JPH04161813A - Apparatus for measuring two-dimensional position and direction of moving object - Google Patents

Apparatus for measuring two-dimensional position and direction of moving object

Info

Publication number
JPH04161813A
JPH04161813A JP2288772A JP28877290A JPH04161813A JP H04161813 A JPH04161813 A JP H04161813A JP 2288772 A JP2288772 A JP 2288772A JP 28877290 A JP28877290 A JP 28877290A JP H04161813 A JPH04161813 A JP H04161813A
Authority
JP
Japan
Prior art keywords
moving object
corner cube
reflecting mirror
mirror
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2288772A
Other languages
Japanese (ja)
Other versions
JP2784480B2 (en
Inventor
Kazuyuki Hiraoka
和志 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2288772A priority Critical patent/JP2784480B2/en
Publication of JPH04161813A publication Critical patent/JPH04161813A/en
Application granted granted Critical
Publication of JP2784480B2 publication Critical patent/JP2784480B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Navigation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To achieve a highly accurate measurement efficiently by using only one corner cube to calculate the position and the direction of a moving object from a distance between the moving object and a reflection mirror and both detection angles thereof when a reflected laser light is received from the reflection mirror. CONSTITUTION:An angle theta between a corner cube 2 and a cylindrical surface mirror 3 is measured by an angle detector 16 with an automatically conveying truck 1 at a position P. In utilization for a semi-fixed path type, multiple sets of the corner cube 2 and the cylindrical surface mirror 3 are set as targets T (T1, T2... and Tn) separately and arranged at a proper interval along a guidance path WO. If so, the conveying truck 1 runs freely to the subsequent position/direction detecting point D1 correcting the direction thereof from the position and direction (x,y,phi) determined at the first position/direction detecting point D. In utilization for autonomous running, the position and direction measured at the position P is replaced with the position and direction measured at the position P is replaced with the position and direction measured autonomously to delete cumulative errors.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、各種生産ライン等で使用される自動搬送車等
の誘導に適用される移動物体の2次元位置および方向計
測装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a two-dimensional position and direction measuring device for a moving object, which is applied to guiding automatic guided vehicles used in various production lines and the like.

従来の技術 近年、製造業の自動化が進み、生産ラインの中で、自動
搬送車のような移動物体の位置計測の自動化が大変重要
になってきている。しかも、移動物体の中には、非接触
により位置計測を行なう必要のあるものも少なくない。
BACKGROUND OF THE INVENTION In recent years, automation in the manufacturing industry has progressed, and automation of position measurement of moving objects such as automatic guided vehicles in production lines has become very important. Furthermore, there are many moving objects that require non-contact position measurement.

一般に、たとえば、自動搬送車の誘導には、電磁誘導式
や光学誘導式などの固定経路による誘導方式が採用され
ている。
Generally, for example, a fixed route guidance method such as an electromagnetic induction method or an optical guidance method is used to guide an automatic guided vehicle.

発明が解決しようとする課題 しかし、これら電磁誘導式や光学誘導式などの固定経路
による誘導方式は、走行経路のレイアウト変更が困難で
あるため、走行経路の設定−変更が容易に行える半固定
経路式や自立走行式の実用化が急がれている。半固定経
路式としては、レーザやマーカーを利用したものが案出
されているが、実装化しにくいものである。また、自立
走行式としては、車輪の回転計測やジャイロを利用した
ものなどがあるが、自立走行式は、いずれも誤差の累積
の起こる方法であるので、定期的に累積誤差の修正を行
なう必要がある。
Problems to be Solved by the Invention However, with these fixed-route guidance systems such as electromagnetic induction and optical guidance, it is difficult to change the layout of the travel route. There is an urgent need to put a self-driving type or self-driving type into practical use. As a semi-fixed path type, one using a laser or a marker has been devised, but it is difficult to implement it. In addition, there are self-propelled types that use wheel rotation measurement or gyros, but all self-propelled types involve accumulation of errors, so it is necessary to periodically correct the cumulative errors. There is.

一方、従来、特開昭62−254007号公報に示すよ
うに、移動物体と離間して設置された3個のコーナキュ
ーブ間の角度をレーザ光線で計測し、位置検出する方法
も提案されているが、コーナキューブは非常に高価な光
学素子であり、このシステムの材料費の大半が上記コー
ナキューブで占められる不具合がある。また、311の
コーナキューブの使用により、3つの角度を計測しなけ
ればならず、計測誤差の影響は避けられない。
On the other hand, as shown in Japanese Unexamined Patent Publication No. 62-254007, a method has been proposed in which the angle between three corner cubes installed at a distance from a moving object is measured using a laser beam, and the position is detected. However, the corner cube is a very expensive optical element, and the problem is that the corner cube accounts for most of the material cost of this system. Furthermore, by using the 311 corner cube, three angles must be measured, and the influence of measurement errors is unavoidable.

本発明は、上記実情に鑑みてなされたもので、コーナキ
ューブは1個だけ使用するようにして、低コスト化を図
り、しかも角度計測の誤差の影響が少なく、半固定軽路
式誘導システムへの対応や自立走行式の累積誤差の修正
が容易な移動物体の2次元位置および方向計測装置を提
供することを目的とする。
The present invention was made in view of the above-mentioned circumstances, and aims to reduce costs by using only one corner cube, and is less affected by errors in angle measurement, and is suitable for semi-fixed light path guidance systems. It is an object of the present invention to provide a two-dimensional position and direction measuring device for a moving object that is easy to deal with and correct accumulated errors of a self-propelled moving object.

課題を解決するための手段 上記目的を達成するために1本発明は、移動物体の位置
計測平面に対し平行な任意位置に設置された1つの反射
鏡と、この反射鏡の反射面の延長・線上で所定間隔で配
置された1つのコーナキューブと、上記移動物体に設け
られて上記反射鏡およびコーナキューブにレーザ光を照
射した際の各反射レーザ光を受光し、上記コーナキュー
ブと反射鏡との間の角度ならびに反射鏡と移動物体の向
きとの間の角度を検出するレーザ回転投受光機とを備え
、上記反射鏡からの反射レーザ光を受光した際の上記移
動物体と反射鏡との距離ならびに上記両検出角度から移
動物体の位置および方向を算出するように構成したもの
である。
Means for Solving the Problems In order to achieve the above object, the present invention includes one reflecting mirror installed at an arbitrary position parallel to the position measurement plane of a moving object, and an extension of the reflecting surface of this reflecting mirror. one corner cube arranged at a predetermined interval on a line; and a corner cube provided on the moving object to receive each reflected laser beam when the laser beam is irradiated to the reflecting mirror and the corner cube; a rotating laser projector/receiver that detects the angle between the moving object and the direction of the moving object, and the angle between the moving object and the reflecting mirror when the reflected laser beam is received from the reflecting mirror. The system is configured to calculate the position and direction of a moving object from the distance and both detection angles.

作用 本発明によれば、移動物体に設けられたレーザ回転投受
光機からコーナキューブおよび反射鏡に対してレーザ光
を照射し、その反射レーザ光を受光することにより、コ
ーナキューブと反射鏡との間の角度ならびに移動物体の
方向と上記反射鏡との間の角度が検出され、上記反射レ
ーザ光を受けた際の移動物体と反射鏡との距離ならびに
上記両検出角度から移動物体の位置および方向が自動的
に算出される。
According to the present invention, the corner cube and the reflecting mirror are irradiated with a laser beam from the laser rotating projector/receiver provided on the moving object, and the reflected laser beam is received, whereby the interaction between the corner cube and the reflecting mirror is achieved. The angle between the moving object and the angle between the direction of the moving object and the reflecting mirror are detected, and the position and direction of the moving object are determined from the distance between the moving object and the reflecting mirror when receiving the reflected laser beam and both detection angles. is automatically calculated.

実施例 以下、本発明の実施例を図面にもとづいて説明する。Example Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の一実施例である移動物体の2次元位置
および方向計測装置を示す構成図である。
FIG. 1 is a configuration diagram showing a two-dimensional position and direction measuring device for a moving object, which is an embodiment of the present invention.

同図において、lは位置が計測される移動物体としての
自動搬送車である。2は自動搬送車lから離間して2次
元の任意位置(x+、 y+)  (座標値は既知)に
設置されたコーナキューブ、3は上記コーナキューブ2
に対して所定の距離文だけ離れた位置(xo、yo)で
あって、かつ位置計測平面4(第2図)対して平行に配
置された反射鏡、例えば円筒面鏡である。また、この円
筒面鏡3はその側面が上記コーナキューブ2偏に向き、
かつコーナキューブ2が計測精度内で円筒面鏡3の反射
面の延長面上に位置するように設定されている(第2図
)。
In the figure, l is an automatic guided vehicle as a moving object whose position is measured. 2 is a corner cube installed at a two-dimensional arbitrary position (x+, y+) (coordinate values are known) away from the automatic guided vehicle l, and 3 is the corner cube 2 above.
A reflecting mirror, for example, a cylindrical mirror, is located at a position (xo, yo) a predetermined distance away from the mirror and parallel to the position measurement plane 4 (FIG. 2). In addition, this cylindrical mirror 3 has its side facing toward the corner cube 2,
Moreover, the corner cube 2 is set to be located on the extension surface of the reflective surface of the cylindrical mirror 3 within measurement accuracy (FIG. 2).

上記自動搬送車lには、上記コーナキューブ2や円筒面
鏡3に対してレーザ光8を照射して反射レーザ光15を
受光するレーザ回転投受光機5が搭載されている。この
レーザ回転投受光機5の構成を第3図で説明する。
The automatic guided vehicle 1 is equipped with a rotary laser projector/receiver 5 that irradiates the corner cube 2 and the cylindrical mirror 3 with a laser beam 8 and receives reflected laser beam 15. The configuration of this rotating laser projector/receiver 5 will be explained with reference to FIG.

第3図において、7はレーザ光8を出射するレーザ発振
器、9はモータlOによりレーザ光8の光軸廻りに高速
回転駆動されるL形架台であり、ハーフミラ−11が4
5°の傾斜姿勢で支持されている。12は上記レーザ発
振器7からのレーザ光8を平行光に変えるコリメータレ
ンズ、13は上記コリメータレンズ12からのレーザ光
を一方向へ広げるシリンドリカルレンズである。
In FIG. 3, 7 is a laser oscillator that emits a laser beam 8, 9 is an L-shaped mount that is driven to rotate at high speed around the optical axis of the laser beam 8 by a motor 1O, and a half mirror 11 is 4
It is supported at an angle of 5 degrees. 12 is a collimator lens that converts the laser beam 8 from the laser oscillator 7 into parallel light, and 13 is a cylindrical lens that spreads the laser beam from the collimator lens 12 in one direction.

14は上記架台9の垂直片部に固定された受光素子とし
てのフォトダイオードであり、レーザ光8がコーナキュ
ーブ2や円筒面鏡3に照射された際の反射光15を受光
するようになっている・16は上記モータlOに取り付
けられた角度検出装置であり、上記フォトダイオード1
4から出力される角度検出信号から上記コーナキューブ
2と円筒面鏡3との間の角度θならびに円筒面鏡3と自
動搬送車1の向きとの間の角度θHを検出するようにな
っている。なお、上記コーナキューブ2および円筒面鏡
3としては、その大きさが位置の計測精度よりも小さい
ものが使用される。
Reference numeral 14 denotes a photodiode as a light-receiving element fixed to a vertical piece of the pedestal 9, which receives reflected light 15 when the laser beam 8 is irradiated onto the corner cube 2 or the cylindrical mirror 3. 16 is an angle detection device attached to the motor lO, and the photodiode 1
The angle θ between the corner cube 2 and the cylindrical mirror 3 and the angle θH between the cylindrical mirror 3 and the direction of the automatic guided vehicle 1 are detected from the angle detection signal output from the cylindrical mirror 3. . Note that as the corner cube 2 and the cylindrical mirror 3, those whose sizes are smaller than the position measurement accuracy are used.

つぎに、上記構成の動作について説明する。Next, the operation of the above configuration will be explained.

レーザ回転投受光機5を搭載した位置検出物体である自
動搬送車lが第1図矢印0のように走行するものとする
。上記レーザ回転投受光機5においては、レーザ発振器
7からのレーザ光8がコリメータレンズ12で平行光に
変えられた後、シリンドリカルレンズ13で一方向に広
げられ、モータlOで回転駆動されるハーフミラ−11
によりコーナキューブ2および円筒面鏡3側へ照射され
る。
It is assumed that an automatic guided vehicle 1, which is a position detection object and is equipped with a rotating laser projector/receiver 5, travels as indicated by arrow 0 in FIG. In the laser rotating light projector/receiver 5, the laser beam 8 from the laser oscillator 7 is converted into parallel light by a collimator lens 12, and then expanded in one direction by a cylindrical lens 13, and a half mirror rotated by a motor IO. 11
This irradiates the corner cube 2 and cylindrical mirror 3 side.

自動搬送車1が第1図の位置Qにある時は、レーザ回転
投受光機5のフォトダイオード14はコーナキューブ2
で反射した反射光15Lか受光しないので、該フォトダ
イオード14からは、1回転のうちで1回しか角度検出
信号が出力されない、自動搬送車lが第1図の位置Pに
至ると、フォトダイオード14は、上記コーナキューブ
2および円筒面鏡3の双方からの反射光15を受光する
ので、1回転のうちで2回、角度検出信号が出力される
When the automatic guided vehicle 1 is at the position Q shown in FIG.
Since the reflected light 15L is not received by the photodiode 14, the angle detection signal is output only once in one rotation. 14 receives the reflected light 15 from both the corner cube 2 and the cylindrical mirror 3, so the angle detection signal is output twice in one rotation.

自動搬送車lが第1図の位置Pにおいて、コーナキュー
ブ2と円筒面鏡3との角度θを角度検出装ff116に
より計測する。
At position P in FIG. 1, the automatic guided vehicle l measures the angle θ between the corner cube 2 and the cylindrical mirror 3 using the angle detection device ff116.

一方、第1図の幾何学的関係から以下に示す関係式が求
められる。
On the other hand, the following relational expression can be obtained from the geometrical relationship shown in FIG.

n = (xt −xo )2* (yl、−yo )
2−−−−−・(1)+:円柱面鏡の+X方向にいる場
合 −:円柱面鏡の−X方向にいる場合 y=Ax+B       ・・・・・・・・・・・・
・・・・・・(3)A = (Xl −XO)/ (y
o −yl) ””−”(4)B =  (xo2− 
xox1+ yo2− yt yo)/ (yo −y
+)   ・・・・・・・・・・・・・・・・・・(5
)L=交/lan  θ       ・・・・・・・
・・・・・・・・・・・(6)φ= tan  (yo
 −y )  /  (xo −x)  −〇H・・・
・・・・・・・・・(7) 上記計測角度θを上記(2)〜(6)式に代入すれば、
自動搬送車の位置(x 、 y)を求めることができる
n = (xt -xo)2* (yl, -yo)
2------・(1)+: If you are in the +X direction of the cylindrical mirror -: If you are in the -X direction of the cylindrical mirror y=Ax+B ・・・・・・・・・・・・
・・・・・・(3) A = (Xl −XO)/(y
o -yl) ""-" (4) B = (xo2-
xox1+ yo2- yt yo)/ (yo -y
+) ・・・・・・・・・・・・・・・・・・(5
) L=cross/lan θ ・・・・・・・
・・・・・・・・・・・・(6) φ= tan (yo
-y) / (xo -x) -〇H...
・・・・・・・・・(7) Substituting the above measurement angle θ into the above equations (2) to (6), we get
The position (x, y) of the automated guided vehicle can be determined.

自動搬送車の方向Φは1円筒面鏡と自動搬送車の向きの
間の角度θHを計測し、(7)式に代入することにより
求める。
The direction Φ of the automatic guided vehicle is determined by measuring the angle θH between the cylindrical mirror and the direction of the automatic guided vehicle, and substituting it into equation (7).

これを半固定経路式に利用する場合は、第4図に示すよ
うに、上記コーナキューブ2と円筒面鏡3との複数組を
それぞれターゲラ)T(TI。
When this is used in a semi-fixed path type, as shown in FIG.

T2・・・・・・Tn)として誘導経路Woに沿って適
当な間隔に配置しておけば、自動搬送車lは、第1の位
置・方向検出点D1  で求められた位置・方向(X、
y、φ)から、方向修正を行ない1次の位置・方向検出
点に自由走行して向かう、同様のことを繰り返すことに
より自動搬送車lは、誘導経路Woに沿ってWで示す軌
跡で走行する。カーブ地点では、予め設定しておいた半
径で必要な角度を制御なしに曲がるものとする。この回
転にはあまり精度はいらない。
If the automatic guided vehicle l is arranged at appropriate intervals along the guide route Wo as T2...Tn), the automatic guided vehicle l can move to the position and direction (X ,
y, φ), corrects the direction and freely travels toward the primary position/direction detection point.By repeating the same process, the automated guided vehicle l travels along the guide path Wo along the trajectory shown by W. do. At the curve point, it is assumed that the required angle is turned without control at a preset radius. This rotation does not require much precision.

また、自立走行に利用する場合には、第1図の位置Pで
、前述のように計測した位置・方向を自立計測した位置
・方向と置き換えることで累積誤差を消去することがで
きる。
Furthermore, when using the vehicle for self-sustaining travel, the cumulative error can be eliminated by replacing the position and direction measured as described above with the self-measured position and direction at position P in FIG.

このように、1個のコーナキューブ2および円筒面鏡3
を用いた比較的簡単な構成により、半固定経路式の自動
搬送車誘導装置に使用でき、また、自立走行式の自動搬
送車誘導装置における累積誤差の修正が可能となる。と
くに、コーナキューブ2の数が1個だけでよいので、コ
ーナキューブ2に占められるコストが少なく、安価に製
作することができ、また固定点に取り付ける部品もコー
ナキューブ2と円筒面鏡3の2個だけであるので、固定
点の位置計測の簡略化を図ることができ、さらに、位置
計測のため1つの角度を計測すればよいので、角度計測
の誤差が少なく、高精度のものを得ることができる。
In this way, one corner cube 2 and a cylindrical mirror 3
A relatively simple configuration using the present invention can be used in a semi-fixed path type automatic guided vehicle guiding device, and it is also possible to correct cumulative errors in a self-supporting automatic guided vehicle guiding device. In particular, since the number of corner cubes 2 is only one, the cost occupied by the corner cube 2 is low and it can be manufactured at low cost, and the parts to be attached to the fixing points are only two, the corner cube 2 and the cylindrical mirror 3. Since only one piece is required, it is possible to simplify the position measurement of the fixed point.Furthermore, since it is only necessary to measure one angle for position measurement, there is little error in angle measurement and high precision can be obtained. I can do it.

ところで、上記の実施例では、反射鏡として円筒面鏡3
を用いたが、自動搬送車lのレーザ回転投受光機5の高
さが、サスベンジ、ンなどの影響が少なく変動量が小さ
ければ、円筒面鏡3のかわりに平面鏡を使用してもよい
By the way, in the above embodiment, the cylindrical mirror 3 is used as the reflecting mirror.
However, if the height of the laser rotation projector/receiver 5 of the automatic guided vehicle 1 is not affected by suspension, etc. and the amount of variation is small, a plane mirror may be used instead of the cylindrical mirror 3.

発明の効果 以上のように本発明は、コーナキューブと反射鏡を1(
[ずつ用いて、レーザ回転投受光機と組み合せ使用する
簡単な構成により、容易に半固定経路式誘導システムを
構成したり、自立走行式の累積誤差の修正を行なうこと
ができ、とくに、コーナキューブの数が1個だけで済む
ので、低コスト化が図れるとともに、計測する角の数が
減って計測の高精度化を達成することができる。
Effects of the Invention As described above, the present invention combines a corner cube and a reflecting mirror into one (
[By using a simple configuration in combination with a laser rotating emitter and receiver, it is possible to easily configure a semi-fixed path type guidance system or correct the cumulative error of an autonomous type. Since only one is required, costs can be reduced, and the number of corners to be measured can be reduced, making it possible to achieve high measurement accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の移動物体の2次元位置およ
び方向計測装置を示す構成図、第2図はコーナキューブ
と円筒面鏡の配置関係を示す図。 第3図はレーザ回転投受光機を示す構成図、第4図はこ
の発明を半固定経路式自動搬送車誘導装置に適用する場
合の説明図である。 1・・・移動物体、2・・・コーナキューブ、3・・・
反射鏡、4・・・位置計測平面、5・・・レーザ回転投
受光機、8・・・レーザ光、15・・・反射レーザ光、
L・・・距離、θ、θ門・・・検出角度。
FIG. 1 is a configuration diagram showing a two-dimensional position and direction measuring device for a moving object according to an embodiment of the present invention, and FIG. 2 is a diagram showing the arrangement relationship between a corner cube and a cylindrical mirror. FIG. 3 is a configuration diagram showing a laser rotary projector/receiver, and FIG. 4 is an explanatory diagram when the present invention is applied to a semi-fixed path type automatic guided vehicle guiding device. 1... Moving object, 2... Corner cube, 3...
Reflector, 4... Position measurement plane, 5... Laser rotation projector/receiver, 8... Laser light, 15... Reflected laser light,
L...distance, θ, θ gate...detection angle.

Claims (1)

【特許請求の範囲】[Claims] (1)移動物体の位置計測平面に対し平行な任意位置に
設置された1つの反射鏡と、この反射鏡の反射面の延長
線上で所定間隔で配置された1つのコーナキューブと、
上記移動物体に設けられて上記反射鏡およびコーナキュ
ーブにレーザ光を照射した際の各反射レーザ光を受光し
てコーナキューブと反射鏡との間の角度ならびに反射鏡
と移動物体の向きとの間の角度を検出するレーザ回転投
受光機とを備え、上記反射鏡からの反射レーザ光を受光
した際の移動物体と反射鏡までの距離ならびに上記両検
出角度とから移動物体の位置および方向を算出するよう
に構成したことを特徴とする移動物体の2次元位置およ
び方向計測装置。
(1) one reflecting mirror installed at an arbitrary position parallel to the position measurement plane of the moving object; one corner cube placed at a predetermined interval on an extension of the reflecting surface of this reflecting mirror;
Provided on the moving object to receive each reflected laser beam when the laser beam is irradiated to the reflecting mirror and the corner cube, and to detect the angle between the corner cube and the reflecting mirror and the direction of the reflecting mirror and the moving object. The position and direction of the moving object are calculated from the distance between the moving object and the reflecting mirror when receiving the reflected laser light from the reflecting mirror and the detection angles of both of the above. A two-dimensional position and direction measuring device for a moving object, characterized in that the device is configured to measure the two-dimensional position and direction of a moving object.
JP2288772A 1990-10-26 1990-10-26 2D position and direction measurement device for moving objects Expired - Fee Related JP2784480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2288772A JP2784480B2 (en) 1990-10-26 1990-10-26 2D position and direction measurement device for moving objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2288772A JP2784480B2 (en) 1990-10-26 1990-10-26 2D position and direction measurement device for moving objects

Publications (2)

Publication Number Publication Date
JPH04161813A true JPH04161813A (en) 1992-06-05
JP2784480B2 JP2784480B2 (en) 1998-08-06

Family

ID=17734518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2288772A Expired - Fee Related JP2784480B2 (en) 1990-10-26 1990-10-26 2D position and direction measurement device for moving objects

Country Status (1)

Country Link
JP (1) JP2784480B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020516866A (en) * 2017-03-31 2020-06-11 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Optical scanning system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020516866A (en) * 2017-03-31 2020-06-11 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Optical scanning system
US11079477B2 (en) 2017-03-31 2021-08-03 Robert Bosch Gmbh Optical scanning system

Also Published As

Publication number Publication date
JP2784480B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
CA2307206C (en) Method and device for association of anonymous reflectors to detected angle positions
EP0457548B1 (en) Computer aided positioning system and method
US4691446A (en) Three-dimensional position measuring apparatus
JPH1068635A (en) Optical position detector
JP2014215296A (en) Laser scanner for traveling object navigation
US4561778A (en) Apparatus for measuring the dimensions of cylindrical objects by means of a scanning laser beam
JP4172882B2 (en) Method and equipment for detecting position of moving object
EP0353302B1 (en) Non-contact profiling method
JPH04161813A (en) Apparatus for measuring two-dimensional position and direction of moving object
JP2784481B2 (en) 2D position and direction measurement device for moving objects
JP3982959B2 (en) Mobile body position detection equipment
US3562538A (en) Machine tool system and optical gauging apparatus therein
JPS6227406B2 (en)
JPS6015508A (en) Position measurement of moving body
JPH0215882B2 (en)
JPH11230746A (en) Position detection equipment for moving body
JPH10254542A (en) Guiding equipment for moving body
JPH07281740A (en) Method and device for detecting position of unmanned vehicle
JPH03105207A (en) Position detecting apparatus for moving object
JPH0363084B2 (en)
JPH0447209A (en) Optical distance measuring apparatus
JPH04372003A (en) Position measurement device for traveling object
JPH06147911A (en) Device for correcting direction of moving robot
JPH036416A (en) Measuring apparatus for distance using beamed light
JPH05172516A (en) Apparatus and method for automatically measuring position and attitude of moving body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees