JPH04162443A - Electrostatic chuck device - Google Patents

Electrostatic chuck device

Info

Publication number
JPH04162443A
JPH04162443A JP2286835A JP28683590A JPH04162443A JP H04162443 A JPH04162443 A JP H04162443A JP 2286835 A JP2286835 A JP 2286835A JP 28683590 A JP28683590 A JP 28683590A JP H04162443 A JPH04162443 A JP H04162443A
Authority
JP
Japan
Prior art keywords
voltage
power supply
constant current
current power
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2286835A
Other languages
Japanese (ja)
Inventor
Kenji Yanagihara
健児 柳原
Masayuki Numata
沼田 公志
Shinichi Kawamura
真一 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP2286835A priority Critical patent/JPH04162443A/en
Publication of JPH04162443A publication Critical patent/JPH04162443A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detach an article to be treated in a short time, and to decide the propriety of the detachment easily by providing an electrostatic attracting plate, a constant current power supply applying DC voltage at potential reverse to fixed potential to an electrode after application for a fixed time by a constant voltage power supply and a voltage detecting means detecting the voltage of the constant current power supply. CONSTITUTION:The annular electrodes 3 and 4 of an electrostatic attracting plate 1 can be connected to negative potential and positive potential in the constant current power supply 17 of DC voltage through a changeover switch 6 respectively. When the changeover switch 6 is changed over from the constant voltage power supply 5 side to the constant current power supply 17 side, DC voltage at reverse potential is applied to the electrodes 3 and 4. 18 represents the constant current power supply 17-that is, a voltmeter measuring voltage between the annular electrodes 3 and 4 of the electrostatic attracting plate 1. A computer 20 for control controls an ion etching device and an electrostatic chuck device.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、静電チャック装置、特にIC,LSIなどの
半導体素子の製造工程などにおいて使用され、被処理物
を吸着保持するのに好適な静電チャック装置に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention is an electrostatic chuck device, which is used particularly in the manufacturing process of semiconductor devices such as ICs and LSIs, and is suitable for holding objects to be processed by suction. The present invention relates to an electrostatic chuck device.

[従来の技術l 半導体分野においては素子の高性能化が年々進んでおり
、特に、高集積化、高速化の進展はすさまじいものがあ
る。そして、高集積素子の回路パターン幅は0.5μm
に近付く反面、チップ面積は逆に大きくなりつつある。
[Prior Art 1] In the semiconductor field, the performance of elements has been improving year by year, and in particular, there has been tremendous progress in higher integration and higher speed. The circuit pattern width of highly integrated devices is 0.5 μm.
However, on the other hand, the chip area is becoming larger.

また、高集積素子を低コストで製造すべ(、ウェーハ面
積も大きくなり、集積度が4 Mbitから16Mbi
tと高くなるにつれてウェーハも6インチサイズから8
インチサイズへの移行が進行しつつある。このようなチ
ップ面積の拡大、ウェーハ面積の拡大、および回路パタ
ーンの微細化は、ウェーハ表面のゴミを究極まで少な(
することを製造装置に要求している。
In addition, it will be possible to manufacture highly integrated devices at low cost (the wafer area will also increase, and the degree of integration will increase from 4 Mbit to 16 Mbit).
As the height increases, the wafer size also increases from 6 inches to 8 inches.
The shift to inch sizes is progressing. These expansions in chip area, wafer area, and miniaturization of circuit patterns have all led to the ultimate reduction of dust on the wafer surface (
manufacturing equipment is required to do so.

上述の要求に応える装置の1つとして、ウェーハの表面
に非接触状態でウェーハを吸着保持することができる静
電チャック装置が知られている。
As one of the devices that meet the above-mentioned requirements, an electrostatic chuck device is known that can attract and hold a wafer on the surface of the wafer in a non-contact state.

このものは誘電体中に電極を単数あるいは複数個配設し
、単数の場合は該電極と装置のアースとの間、複数の場
合は、該電極間に例えば100OV以上の高電圧を印加
し、電荷を局在化させることにより、被吸着体であるウ
ェーハとの間の静電的引力でウェーハを吸着固定するよ
うにしたものである(例えば、特公昭57−44747
号参照)。
In this case, a single or plural electrodes are arranged in a dielectric material, and a high voltage of, for example, 100 OV or more is applied between the electrode and the ground of the device in the case of a single electrode, or between the electrodes in the case of a plurality of electrodes. By localizing the electric charge, the wafer is attracted and fixed by electrostatic attraction between the wafer and the wafer (for example, Japanese Patent Publication No. 57-44747).
(see issue).

[発明が解決しようとする課題] しかしながら、かかる従来の静電チャック装置にあって
は、被処理物の処理終了後、電圧の印加を停止しても、
被処理物および静電チャック装置の誘電体の帯電や分極
が短時間では消滅せず、吸着力が残留することから、被
処理物を静電チャック装置から離脱させるのに長時間を
要するという問題があった。特に、表面に酸化膜などの
絶縁膜が付けられたウェーハにおいては、この問題が顕
著である。このため、例えばドライエツチング装置にお
いては、生産性の低下が余儀なくされている。
[Problems to be Solved by the Invention] However, in such a conventional electrostatic chuck device, even if the application of voltage is stopped after processing of the object to be processed,
The problem is that it takes a long time to remove the workpiece from the electrostatic chuck device because the charge and polarization of the workpiece and the dielectric of the electrostatic chuck device do not disappear in a short time and the adsorption force remains. was there. This problem is particularly noticeable in wafers having an insulating film such as an oxide film on the surface. For this reason, for example, in dry etching equipment, productivity is inevitably reduced.

そこで、被処理物の帯電を速やかに放散させるために、
静電チャック装置への電圧の印加停止後、静電チャック
装置の電極へ、吸着時とは逆の電位を印加する方法(特
開昭60−115226号公報参照)も試みられたが、
この方法では放電の速さは得られるものの逆電位により
逆の極性に電荷が蓄積され、再び吸着状態となることか
ら、ウェーハ離脱のタイミングをとるのが難しく、十分
な効果を挙げるには至っていない。
Therefore, in order to quickly dissipate the electrical charge on the object to be treated,
A method of applying a potential opposite to that during adsorption to the electrodes of the electrostatic chuck device after stopping the application of voltage to the electrostatic chuck device (see Japanese Patent Application Laid-Open No. 115226/1983) has been attempted, but
Although this method can achieve a high discharge speed, the reverse potential causes charges to accumulate in the opposite polarity, resulting in the adsorption state again, making it difficult to time the wafer release, and it has not yet achieved sufficient effectiveness. .

けだし、吸着力がウェーハの離脱が可能な所定値よりも
小さくなるまでの時間は、ウェーハの種類による物性の
相違や、吸着面の粗さ等の影響を受けるため、単に逆電
位印加からの経過時間でもって判断するのが困難だから
である。
The time it takes for the adsorption force to become smaller than the predetermined value that allows the wafer to detach is affected by differences in physical properties depending on the type of wafer, the roughness of the adsorption surface, etc. This is because it is difficult to judge based on time.

本発明の目的は、かかる従来の問題を解消し、被処理物
の離脱を短時間内で可能としその離脱可否の判断を容易
に行うことのできる静電チャック装置を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electrostatic chuck device that solves these conventional problems, allows a workpiece to be removed within a short period of time, and makes it easy to determine whether or not the workpiece can be removed.

[課題を解決するための手段] 上記目的を達成するために、本発明は電極と、該電極を
覆う誘電体層とを具えた静電吸着板と、前記電極に所定
電位の直流電圧を所定時間印加する定電圧電源と、該定
電圧電源による所定時間印加後、前記電極に前記所定電
位と逆電位の直流電圧を印加する定電流電源と、該定電
流電源の電圧を検知する電圧検知手段とを有することを
特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides an electrostatic adsorption plate including an electrode and a dielectric layer covering the electrode, and a method of applying a DC voltage of a predetermined potential to the electrode. a constant voltage power supply that applies a voltage for a predetermined time; a constant current power supply that applies a DC voltage having a potential opposite to the predetermined potential to the electrode after the constant voltage power supply applies the voltage for a predetermined time; and a voltage detection means that detects the voltage of the constant current power supply. It is characterized by having the following.

[作 用] 本発明によれば、静電チャック装置の電極に定電圧電源
より所定電位の直流電圧が印加されることにより静電吸
着力が発生し、被処理物が吸着される。
[Function] According to the present invention, by applying a DC voltage of a predetermined potential to the electrodes of the electrostatic chuck device from a constant voltage power source, electrostatic adsorption force is generated and the object to be processed is adsorbed.

そして、例えば真空処理装置における被処理物に対する
所定の処理が終了すると、電極に対し上述の所定電位と
逆電位の直流電圧が定電流電源より印加される。すると
、被処理物および静電チャック装置の誘電体の帯電や分
極が消滅され、吸着力が低下していく。一方、電極間に
おける電圧は残留電荷に比例するので、定電流電源を用
いると、電圧は時間の1次関数で減少していくことにな
る。
For example, when a predetermined process on a workpiece in a vacuum processing apparatus is completed, a DC voltage having a potential opposite to the above-described predetermined potential is applied to the electrode from a constant current power source. Then, the charge and polarization of the workpiece and the dielectric of the electrostatic chuck device disappear, and the attraction force decreases. On the other hand, since the voltage between the electrodes is proportional to the residual charge, if a constant current power source is used, the voltage will decrease as a linear function of time.

従って、この減少していく電圧を検知することにより、
吸着力の低下を容易に知ることができ、その最小範囲内
において被処理物に損傷を与えることなくして静電チャ
ック装置からの脱離が可能となる。
Therefore, by detecting this decreasing voltage,
The decrease in the attraction force can be easily detected, and within the minimum range, the workpiece can be detached from the electrostatic chuck device without damaging the workpiece.

[実施例] 以下に図面を参照して本発明の詳細な説明する。[Example] The present invention will be described in detail below with reference to the drawings.

第1図は、本発明にかかる静電チャック装置を反応性イ
オンエツチング装置に適用したときの基本的構成を示す
断面図である。
FIG. 1 is a sectional view showing the basic structure of an electrostatic chuck device according to the present invention applied to a reactive ion etching device.

第1図において、1は静電吸着板を示し、2はアルミナ
などのセラミックスからなる誘電体層であり、内部に環
状の電極3および4が同心に設けられている。電極3は
直流電源である高圧定電圧電源5の正電位と、電極4は
その負電位とにそれぞれ切換スイッチ6を介して接続さ
れ、直流電圧が印加され得るようになっている。
In FIG. 1, reference numeral 1 indicates an electrostatic adsorption plate, and reference numeral 2 indicates a dielectric layer made of ceramic such as alumina, in which annular electrodes 3 and 4 are provided concentrically. The electrode 3 is connected to the positive potential of a high voltage constant voltage power source 5, which is a DC power source, and the electrode 4 is connected to its negative potential via a changeover switch 6, so that a DC voltage can be applied.

誘電体層2の表面には不図示の適当な面積の誘電体表面
を残して凹部として複数の同心円状の冷媒ガス導入溝が
形成されており、合溝は半径方向の直線状溝によって連
通されている。
A plurality of concentric refrigerant gas introduction grooves are formed as recesses on the surface of the dielectric layer 2, leaving an appropriate area of the dielectric surface (not shown), and the connecting grooves are communicated by linear grooves in the radial direction. ing.

8は陰極ブロックを示し、陰極ブロック8の上面には静
電吸着板1が配設されている。静電吸着板1には、被エ
ツチング材であるウェーハ9を着脱するためのウェーハ
昇降装置10のウェーハ受はアーム11が出入りする開
口部12が設けである。
Reference numeral 8 indicates a cathode block, and an electrostatic adsorption plate 1 is disposed on the upper surface of the cathode block 8. The electrostatic chuck plate 1 is provided with an opening 12 through which an arm 11 of a wafer lifter 10 for loading and unloading a wafer 9, which is a material to be etched, is inserted.

陰極ブロック8は冷媒入口から、冷媒、例えば水、ブラ
イン、フッ素系冷媒(3M社製のフロリナートなど)な
どを導入し、陰極ブロック8内に設けた冷媒通路に流す
ことによって所定の温度に冷却される。
The cathode block 8 is cooled to a predetermined temperature by introducing a refrigerant such as water, brine, or a fluorinated refrigerant (such as Fluorinert manufactured by 3M) from the refrigerant inlet and flowing it through a refrigerant passage provided in the cathode block 8. Ru.

そして、静電吸着板1には不図示の貫通孔が設けてあり
、この貫通孔は陰極ブロック8に設けられた冷媒ガス通
路に連通しており、ここからヘリウムなどの冷媒ガスが
ウェーハ9裏面に導入される。導入された冷媒ガスは直
線状溝および同心円状の冷媒ガス導入溝によってウェー
ハ9の裏面全体に行き渡り、ウェーハ9の熱を静電吸着
板1の表面へ放散、伝達し、ウェーハ9を冷却する。
The electrostatic adsorption plate 1 is provided with a through hole (not shown), and this through hole communicates with a refrigerant gas passage provided in the cathode block 8, through which refrigerant gas such as helium is supplied to the back surface of the wafer 9. will be introduced in The introduced refrigerant gas spreads over the entire back surface of the wafer 9 through the linear grooves and the concentric refrigerant gas introduction grooves, radiating and transmitting the heat of the wafer 9 to the surface of the electrostatic chuck plate 1, thereby cooling the wafer 9.

さらに、静電吸着板1が配設された陰極ブロック8は、
反応容器13内に配設される。反応容器13は接地電位
にされている。
Furthermore, the cathode block 8 on which the electrostatic adsorption plate 1 is arranged,
It is arranged inside the reaction vessel 13. The reaction vessel 13 is at ground potential.

陰極ブロック8は反応容器13に取付けられたウェーハ
昇降装置10の支持体を兼ねる絶縁体14によって反応
容器13と絶縁されている。反応容器13と陰極ブロッ
ク8との間に高周波電源15によって高周波電力が印加
されることにより、反応容器13内に導入された反応ガ
スのガスプラズマが発生し、このガスプラズマ中の反応
活性種がエツチングに寄与する。
The cathode block 8 is insulated from the reaction container 13 by an insulator 14 which also serves as a support for a wafer lifting device 10 attached to the reaction container 13. By applying high frequency power between the reaction vessel 13 and the cathode block 8 by the high frequency power supply 15, a gas plasma of the reaction gas introduced into the reaction vessel 13 is generated, and reactive species in this gas plasma are Contributes to etching.

本例においては、ターボポンプやメカニカルポンプによ
って反応容器13内を高真空に排気した後、反応ガス入
口16から酸素などの反応ガス、またはこの反応ガスと
共に不活性ガスを、それぞれ流量制御バルブを介して反
応容器13内に導入する。
In this example, after the inside of the reaction vessel 13 is evacuated to a high vacuum using a turbo pump or a mechanical pump, a reaction gas such as oxygen, or an inert gas together with the reaction gas is injected from the reaction gas inlet 16 through a flow rate control valve. and introduced into the reaction vessel 13.

さらに、前述した静電吸着板1の環状電極3および4は
切換スイッチ6を介して直流電圧の定電流電源17にお
ける負電位および正電位とそれぞれ接続可能とされてい
る。
Furthermore, the annular electrodes 3 and 4 of the electrostatic adsorption plate 1 described above can be connected to a negative potential and a positive potential of a constant current power source 17 of DC voltage, respectively, via a changeover switch 6.

換言すると、切換スイッチ6が定電圧電源5側から定電
流電源17側に、切換えられたときには、上述の電極3
および4には逆電位の直流電圧が印加されることになる
In other words, when the changeover switch 6 is switched from the constant voltage power supply 5 side to the constant current power supply 17 side, the above-mentioned electrode 3
and 4 are applied with a DC voltage of opposite potential.

また、18は定電流電源17ひいては静電吸着板1の環
状電極3および4間の電圧を計測する電圧計である。
Further, 18 is a voltmeter that measures the voltage between the constant current power source 17 and the annular electrodes 3 and 4 of the electrostatic adsorption plate 1.

そして、20は制御用コンピュータであり、イオンエツ
チング装置および静電チャック装置の制御を司どる。
A control computer 20 controls the ion etching device and the electrostatic chuck device.

上記構成になる本実施例のイオンエツチング装置を用い
て被処理物としてウェーハ9のイオンエツチング処理を
行う場合につき、その工順の一例を第2図のタイムチャ
ートを用いて以下説明する。
An example of the procedure for performing ion etching on a wafer 9 as an object to be processed using the ion etching apparatus of this embodiment having the above configuration will be described below with reference to the time chart shown in FIG.

まず、ウェーハ昇降装置10が作動しウェーハ受はアー
ム11が上昇する。そして、不図示のウェーハ導入装置
により反応容器13内にウェーハ9を導入し、ウェーハ
受はアームll上に載置する。
First, the wafer lifting device 10 is operated and the arm 11 of the wafer receiver is lifted. Then, the wafer 9 is introduced into the reaction container 13 using a wafer introducing device (not shown), and the wafer holder is placed on the arm ll.

今、このウェーハ昇降装置lOのウェーハ受はアーム1
1への載置完了時点をLOとすると、このt。
Now, the wafer holder of this wafer lifting device IO is arm 1.
If LO is the time point at which the loading is completed on 1, this t.

時点において、定電圧電源5がオンとされ静電吸着板1
の電極3に切換スイッチ6を介して正電位、および電極
4に負電位の直流電圧が印加される。このようにあらか
じめ電圧を印加してお(のは、静電吸着板1に最大の吸
着力が発生するのに多少の時間を要するからである。静
電吸着板1にいくらか吸着力が発生するto時点から所
定時間経過時点で、ウェーハ昇降装置lOを下降させウ
ェーハ9を静電吸着板1に載置させる。
At this point, the constant voltage power supply 5 is turned on and the electrostatic adsorption plate 1
A DC voltage with a positive potential is applied to the electrode 3 via the changeover switch 6, and a DC voltage with a negative potential is applied to the electrode 4. The reason for applying the voltage in advance in this way is that it takes some time for the electrostatic adsorption plate 1 to generate the maximum adsorption force. When a predetermined period of time has elapsed from time to, the wafer lifting device IO is lowered to place the wafer 9 on the electrostatic chuck plate 1.

そして、電極3への正電圧印加時点から所定時間接の5
1時点で反応ガスの導入を行うと共に、陰極ブロック8
に高周波電源15から高周波電力が印加され、ウェーハ
9に対しエツチングが行なわれる。
Then, from the time when a positive voltage is applied to the electrode 3, the contact voltage of 5 is applied for a predetermined time.
At the same time, the reaction gas is introduced at one point in time, and the cathode block 8
High frequency power is applied from the high frequency power source 15 to etching the wafer 9.

ウェーハ9のエツチングの進行状況を検出している不図
示のエツチング終点検出装置の検出に応じて、エツチン
グ完了のt2時点で反応容器13への反応ガスの導入お
よび陰極ブロック8への高周波電力の印加が停止される
と同時に、切換スイッチ6が切換えられ、電極3への正
電圧および電極4への負電圧の印加に換え、定電流電源
17から電極3へ負電圧、電極4への正電圧が印加され
る。
In response to detection by an etching end point detection device (not shown) that detects the progress of etching of the wafer 9, a reaction gas is introduced into the reaction vessel 13 and high frequency power is applied to the cathode block 8 at time t2 when etching is completed. At the same time, the changeover switch 6 is switched, and instead of applying a positive voltage to the electrode 3 and a negative voltage to the electrode 4, the constant current power supply 17 applies a negative voltage to the electrode 3 and a positive voltage to the electrode 4. applied.

しかして、この時点t2から定電流電源17の電圧、ひ
いては電極3および4間の電圧Vが電圧計18によって
監視され、この電圧■が定電圧電源5の出力電圧v0に
対し所定割合となった時点t3に上述の定電流電源17
からの印加が停止される。
Therefore, from this point in time t2, the voltage of the constant current power supply 17, and therefore the voltage V between the electrodes 3 and 4, is monitored by the voltmeter 18, and this voltage becomes a predetermined ratio to the output voltage v0 of the constant voltage power supply 5. At time t3, the above-mentioned constant current power supply 17
The application from is stopped.

ここに電圧Vは前述のvoに対し0.lV。以下である
ことが好ましく、さらに好ましくは0.0IVo以下で
ある。
Here, the voltage V is 0. lV. It is preferably at most 0.0 IVo, more preferably at most 0.0 IVo.

そして、この時点t3において、静電吸着力は所定値以
下に低下しているのでウェーハ受はアーム11の上昇が
可能であり、ウェーハ9を容易に静電吸着板1から脱離
することができる。
At this time point t3, the electrostatic adsorption force has decreased below a predetermined value, so the arm 11 of the wafer holder can be raised, and the wafer 9 can be easily detached from the electrostatic adsorption plate 1. .

ここで、第1図に示した静電チャック装置の等価回路を
第3図に示し、静電吸着板1における画電極3および4
間における電圧■、および電流Iの変化を示した第4図
を用い、静電吸着力Fとの関係を説明する。
Here, an equivalent circuit of the electrostatic chuck device shown in FIG. 1 is shown in FIG.
The relationship with the electrostatic adsorption force F will be explained using FIG. 4, which shows changes in voltage (2) and current I between

前述のように、定電圧電源5により高電圧、例えば10
0OVが電極3および4間に印加されると、その印加直
後のみ大きな電流■が流れ、静電吸着板1に所定極性の
下に電荷Qeが蓄積されていく。
As mentioned above, the constant voltage power supply 5 generates a high voltage, e.g.
When 0OV is applied between the electrodes 3 and 4, a large current ■ flows only immediately after the application, and charges Qe are accumulated on the electrostatic adsorption plate 1 under a predetermined polarity.

今、CeおよびReを静電吸着板1のそれぞれ等価容量
および等価抵抗、Rv&定電圧電源5の内部抵抗、およ
びRiを定電流電源17の内部抵抗とすれば、定電流電
源17の内部抵抗Riは定電圧電源5の内部抵抗Rvが
Rv侶ωであるのに対し、Ricf=Oとなる。
Now, if Ce and Re are the equivalent capacitance and equivalent resistance of the electrostatic chuck plate 1, Rv & the internal resistance of the constant voltage power supply 5, and Ri is the internal resistance of the constant current power supply 17, then the internal resistance Ri of the constant current power supply 17 is While the internal resistance Rv of the constant voltage power supply 5 is Rv<ω, Ricf=O.

従って、前述の如く切換スイッチ6により逆電位の定電
流電源17に切換えられた後は、静電吸着板1の電極3
および4間の電圧■は、主に静電吸着板1内の等価容量
Ceと局在化した残留電荷Qeとで決まり、 Qe=CeV の関係から電圧Vは残留電荷Qeに比例する。
Therefore, after being switched to the constant current power supply 17 of the opposite potential by the changeover switch 6 as described above, the electrode 3 of the electrostatic adsorption plate 1
and 4 is mainly determined by the equivalent capacitance Ce within the electrostatic chuck plate 1 and the localized residual charge Qe, and from the relationship Qe=CeV, the voltage V is proportional to the residual charge Qe.

また、定電流電源17を用いると、残留電荷Qeは Qe=  Qeo−S Idt  =  Qeo−It
(Qeoは、定電流電源に切り替える直前の残留電荷で
ある。) ここで、tは時間のパラメータとなる。
Moreover, when the constant current power supply 17 is used, the residual charge Qe is Qe=Qeo-S Idt=Qeo-It
(Qeo is the residual charge immediately before switching to a constant current power source.) Here, t is a time parameter.

上記両式から電圧Vは時間の一次関数でもって減少する
ことが理解できる。
From both of the above equations, it can be understood that the voltage V decreases as a linear function of time.

従って、前述の如くこの電圧Vの定電圧電源5の出力電
圧■。に対する減少割合を監視することにより、残留電
荷Qeの量を知ることができる。例えば、電圧■が0と
なったときは残留電荷Qeも0となる。
Therefore, as mentioned above, the output voltage of the constant voltage power supply 5 of this voltage V is . By monitoring the rate of decrease with respect to Qe, the amount of residual charge Qe can be determined. For example, when the voltage ■ becomes 0, the residual charge Qe also becomes 0.

そこで、前述のように電圧■がo、 iv、以下になる
ということは、静電吸着力Fは電荷Qeの自乗(Qe”
)に比例することから、電圧V。時に得られる静電吸着
力の1/100以下になることに他ならない。
Therefore, as mentioned above, the fact that the voltage ■ is less than o, iv means that the electrostatic adsorption force F is equal to the square of the charge Qe (Qe''
), the voltage V. This is nothing less than 1/100 of the electrostatic adsorption force that is sometimes obtained.

このような条件の下に、500枚のウェーハにつき、吸
着、脱離実験を4回毎繰返したが、1枚のウェーハにつ
いても誤作動および破損等は生じなかった。
Under these conditions, adsorption and desorption experiments were repeated four times for 500 wafers, but no malfunction or damage occurred for a single wafer.

[発明の効果] 以上説明したように、本発明によれば、短時間で被処理
物を脱離することができ、かつ、時間の1次関数で変化
する電圧でもって脱離可否の判断を行うことができ、そ
の判断が容易となる。これは従来の単に逆電圧を印加す
る方法が電流曲線によって脱離可否の判断をせざるを得
ない難しさに比べ、極めて容易かつ正確である。
[Effects of the Invention] As explained above, according to the present invention, it is possible to desorb the object to be treated in a short time, and it is possible to determine whether or not desorption is possible using a voltage that changes as a linear function of time. This makes it easier to make decisions. This is extremely easy and accurate compared to the conventional method of simply applying a reverse voltage, which has to judge whether or not desorption is possible based on the current curve.

さらに、電流測定によらず電圧測定により脱離可否を判
断するので、ノイズに対し強く、信頼性が高くなる。
Furthermore, since the possibility of detachment is determined by voltage measurement instead of current measurement, it is resistant to noise and has high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第4図および第5図は本発明実施例の静電吸着板の電極
板の電圧■および電流■の変化を示す、それぞれ、タイ
ムチャートである。 l・・・静電吸着板、 2・・・誘電体層、 3.4・・・電極、 5・・・定電圧電源、 6・・・切換スイッチ、 8・・・陰極ブロック、 11・・・ウェーハ受はアーム、 15・・・高周波電源、 17・・・定電流電源、 18・・・電圧計、 20・・・制御用コンピュータ。
FIGS. 4 and 5 are time charts showing changes in the voltage (2) and current (2) of the electrode plate of the electrostatic chuck plate of the embodiment of the present invention, respectively. l... Electrostatic adsorption plate, 2... Dielectric layer, 3.4... Electrode, 5... Constant voltage power supply, 6... Changeover switch, 8... Cathode block, 11... - The wafer receiver is an arm, 15...high frequency power supply, 17...constant current power supply, 18...voltmeter, 20...control computer.

Claims (1)

【特許請求の範囲】 1)電極と、該電極を覆う誘電体層とを具えた静電吸着
板と、 前記電極に所定電位の直流電圧を所定時間印加する定電
圧電源と、 該定電圧電源による所定時間印加後、前記電極に前記所
定電位と逆電位の直流電圧を印加する定電流電源と、 該定電流電源の電圧を検知する電圧検知手段と を有することを特徴とする静電チャック装置。
[Scope of Claims] 1) An electrostatic adsorption plate comprising an electrode and a dielectric layer covering the electrode, a constant voltage power supply that applies a DC voltage of a predetermined potential to the electrode for a predetermined period of time, and the constant voltage power supply. An electrostatic chuck device comprising: a constant current power source that applies a DC voltage having an opposite potential to the predetermined potential to the electrode after application for a predetermined period of time; and a voltage detection means that detects the voltage of the constant current power source. .
JP2286835A 1990-10-24 1990-10-24 Electrostatic chuck device Pending JPH04162443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2286835A JPH04162443A (en) 1990-10-24 1990-10-24 Electrostatic chuck device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2286835A JPH04162443A (en) 1990-10-24 1990-10-24 Electrostatic chuck device

Publications (1)

Publication Number Publication Date
JPH04162443A true JPH04162443A (en) 1992-06-05

Family

ID=17709655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2286835A Pending JPH04162443A (en) 1990-10-24 1990-10-24 Electrostatic chuck device

Country Status (1)

Country Link
JP (1) JPH04162443A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06314735A (en) * 1993-04-28 1994-11-08 Kyocera Corp Electrostatic chuck
JP2002083863A (en) * 2000-08-07 2002-03-22 Samsung Electronics Co Ltd Automatic electrostatic chuck driving power source discharging device for semiconductor facility
WO2004030197A1 (en) * 2002-09-27 2004-04-08 Tsukuba Seiko Ltd. Electrostatic holding device and electrostatic tweezers using same
JP2015135960A (en) * 2013-12-20 2015-07-27 ラム リサーチ コーポレーションLam Research Corporation Electrostatic chuck including declamping electrode and method of declamping
GB2540883B (en) * 2014-02-07 2018-12-26 Trek Inc System and method for clamping a work piece

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06314735A (en) * 1993-04-28 1994-11-08 Kyocera Corp Electrostatic chuck
JP2002083863A (en) * 2000-08-07 2002-03-22 Samsung Electronics Co Ltd Automatic electrostatic chuck driving power source discharging device for semiconductor facility
WO2004030197A1 (en) * 2002-09-27 2004-04-08 Tsukuba Seiko Ltd. Electrostatic holding device and electrostatic tweezers using same
US7259955B2 (en) 2002-09-27 2007-08-21 Tsukuba Seiko Ltd. Electrostatic holding device and electrostatic tweezers using the same
JP2015135960A (en) * 2013-12-20 2015-07-27 ラム リサーチ コーポレーションLam Research Corporation Electrostatic chuck including declamping electrode and method of declamping
GB2540883B (en) * 2014-02-07 2018-12-26 Trek Inc System and method for clamping a work piece
US11282732B2 (en) 2014-02-07 2022-03-22 Trek, Inc. System and method for clamping a work piece

Similar Documents

Publication Publication Date Title
JP4547182B2 (en) Plasma processing equipment
KR100613198B1 (en) Plasma processing apparatus, focus ring, and susceptor
JP5492578B2 (en) Plasma processing equipment
US5746928A (en) Process for cleaning an electrostatic chuck of a plasma etching apparatus
US7541283B2 (en) Plasma processing method and plasma processing apparatus
JP3911787B2 (en) Sample processing apparatus and sample processing method
KR19980024679A (en) Electrostatic chuck and sample processing method and apparatus using the same
KR100978166B1 (en) Plasma processing apparatus
JP2004047511A (en) Method for releasing, method for processing, electrostatic attracting device, and treatment apparatus
JP2007048986A (en) Device and method for processing plasma
KR20140133436A (en) Electrostatic chuck and semiconductor manufacturing device
JPH09120988A (en) Plasma processing method
US9253862B2 (en) Plasma processing method and plasma processing apparatus
JP3182615B2 (en) Plasma processing method and apparatus
JPH1169855A (en) Separation of attracted object in electrostatic chuck and the electrostatic chuck
JPH08191099A (en) Electrostatic chuck and its manufacture
JPH04162443A (en) Electrostatic chuck device
JPH1187480A (en) Method for monitoring attraction state of attracted object, and vacuum device thereof
JPH07201818A (en) Dry etching equipment
JP4800432B2 (en) Plasma processing apparatus and plasma processing method
JPH04236449A (en) Electrostatic chuck
JP4009009B2 (en) Adsorption state judgment method
JP2896155B2 (en) Insulation film inspection device and inspection method for electrostatic chuck for wafer
KR101087141B1 (en) Method for dechucking a substrate in plasma processing apparatus
JPH04162448A (en) Vacuum treatment equipment with electrostatic chuck device