JPH04162309A - High-temperature superconducting power cable - Google Patents

High-temperature superconducting power cable

Info

Publication number
JPH04162309A
JPH04162309A JP2285932A JP28593290A JPH04162309A JP H04162309 A JPH04162309 A JP H04162309A JP 2285932 A JP2285932 A JP 2285932A JP 28593290 A JP28593290 A JP 28593290A JP H04162309 A JPH04162309 A JP H04162309A
Authority
JP
Japan
Prior art keywords
axis
temperature superconductor
magnetic field
current
power cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2285932A
Other languages
Japanese (ja)
Other versions
JP3130033B2 (en
Inventor
Yoichi Ando
陽一 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP02285932A priority Critical patent/JP3130033B2/en
Publication of JPH04162309A publication Critical patent/JPH04162309A/en
Application granted granted Critical
Publication of JP3130033B2 publication Critical patent/JP3130033B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To conduct a stable and large current with a low loss by forming of a high-temperature superconductor having a low critical current density and setting C-axis of the crystal axis of the high-temperature superconductor into a radial direction to orientate a specified surface concentrically in a circumferential direction. CONSTITUTION:A power cable is formed of a high-temperature superconductor having a low critical current density, and c-axis of the crystal axis of the high- temperature superconductor is set into a radial direction and (ab) surface is arranged concentrically in a circumferential direction. Accordingly, a power cable is placed in self magnetic field due to a conduction current and the self magnetic field of the circular cable is concentrically produced. For that reason, a current and a magnetic field always act within a vertical surface (ab surface) to c-axis in a common perovskite structure to the high-temperature superconductor. And in the case of the high-temperature superconductor, since the magnetic field applied from a vertical direction to c-axis of the crystal axis becomes large, a flux flow resistance is reduced. Thereby, a stable and large current is conducted with a low loss.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電力系統等に広く利用される電カケープルに
関する。更に詳述すると、本発明は高温超電導体によっ
て構成される電カケープルに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a power cable widely used in power systems and the like. More specifically, the present invention relates to a power cable made of a high temperature superconductor.

(従来の技術) 従来、金属系の低温超電導体を使用した交流用線材は、
臨界電流密度か大きいため、超電導じゃへい電流のヒス
テリシス効果に伴うヒステリシス榔失が大きくなること
が知られている。そこで、この低温超電導体から成る線
材においては、細フィラメント化することにより交流損
失を低減することか行われる。しかし、超電導体を低温
状態に維持するため高価な液体ヘリウムを必要とするた
め、冷却コスI〜がかかり過ぎ、実用化が難しい。
(Conventional technology) Conventionally, AC wires using metallic low-temperature superconductors were
It is known that because the critical current density is large, the loss of hysteresis due to the hysteresis effect of the superconducting barrier current becomes large. Therefore, in a wire made of this low-temperature superconductor, AC loss is reduced by making it into a thin filament. However, since expensive liquid helium is required to maintain the superconductor at a low temperature, the cooling cost I~ is too high, making it difficult to put it into practical use.

そこで、最近では、冷却コスI−の安い液体窒素などで
超電導状態を得ることかできるセラミック系の高温超電
導体が種々研究されてきており、これを使用して交流用
線材を得ることか考えられてきている。
Recently, various types of ceramic-based high-temperature superconductors have been studied, which can be made into a superconducting state using liquid nitrogen, etc., which has a low cooling cost, and it is considered that they can be used to obtain AC wires. It's coming.

(発明が解決しようとする課題) しかしながら、高温超電導体は、現在のところセラミッ
クであるため、上記金属系の低温超電導体とは異なり、
細フィラメント化することが困難である。また、用いる
高温超電導体の臨界電流密度によって電流容量の上限が
制限されていた。更に、超電導体を臨界状態で用いるな
めブラックスジャンプ等の原因により突発的なりエンチ
が起こることかあり、電力系統に組込むには信顆性に不
安があった。このため、高温超電導体により電力ケーブ
ルを得ることは従来困難であった。
(Problem to be solved by the invention) However, since high-temperature superconductors are currently ceramics, unlike the metal-based low-temperature superconductors mentioned above,
It is difficult to make thin filaments. Furthermore, the upper limit of current capacity is limited by the critical current density of the high temperature superconductor used. Furthermore, when a superconductor is used in a critical state, sudden breakdowns may occur due to causes such as black jump, and there are concerns about reliability when incorporating it into a power system. For this reason, it has been difficult to obtain power cables using high-temperature superconductors.

本発明は、安定でかつ大電流を流すことができると共に
低損失な高温超電導体の電カケープルを提供することを
目的とする。
An object of the present invention is to provide a high-temperature superconductor power cable that is stable, allows a large current to flow, and has low loss.

(課題を解決するための手段) 交流用超電導導体を使用する場合に問題となるヒステリ
シス損失は、一般に細フィラメン1〜化によって低減さ
れるが、セラミック系の高温超電導体の場合には細フィ
ラメン1〜化が困難である。細フィラメント化せずにヒ
ステリシス損失を小さくするなめには、臨界電流密度を
零にすればよいが、このとき電流は抵抗零で流れず、フ
ラックス・フロー状態となってスラックス・フロー抵抗
が生じる。即ち超電導状態ではあるが抵抗は生じている
状態である。しかしながら、このフラックス・フロー抵
抗による損失か、上記ヒステリシス損失より小さくなれ
ば、金属系の低温超電導体で細フィラメント化した導体
よりも交流損失が小さくなることに本発明者等は着目し
、本発明を完成するに至った。
(Means for solving the problem) Hysteresis loss, which is a problem when using AC superconducting conductors, is generally reduced by reducing the number of thin filaments to 1 or more, but in the case of ceramic-based high-temperature superconductors, It is difficult to convert into ~. In order to reduce the hysteresis loss without making the filament thinner, the critical current density can be reduced to zero, but in this case the current does not flow with zero resistance, resulting in a flux flow state and slack flow resistance. In other words, it is in a superconducting state but with resistance. However, the present inventors have focused on the fact that if the loss due to this flux flow resistance is smaller than the hysteresis loss mentioned above, the AC loss will be smaller than that of a thin filament conductor made of a metal-based low-temperature superconductor. I was able to complete it.

即ち、上述の目的を達成するなめ、本発明の高温超電導
電カケ−プルは、臨界電流密度が極めて低い高温超電導
体によって構成し、かっこの高温超電導体の結晶軸のa
軸を径方向にとり、ab面を円周方向に同心状に配置さ
せるようにしている。
That is, in order to achieve the above object, the high temperature superconducting capsule of the present invention is constructed of a high temperature superconductor having an extremely low critical current density, and the crystal axis a of the high temperature superconductor in parentheses is
The axis is set in the radial direction, and the a-b planes are arranged concentrically in the circumferential direction.

(作用) したがって、電力ケーブルは通電によって、通電電流に
因る自己磁場中に置かれることになる。
(Function) Therefore, when the power cable is energized, it is placed in a self-magnetic field caused by the energized current.

そして、この円形ケーブルの自己磁場は同心円状に発生
する。このなめ、電流及び磁場は常に高温超電導体に共
通のペロブスカイト構造におけるa軸に垂直な面(ab
面)内で作用する。
The self-magnetic field of this circular cable is generated concentrically. This current and magnetic field are always in the plane perpendicular to the a-axis (ab
act within the plane).

ところで、超電導体のフラックス・フロー抵抗は、上部
臨界磁場(H)に反比例することが知られている。従来
の低温超電導体では、上部臨界磁場(H)が約1OCT
)程度とあまり大きくなかったなめ、フラックス・フロ
ー抵抗もかなり大きくなりスラックス・フロー状態での
使用は考えられなかった。
Incidentally, it is known that the flux flow resistance of a superconductor is inversely proportional to the upper critical magnetic field (H). In conventional low-temperature superconductors, the upper critical magnetic field (H) is approximately 1 OCT.
), and the flux flow resistance was also quite large, making it unthinkable to use it in slack flow conditions.

しかしながら、高温超電導体の場合、その結晶軸のa軸
に垂直な方向から磁場がかかったときの臨界磁場(H)
が極めて大きくなるため、フラックス・フロー抵抗は非
常に小さくなる。
However, in the case of high-temperature superconductors, the critical magnetic field (H) when a magnetic field is applied from the direction perpendicular to the a-axis of the crystal axis
becomes very large, so the flux flow resistance becomes very small.

(実施例) 以下、本発明の構成を図面に示す実施例に基づいて詳細
に説明する。
(Example) Hereinafter, the configuration of the present invention will be described in detail based on an example shown in the drawings.

現在知られている高温超電導体は、すべて層状の結晶構
造をもっていて、この結晶構造で層面に垂直な軸をa軸
、層面内の二つの直交する軸をa軸、b軸としている。
All currently known high-temperature superconductors have a layered crystal structure, in which the axis perpendicular to the layer plane is the a-axis, and the two orthogonal axes within the layer plane are the a-axis and the b-axis.

例えば、これらの関係が比較的分かり易いイツトリウム
系(YBa2Cua08)高温超電導体の構造と磁場及
び電流の方向を第2図に示す。
For example, FIG. 2 shows the structure and directions of the magnetic field and current of an yttrium-based (YBa2Cua08) high-temperature superconductor in which these relationships are relatively easy to understand.

このような高温超電導体の結晶軸のa軸に垂直な方向か
ら磁場がかかったときには、絶対零度における上部臨界
磁場(H)が例えばB1−3r−Ca−CuO系セラミ
ックの場合、500(T)以上と極めて大きくなるため
、フラックス・フロー抵抗は小さくなることが分かって
いる。
When a magnetic field is applied from a direction perpendicular to the a-axis of the crystal axis of such a high-temperature superconductor, the upper critical magnetic field (H) at absolute zero is 500 (T) in the case of B1-3r-Ca-CuO ceramic, for example. It is known that as the flux becomes extremely large, the flux flow resistance becomes small.

そして、磁場と電流はa軸と互いに直交するab層面内
任意の方向をとって良い。
The magnetic field and current may take any direction in the plane of the ab layer that is perpendicular to the a-axis.

そこで、本発明の電カケープルは、臨界電流密度が極め
て低い高温超電導体によって構成し、がつこの高温超電
導体の結晶軸のa軸を径方向にとり、ab層面内円周方
向に同心状に配置させるようにしている。例えば、イツ
トリウム系超電導体によって電力ケーブルを構成する場
合には、第2図に示すイツトリウムの結晶のab面が、
第1図に示されるように円周方向に配向されて径方向に
a軸が位置するように設けられている。
Therefore, the power cable of the present invention is constructed of a high-temperature superconductor with an extremely low critical current density, and the a-axis of the crystal axis of the high-temperature superconductor is arranged in the radial direction, and is arranged concentrically in the circumferential direction in the plane of the ab layer. I try to let them do it. For example, when constructing a power cable using a yttrium-based superconductor, the a-b plane of the yttrium crystal shown in FIG.
As shown in FIG. 1, it is provided so that it is oriented in the circumferential direction and the a-axis is located in the radial direction.

臨界電流密度の著しく低い超電導体は、ピン止めの非常
に弱い超電導体を作製することによって得られる。例え
ば、超電導体中から格子欠陥や不純物を除き、非常に均
質で単結晶的な超電導体を作製すれば臨界電流密度の極
めて低い超電導体が得られる。臨界電流重度は理想的に
は0であることが望ましいが、現実にはそれは不可能で
あるので、可能な限り低いものが好ましく、実用的には
1000 [A/m2 ]程度以下であれば安定なフラ
ックス・フロー状態が維持できる。また、高温超電導体
としては、特に限定を受けるものではないが、タリウム
系(T I −S r−V−0)高温超電導体、ビスマ
ス系(Bi−8r−Ca−Cu −O)高温超電導体の
使用がフラックス・フロー抵抗を小さくする上で好まし
い。
Superconductors with extremely low critical current densities can be obtained by fabricating superconductors with very weak pinning. For example, if lattice defects and impurities are removed from a superconductor to create a highly homogeneous, single-crystal superconductor, a superconductor with an extremely low critical current density can be obtained. Ideally, it is desirable for the critical current severity to be 0, but in reality this is not possible, so it is preferable that it be as low as possible, and in practice it is stable if it is around 1000 [A/m2] or less. A stable flux flow state can be maintained. In addition, high-temperature superconductors include, but are not particularly limited to, thallium-based (TI-S r-V-0) high-temperature superconductors and bismuth-based (Bi-8r-Ca-Cu-O) high-temperature superconductors. The use of is preferable in order to reduce flux flow resistance.

第1図に示すような構造をもちかつ均質で著しく臨界電
流密度の低い高温超電導ケーブルは次のようにして作製
される。例えば、銀の上に高温超電導体を成長させると
、C軸が銀と高温超電導体の間の界面に垂直な方向を向
くことを利用して銀の細い棒を種としてその上に単結晶
的な高温超電導体を溶融引上げ法やスパッタリング法等
の方法で成長させれば良い。または、ドクターブレード
法によるセラミックスグリーンシートをローリング加工
して配向させ、これを同心円状に巻き重ねて更に線引き
加工として配向させることによって第1図の構造を得る
ことも考えられる。しかし、本発明はこれら製法に左右
されるものではなく同様の導体構造、それも高温超電導
体を巻いたということよりも、ab面が同心円状になっ
た構造でしかも均質な高温超電導体を得ることが肝要で
ある。
A high temperature superconducting cable having a structure as shown in FIG. 1, which is homogeneous and has a significantly low critical current density, is manufactured as follows. For example, when a high-temperature superconductor is grown on silver, a thin silver rod is used as a seed to grow a single crystal on top of it, taking advantage of the fact that the C-axis is oriented perpendicular to the interface between the silver and the high-temperature superconductor. A high-temperature superconductor may be grown by a method such as a melt-pulling method or a sputtering method. Alternatively, it is also possible to obtain the structure shown in FIG. 1 by rolling a ceramic green sheet using a doctor blade method to orient it, then concentrically winding it and then drawing it to orient it. However, the present invention is not dependent on these manufacturing methods, and instead obtains a homogeneous high-temperature superconductor with a similar conductor structure, in which the a-b planes are concentric circles rather than a high-temperature superconductor wound. That is essential.

以上のように構成された高温超電導体重カケープルは通
電によって、この通電電流に因る自己磁場中に置かれる
ことになる2そして1.この自己磁場か円形ケーブルの
周りに同心円状に発生することから、電流及び磁場は常
にC軸に垂直なab面内で作用する。
When the high-temperature superconducting heavy capule constructed as described above is energized, it is placed in a self-magnetic field caused by the energized current.2. Since this self-magnetic field is generated concentrically around the circular cable, the current and magnetic field always act in the a-b plane perpendicular to the C-axis.

このため、フラックスフロー抵抗か非常に小さくなる。Therefore, the flux flow resistance becomes extremely small.

この電カケープルにおける交流損失Wrは次のようにな
る。交流損失Wfは と計算される。ここで、ρ。は電流が流れる方向の常伝
導抵抗率(Ωm)、H(0)は磁場かかかっている方向
の絶対零度における上部臨界磁場(A/m)、■oは電
流のピーク値(A)、Rはケーブルの半径(m)である
。例えばビスマス−8= 系高温超電導体の場合、ρn−lX10−’Ωm、μO
H(0)=500TなのでR=4X10J2m(−4c
m)のケーブルにピークで25kAの電流を流したとす
ると、交流損失はLow/mとなる。
The AC loss Wr in this power cable is as follows. AC loss Wf is calculated as follows. Here, ρ. is the normal conductivity resistivity (Ωm) in the direction in which the current flows, H(0) is the upper critical magnetic field (A/m) at absolute zero in the direction in which the magnetic field is applied, o is the peak value of the current (A), and R is the radius of the cable (m). For example, in the case of bismuth-8= system high temperature superconductor, ρn-lX10-'Ωm, μO
Since H(0)=500T, R=4X10J2m(-4c
If a peak current of 25 kA is passed through the cable (m), the AC loss will be Low/m.

比較のため、従来の超電導ケーブルの交流損失を計算す
ると、同じR=4cm、To=25kAのときに13w
/mとなって(周波数は60Hz)、本発明のケーブル
より損失は大きい。しかも、この値は臨界電流密度とし
て実用的な1.09A/m2という値を仮定した場合の
ものであり、臨界電流密度が小さくなると損失はそれに
反比例して増える。(現在、作成可能な高温超電導線材
は10EIA/m2レベルである。)因みに、同じR−
4cmの銅やアルミのケーブルを液体窒素で冷却してT
  = 25 k Aを流すと損失は200w/m程度
にもなる。このとき、表皮効果は無視している。
For comparison, when calculating the AC loss of a conventional superconducting cable, it is 13W at the same R = 4cm and To = 25kA.
/m (frequency is 60 Hz), and the loss is larger than that of the cable of the present invention. Furthermore, this value is based on the assumption that the critical current density is a practical value of 1.09 A/m2, and as the critical current density becomes smaller, the loss increases in inverse proportion to it. (Currently, the high temperature superconducting wire that can be produced is at the 10EIA/m2 level.) Incidentally, the same R-
Cool a 4cm copper or aluminum cable with liquid nitrogen and
= 25 kA, the loss will be about 200 w/m. At this time, the skin effect is ignored.

尚、上述の実施例は本発明の好適な実施の一例ではある
がこれに限定されるものではなく本発明の要旨を逸脱し
ない範囲において種々変形実施可能である。例えば、上
記実施例では、B1−3r−Ca−Cu−0系セラミツ
クの高温超電導体で説明したが、もちろん他の構成の高
温超電導体を使用してもよい。
It should be noted that although the above-described embodiment is an example of a preferred embodiment of the present invention, the present invention is not limited thereto, and various modifications can be made without departing from the gist of the present invention. For example, in the above embodiments, a high temperature superconductor made of B1-3r-Ca-Cu-0 ceramic is used, but of course high-temperature superconductors having other configurations may be used.

(発明の効果) 以上の説明より明らかなように、本発明の高温超電導電
カケ−プルはフラックスフロー状態で電流を流すため、
臨界状態で使用する従来の高温超電導電カケ−プルと全
く異なり、臨界電流密度による制限を受けず、細線化を
することなく簡単に製作できるし、流せる電流は冷却能
率だけによって決まり、ヒステリシス拶失・交流損失が
少ない。
(Effects of the Invention) As is clear from the above explanation, since the high temperature superconducting cable of the present invention allows current to flow in a flux flow state,
Completely different from conventional high-temperature superconducting cables that are used in critical conditions, they are not limited by critical current density and can be easily manufactured without wire thinning, and the current that can flow is determined only by cooling efficiency, eliminating hysteresis.・Less AC loss.

しかも、この高温超電導電カケ−プルは、フラックスフ
ロー状態で使用するため超電導体中の磁束が自由に動い
ていることから、フラックスジャンプが起こらず、それ
を原因とする突発的なりエンチも原理的に起きないため
電力系統へ組込む際の信頼が高い。また、従来の超電導
ケーブルより大電流を流せるし゛低損失となる。
Moreover, since this high-temperature superconducting cable is used in a flux flow state, the magnetic flux in the superconductor is moving freely, so flux jumps do not occur, and sudden breakdowns caused by this are not possible in principle. It is highly reliable when integrated into the power system because it does not occur in any way. It also allows a larger current to flow than conventional superconducting cables, resulting in lower loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の高温超電導電カケ−プルの結晶配列を
概略的に示す斜視図である。 第2図は本発明に係る高温超電導体の結晶構造図である
。 1・・・高温超電導電カケ−プル。
FIG. 1 is a perspective view schematically showing the crystal arrangement of the high temperature superconducting cable of the present invention. FIG. 2 is a diagram of the crystal structure of the high temperature superconductor according to the present invention. 1...High temperature superconducting cable.

Claims (1)

【特許請求の範囲】[Claims]  臨界電流密度が極めて低い高温超電導体によつて構成
し、かつこの高温超電導体の結晶軸のC軸を径方向にと
り、ab面を円周方向に同心状に配向させたことを特徴
とする高温超電導電力ケーブル。
A high temperature superconductor characterized in that it is constructed of a high temperature superconductor with an extremely low critical current density, the C axis of the crystal axis of this high temperature superconductor is oriented in the radial direction, and the ab plane is oriented concentrically in the circumferential direction. Superconducting power cable.
JP02285932A 1990-10-25 1990-10-25 High temperature superconducting power cable Expired - Fee Related JP3130033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02285932A JP3130033B2 (en) 1990-10-25 1990-10-25 High temperature superconducting power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02285932A JP3130033B2 (en) 1990-10-25 1990-10-25 High temperature superconducting power cable

Publications (2)

Publication Number Publication Date
JPH04162309A true JPH04162309A (en) 1992-06-05
JP3130033B2 JP3130033B2 (en) 2001-01-31

Family

ID=17697863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02285932A Expired - Fee Related JP3130033B2 (en) 1990-10-25 1990-10-25 High temperature superconducting power cable

Country Status (1)

Country Link
JP (1) JP3130033B2 (en)

Also Published As

Publication number Publication date
JP3130033B2 (en) 2001-01-31

Similar Documents

Publication Publication Date Title
KR101968074B1 (en) Structure to reduce electroplated stabilizer content
CA2018681C (en) Process for reducing eddy currents in a superconductor strip, and a superconductor arrangement
US6133814A (en) Oxide superconductor wire material and method for jointing the same together
JPH0371518A (en) Superconductor
CN111758140B (en) Center post of toroidal field coil
AU604119B2 (en) High current conductors and high field magnets using anisotropic superconductors
US6316391B1 (en) Oxide superconducting wire and method of manufacturing the same
Ha et al. Fabrication of 1 m long multi layered superconducting coated conductor with high engineering critical current density
JP5498019B2 (en) Superconducting article
JPH04162309A (en) High-temperature superconducting power cable
JP2929622B2 (en) How to use oxide superconductor
JP4011131B2 (en) Tape-shaped oxide superconducting wire, superconducting magnet and current lead using the same
JP3100151B2 (en) AC conduction method for HTS conductor
JPS63268206A (en) Superconducting magnet
JP3647884B2 (en) Oxide superconducting conductor
JPH1186923A (en) Connection device and superconducting magnet
JP2913940B2 (en) Superconducting current lead
JPH05135935A (en) Oxide superconductive coil
KR102551778B1 (en) Alignment of HTS tapes
JPH10188696A (en) Oxide superconductive wire and its connecting method
JPH04324209A (en) Oxide superconductive wire and its manufacture
JPH01144602A (en) Superconducting magnet
JP3221719B2 (en) Superconducting perforated plate
JPH07130533A (en) Superconducting current lead and superconducting device using same
JP2001224567A (en) Heat insulating type multichannel measuring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees