMS-based superconducting block

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115504509A (en) * 2022-09-22 2022-12-23 西北有色金属研究院 Preparation method of PMS-based superconducting block
CN115504509B (en) * 2022-09-22 2023-05-23 西北有色金属研究院 Preparation method of PMS-based superconducting block

Similar Documents

Publication Publication Date Title
EP1903620B1 (en) Nb3Sn superconducting wire and precursor therefor
JPH0268820A (en) Electric conductor in the form of wire or cable
US5047741A (en) Epoxy-impregnated superconductive tape coils
US6849137B2 (en) Nb3Sn-system superconductive wire
JPH04162504A (en) Superconducting magnet
Enokizono et al. Magnetic properties of 6.5 percent silicon-iron ribbon formed by a melt spinning technique
JPS6137764B2 (en)
WO2020090259A1 (en) Superconducting wire, superconducting coil using same, and mri
Naitoh et al. Application of nanocrystalline soft magnetic Fe–M–B (M= Zr, Nb) alloys to choke coils
JPH11214214A (en) Hybrid superconducting magnet
JP3240323B2 (en) Manufacturing method of superconducting magnet serving both as reinforcing material and stabilizing material
CA2030559C (en) Method of treating oxide superconductive wires and products using the same
JP3754599B2 (en) Nb &lt;3&gt; Sn superconducting wire and superconducting magnet using the same
JPH01100901A (en) Superconducting ceramic electromagnet and preparation thereof
JP2677001B2 (en) Siebrel phase compound superconductor
JP3675605B2 (en) Manufacturing method of oxide superconducting coil and winding frame for manufacturing oxide superconducting coil.
JPS63126205A (en) Compound superconducting magnet
JPH04188707A (en) Superconducting coil
JP2003045247A (en) Superconductive cable
JP4038570B2 (en) Method for transformation heat treatment of Nb3Al superconducting wire having stable superconducting properties
JPH03108704A (en) Manufacture of oxide superconducting coil
JPH05135636A (en) Manufacture of compound superconductive wire
JPH0359911A (en) Aluminium stabilization superconductive wire rod
JPS6313286B2 (en)
JPH02106004A (en) Superconducting magnet