JPH04160158A - Vacuum apparatus with atomic absorption device - Google Patents

Vacuum apparatus with atomic absorption device

Info

Publication number
JPH04160158A
JPH04160158A JP28539290A JP28539290A JPH04160158A JP H04160158 A JPH04160158 A JP H04160158A JP 28539290 A JP28539290 A JP 28539290A JP 28539290 A JP28539290 A JP 28539290A JP H04160158 A JPH04160158 A JP H04160158A
Authority
JP
Japan
Prior art keywords
vacuum
glass window
light
optical path
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28539290A
Other languages
Japanese (ja)
Inventor
Hirotoshi Hayakawa
博敏 早川
Etsuji Fujii
藤井 悦司
Hisayuki Kako
加耒 久幸
John Prince
ジョン プリンス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP28539290A priority Critical patent/JPH04160158A/en
Publication of JPH04160158A publication Critical patent/JPH04160158A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE: To drastically lessen the adhesion of the evaporated matter to a translucent glass window existing on an optical path connecting a light projector and a light receiver by providing this glass window with a structure consisting of plural pipes on the side of the window to be exposed to vacuum so as to satisfy specific conditions.
CONSTITUTION: The concn. of vapor is detected by the light projector 3 and the light receiver 4 at the time of executing deposition on a substrate 9 by heating an evaporation source 7 in vacuum within a vacuum chamber 10. At this time, the surface on the side to be exposed to the vacuum of the translucent glass window 2 existing on the optical path 5 existing on the light projector 3 and the light receiver 4 is provided with the honeycomb-shaped structure 1 formed by welding the plural pipes. The structure 1 is so formed as to satisfy the relation L/D>l>h when the horizontal distance from the bottom end in the aperture of the pipe of the lowermost part to the evaporation source 7 is defined as l, the perpendicular distance as (h), the max. length in the perpendicular direction in the apertures of the pipes as D and the length of the pipes as L. In addition, the structure is so formed that the ratio of the sectional area shielding the optical path 5 attains ≤75%. As a result, the adhesion of the evaporated matter on the glass window 2 is drastically lessened and the vacuum vapor deposition apparatus having the excellent accuracy and reliability is obtd.
COPYRIGHT: (C)1992,JPO

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発胡は、真空中における薄膜作製あるいは元素分析の
た約に原子吸光装置を具備した真空装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vacuum apparatus equipped with an atomic absorption spectrometer for thin film production or elemental analysis in vacuum.

〔従来の技術〕[Conventional technology]

センサ技術vow、10. No、8 (1990年7
月号)ニ示されているように、従来から原子吸光法によ
って真空蒸着中の元素の蒸気濃度を検出する成膜コント
ローラ付き真空装置が発表されている。この真空装置は
、付属している原子吸光装置により、蒸発速度の制御が
可能であり、複数の吸光装置を用いれば多元素の同時蒸
着、交互蒸着の組成制御が可能となる。
Sensor technology vow, 10. No. 8 (July 1990
As shown in the previous issue, vacuum equipment equipped with a film deposition controller that detects the vapor concentration of elements during vacuum deposition using atomic absorption spectrometry has been announced. This vacuum apparatus can control the evaporation rate by using an attached atomic absorption device, and by using a plurality of light absorption devices, it is possible to control the composition of multiple elements in simultaneous vapor deposition and alternate vapor deposition.

第5図は、従来法の原子吸光装置付き真空蒸着装置の構
成を示したものである。同図において、2は透光ガラス
窓、3は投光器、4は受光器、7は蒸発源、8は電子ビ
ームガン、9は蒸着される基板、10は真空チャンバ、
15は防着シリンダ、16は電子ビーム電源、17はコ
ンピュータ、18はシステムコントローラ、19はディ
テクタである。
FIG. 5 shows the configuration of a conventional vacuum evaporation apparatus equipped with an atomic absorption device. In the figure, 2 is a transparent glass window, 3 is a projector, 4 is a light receiver, 7 is an evaporation source, 8 is an electron beam gun, 9 is a substrate to be evaporated, 10 is a vacuum chamber,
15 is an anti-stick cylinder, 16 is an electron beam power source, 17 is a computer, 18 is a system controller, and 19 is a detector.

本装置においては、蒸着速度は投光器3、受光器4から
なる原子吸光装置により真空チャンバl。
In this apparatus, the deposition rate is controlled by an atomic absorption device consisting of a light emitter 3 and a light receiver 4 in a vacuum chamber l.

内で蒸発源から蒸発中の元素の蒸気量を計測し、蒸発源
加熱用の電子ビーム電源16等のパワーをコントロール
することで制御できる。
This can be controlled by measuring the amount of vapor of the element being evaporated from the evaporation source within the evaporation source and controlling the power of the electron beam power source 16 or the like for heating the evaporation source.

この原子吸光装置では、光軸上にある透光ガラス窓2に
蒸発物が付着すると光量が低下し、誤った信号が得られ
るため、従来は1本のパイプからなる防着ンリンダ15
が透光ガラス窓2に取り付けられていた。
In this atomic absorption device, if evaporated matter adheres to the transparent glass window 2 on the optical axis, the amount of light decreases and an erroneous signal is obtained.
was attached to the transparent glass window 2.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、従来から用いられていた防着ンリンダ15は
蒸発物の付着を防止する効果が少ないため、連続して使
用すると投光器3と受光器4を結ぶ光路上にある透光ガ
ラス窓2の真空に曝される側の表面に蒸発物が付着する
。そのため、投光器3がらの光量が時間とともに変化し
、測定に誤差を生じ易かった。
However, the anti-adhesive cylinder 15 that has been used in the past has little effect in preventing the adhesion of evaporated matter, so if it is used continuously, it may cause the vacuum of the transparent glass window 2 on the optical path connecting the emitter 3 and the receiver 4. Evaporated matter adheres to the exposed surface. Therefore, the amount of light from the projector 3 changes over time, which tends to cause errors in measurement.

したがって従来技術では、蒸着時間を短くしたり、測定
中に較正を行うなどの必要があり、連続して長時間原子
吸光装置を使えないという問題があった。
Therefore, in the conventional technology, it is necessary to shorten the deposition time or perform calibration during measurement, and there is a problem that the atomic absorption spectrometer cannot be used continuously for a long time.

また、従来用いられていた1個のパイプからなる防着ン
リンダ15においては蒸発物の付着防止効果を上げるた
めにパイプ径を小さくすると光量の減少による検出感度
の低下や光軸合わせが困難となるという問題があった。
In addition, in the conventional anti-adhesive cylinder 15 consisting of a single pipe, if the diameter of the pipe is made small in order to increase the effect of preventing adhesion of evaporated matter, the detection sensitivity will decrease due to a decrease in the amount of light, and alignment of the optical axis will become difficult. There was a problem.

そこで本発明は、検出感度を低下させたり光軸合わせの
困離さを伴うことなく透光ガラス窓への蒸着物の付着を
著しく減少させることを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to significantly reduce the adhesion of vapor deposits to a light-transmitting glass window without reducing detection sensitivity or making it difficult to align optical axes.

〔課題を解決するための手段〕[Means to solve the problem]

この目的を達成するため、木発卯の原子吸光装置付き真
空装置は、真空中で加熱蒸発させた物質を構成する元素
の蒸気濃度を検出するための、投光器と受光器を備えた
原子吸光装置を有する真空装置において、前記投光器と
受光器を結ぶ光路上にある透光ガラス窓の真空に曝され
る側の表面又は表面近傍に、複数のパイプからなり、蒸
発源から最下部のパイプの開口部下端までの水平距離を
1、垂直距離をhとしたときに、前記パイプの開口部の
垂直方向最大長さDと前記パイプの長さLとの比(L/
D)  が、 L/D>l/h・・・・・・・・・(1)式の関係を満
たし、しかも光路を遮る断面積の比率が75%以下の構
造物を備えていることを特徴とする。
To achieve this purpose, Mokubo's vacuum equipment with atomic absorption device is an atomic absorption device equipped with an emitter and a light receiver to detect the vapor concentration of the elements that make up the substance heated and evaporated in vacuum. In a vacuum apparatus having a plurality of pipes, the opening of the lowest pipe is located on or near the surface of the transparent glass window on the side exposed to vacuum on the optical path connecting the emitter and the receiver. When the horizontal distance to the lower end is 1 and the vertical distance is h, the ratio of the maximum vertical length D of the opening of the pipe to the length L of the pipe (L/
D) is equipped with a structure that satisfies the relationship of L/D>l/h (1) and has a cross-sectional area ratio of 75% or less that blocks the optical path. Features.

〔作用〕[Effect]

真空中において加熱蒸発された蒸発物質の蒸気は残留ガ
スとの衝突がなければ蒸発源を中心とした球状に広ヴっ
て運動することが知られている。
It is known that the vapor of an evaporated substance heated and evaporated in a vacuum moves in a spherical and widespread manner around the evaporation source unless it collides with residual gas.

そこで第4図に示すように垂直方向の開口部長さの最大
値がDで長さがLであるパイプを、蒸発源からパイプの
開口部下端までの水平距離がβ、垂直距離がhであると
きに、(1)式の関係を満足するように透光ガラス窓2
の真空に曝される面側に取り付1すると、蒸発源7から
直接飛来する蒸発物はパイプの壁で遮られるためガラス
窓まで到達しない。
Therefore, as shown in Figure 4, for a pipe whose maximum vertical opening length is D and length L, the horizontal distance from the evaporation source to the lower end of the pipe opening is β, and the vertical distance is h. Sometimes, the light-transmitting glass window 2 is
If the pipe is attached to the side exposed to vacuum (1), the evaporated matter flying directly from the evaporation source 7 will be blocked by the wall of the pipe and will not reach the glass window.

また、一般の真空蒸着は10−4〜1O−6Torrの
圧力中で行われるため、残留ガスが無視できず、蒸発し
た原子や分子の中には残留ガスと衝突してさまざまな方
向に進むものが−ある。このため、これらの原子1分子
についても透光ガラス窓2への付着を防止する必要があ
る。
In addition, since general vacuum evaporation is performed at a pressure of 10-4 to 1O-6 Torr, residual gas cannot be ignored, and some evaporated atoms and molecules collide with the residual gas and move in various directions. There is. Therefore, it is necessary to prevent even one molecule of these atoms from adhering to the transparent glass window 2.

本発明においては、パイプを複数にすることにより、パ
イプ壁面とこれらの原子1分子との衝突頻度を増やすこ
とができ、蒸発物の透光ガラスへの付着を防止できる。
In the present invention, by providing a plurality of pipes, it is possible to increase the frequency of collisions between the pipe wall surface and one molecule of these atoms, and it is possible to prevent evaporated substances from adhering to the transparent glass.

なお、真空装置によっては蒸発源7を上方に置くタイプ
もあるが、これは第4図を上下逆にした場合に相当し、
この場合も垂直方向の開口長さがり、長さがLの2個以
上のパイプからなる構造物を(1)式の関係を満たすよ
うに透光ガラス窓の真空側に取り付けることにより、蒸
発物のガラス窓への付着を防止できる。
Note that some vacuum devices have the evaporation source 7 placed above, but this corresponds to the case where Fig. 4 is turned upside down.
In this case, the vertical opening length is also reduced, and by attaching a structure consisting of two or more pipes of length L to the vacuum side of the light-transmitting glass window so as to satisfy the relationship of equation (1), the evaporated material can be removed. Prevents adhesion to glass windows.

本発明においては、複数のパイプからなる構造物を取り
付けたときに、投光器からの光量を75%以上は遮らな
いように構造物の断面積を調整しているので、光量減少
による検出感度の低下は生じない。また、光路全体の直
径は構造物の取付後も変化しないため、光軸の調整も容
易である。
In the present invention, when a structure consisting of a plurality of pipes is installed, the cross-sectional area of the structure is adjusted so as not to block more than 75% of the light intensity from the projector, so the detection sensitivity decreases due to the decrease in light intensity. does not occur. Furthermore, since the diameter of the entire optical path does not change even after the structure is attached, adjustment of the optical axis is easy.

〔実施例〕〔Example〕

以下、本発明の実施例について図を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図に本発明の実施例を示す。同図において、第5図
に示した従来例と同様の機能を有する構成要素について
は同一符号を付して説明を省略する。
FIG. 1 shows an embodiment of the present invention. In the figure, components having the same functions as those of the conventional example shown in FIG. 5 are designated by the same reference numerals, and the explanation thereof will be omitted.

同図中l、は真空ポンプである。In the figure, l is a vacuum pump.

第1図においては投光器3と受光器4を結ぶ光路5上に
複数の角形パイプを溶接したハニカム状構造物1を設け
ている。1個のパイプの寸法は垂直方向の開口部最大長
さDが4mm、長さしが5Qmmてあり、これを40本
溶接している。L/Dの値はβ/hの8倍に設定し、構
造物の断面積は光路の10%が遮られるようにした。
In FIG. 1, a honeycomb-like structure 1 made of a plurality of rectangular pipes welded is provided on an optical path 5 connecting a light emitter 3 and a light receiver 4. One pipe has dimensions such that the maximum vertical opening length D is 4 mm and the length is 5 Q mm, and 40 pipes are welded together. The value of L/D was set to eight times β/h, and the cross-sectional area of the structure was such that 10% of the optical path was blocked.

蒸着源として銅を使用し、電子ビームガンから電子ビー
ムを照射することにより、銅を蒸発させた。このとき蒸
発した銅蒸気の濃度により、投光器3から投入した光の
量が変化した。この光量の変化を従来装置と同様に受光
器4とディテクタによって電気信号の変化に変模し、コ
ンピュータとのインターフェース機能を有するンステム
コントローラを通してコンピュータへ人力した。コンピ
ュータでは、入力信号を蒸着速度に換算した後、蒸着速
度の設定値との比較を行い、電子ビームのパワーの増減
分の判断を行って、システムコントローラを通して電子
ビーム電源のパワーを制御した。これにより、一定の蒸
発速度(2人/5ec)  での蒸着が可能であった。
Copper was used as a deposition source and was evaporated by irradiating an electron beam from an electron beam gun. At this time, the amount of light input from the projector 3 changed depending on the concentration of the evaporated copper vapor. Similar to the conventional device, this change in the amount of light was transformed into a change in electrical signals by the light receiver 4 and the detector, and was input manually to the computer through a system controller having an interface function with the computer. The computer converted the input signal into a deposition rate, compared it with the set value of the deposition rate, determined the amount of increase or decrease in the electron beam power, and controlled the power of the electron beam power source through the system controller. This enabled vapor deposition at a constant evaporation rate (2 persons/5 ec).

本実施例では、ハニカム状構造物1の設置により、第2
図に示される蒸発原子20のような残留ガスとの衝突に
よって進路が曲げられた蒸発分子で原子吸光の光路5 
(第1図参照)と平行でない原子についても透光ガラス
窓2への付着がなくなった。なお、第2図において12
は透光ガラス窓2を保持具14に固定するためのねじ、
13は気密を保つための0リングである。
In this embodiment, by installing the honeycomb structure 1, the second
Optical path 5 of atomic absorption with evaporated molecules whose course is bent by collision with residual gas, such as the evaporated atoms 20 shown in the figure.
(See FIG. 1) Even atoms that were not parallel to the surface no longer adhered to the light-transmitting glass window 2. In addition, in Figure 2, 12
is a screw for fixing the transparent glass window 2 to the holder 14;
13 is an O-ring for maintaining airtightness.

第3図は銅を蒸発速度2人/secで蒸発させたときの
従来の装置と本発明の装置の原子吸光装置における出力
信号の時間依存性を比較した結果を示す。従来の装置で
は約10分で原子吸光の信号が約10%低下したが、本
発明の装置では1%以下であった。さらに30分後には
、従来型では30%以上の低下が見られたが、本発明の
装置では2%以下と小さかった。
FIG. 3 shows the results of a comparison of the time dependence of the output signal in the atomic absorption apparatus of the conventional apparatus and the apparatus of the present invention when copper is evaporated at an evaporation rate of 2 persons/sec. In the conventional device, the atomic absorption signal decreased by about 10% in about 10 minutes, but in the device of the present invention, the decrease was less than 1%. After a further 30 minutes, a decrease of 30% or more was observed in the conventional device, but the decrease was as small as 2% or less in the device of the present invention.

したがって本発明の原子吸光装置付き真空装置は、銅に
限らず他の種類の金属材料やセラミック材料などの蒸着
においても連続してしかも少ない誤差で使用でき、かつ
測定中に較正をほとんど必要としない。
Therefore, the vacuum device equipped with an atomic absorption device of the present invention can be used continuously and with little error for vapor deposition of not only copper but also other types of metal materials and ceramic materials, and almost no calibration is required during measurement. .

本実施例は薄膜作製を対象とした原子吸光装置付き真空
装置であったが、真空中で未知の材料を加熱蒸発させ、
これを原子吸光装置を使って化学分析する場合にも本発
明の真空装置が有効であることは明らかである。
In this example, a vacuum device equipped with an atomic absorption device was used for thin film production, but an unknown material was heated and vaporized in vacuum.
It is clear that the vacuum apparatus of the present invention is also effective when chemically analyzing this using an atomic absorption spectrometer.

また本実施例では角形パイプ′のみを取り上げているが
、パイプの形状はこれに限定されるものではなく、円形
、三角形、六角形等のパイプを複数。
Further, although only a rectangular pipe is used in this embodiment, the shape of the pipe is not limited to this, and a plurality of circular, triangular, hexagonal, etc. pipes may be used.

個束ねた構造物を透光ガラス窓に取り付けた場合も本実
施例と同様の効果が得られることは明らかである。
It is clear that the same effect as in this embodiment can be obtained also when a bundled structure is attached to a light-transmitting glass window.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば原子吸光装置の光路
上にあるガラス窓への蒸発物の付着が著しく少なくなる
。このため原子吸光装置の投光器からの入射光の光量低
下による測定誤差がほとんど生じず、測定中に較正した
り、蒸着時間を短くする必要がなくなる。このため、原
子吸光装置からの信号を用いて成膜速度をコンピュータ
によって制御したり、複数の投光器と受光器を用いて多
成分からなる薄膜を組成をコントロールしながら蒸着す
る装置へ本発明を適用することにより、精度と信頼性に
優れた真空蒸着装置を製造することができる。
As described above, according to the present invention, the adhesion of evaporated matter to the glass window on the optical path of the atomic absorption device is significantly reduced. Therefore, almost no measurement error occurs due to a decrease in the amount of incident light from the projector of the atomic absorption device, and there is no need to calibrate during measurement or shorten the deposition time. For this reason, the present invention is applied to equipment that uses signals from an atomic absorption device to control the film deposition rate using a computer, or that uses multiple emitters and receivers to deposit thin films made of multiple components while controlling the composition. By doing so, a vacuum evaporation apparatus with excellent accuracy and reliability can be manufactured.

また、真空中で加熱蒸発することにより、未知材料の成
分を分析する装置においても本発明を適用することによ
り、精度と再現性に優れた装置とすることができる。
Further, by applying the present invention to an apparatus that analyzes the components of an unknown material by heating and evaporating it in a vacuum, it is possible to obtain an apparatus with excellent accuracy and reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原子吸光装置付き真空装置の実施例の
構成を示す概略図、第2図は本発明の要部拡大図、第3
図は本発明の効果を従来装置と比較して示すグラフ、第
4図は本発明における蒸発物原子と残留ガス分子の振る
舞いを示す説明図、第5図は従来の原子吸光装置付き真
空装置の構成を示す概略図である。 1:ハニカム状構造物 2:透光ガラス窓3:投光器 
     4:受光器 5:光路       6:蒸発物 7:蒸着源      8:電子ビームガン9:基板 
      10:真空チャンバl、:真空ポンプ  
  12:ねじ 】3:Oリング     14:保持具20:蒸発原子 特許出願人 株式会社安川電機製作所(ほか1名)代 
 理  人     小  堀   益第5図 第1図 IIB図 函 4時間1介ン 第2図 第4図 。柔
FIG. 1 is a schematic diagram showing the configuration of an embodiment of a vacuum apparatus with an atomic absorption device according to the present invention, FIG. 2 is an enlarged view of the main parts of the present invention, and FIG.
Figure 4 is a graph showing the effects of the present invention in comparison with a conventional device, Figure 4 is an explanatory diagram showing the behavior of evaporated atoms and residual gas molecules in the present invention, and Figure 5 is a graph showing the effects of the conventional vacuum apparatus equipped with an atomic absorption device. FIG. 2 is a schematic diagram showing the configuration. 1: Honeycomb structure 2: Transparent glass window 3: Floodlight
4: Photoreceiver 5: Optical path 6: Evaporated material 7: Evaporation source 8: Electron beam gun 9: Substrate
10: Vacuum chamber l: Vacuum pump
12: Screw] 3: O-ring 14: Holder 20: Evaporation atom patent applicant Yaskawa Electric Co., Ltd. (and one other person) representative
Masato Kobori Figure 5 Figure 1 Figure IIB Figure 4 hours 1 intervention Figure 2 Figure 4. Soft

Claims (1)

【特許請求の範囲】[Claims] 1.真空中で加熱蒸発させた物質を構成する元素の蒸気
濃度を検出するための、投光器と受光器を備えた原子吸
光装置を有する真空装置において、前記投光器と受光器
を結ぶ光路上にある透光ガラス窓の真空に曝される側の
表面又は表面近傍に、複数のパイプからなり、蒸発源か
ら最下部のパイプの開口部下端までの水平距離をl、垂
直距離をhとしたときに、前記パイプの開口部の垂直方
向最大長さDと前記パイプの長さLとの比(L/D)が
、L/D>l/hの関係を満たし、しかも光路を遮る断
面積の比率が75%以下の構造物を備えていることを特
徴とする原子吸光装置付き真空装置。
1. In a vacuum apparatus having an atomic absorption device equipped with a light emitter and a light receiver for detecting the vapor concentration of an element constituting a substance heated and evaporated in vacuum, a light-transmitting device on an optical path connecting the light emitter and the light receiver. It consists of a plurality of pipes on the surface or near the surface of the glass window exposed to vacuum, where the horizontal distance from the evaporation source to the lower end of the opening of the lowest pipe is l, and the vertical distance is h. The ratio (L/D) of the vertical maximum length D of the opening of the pipe to the length L of the pipe satisfies the relationship L/D>l/h, and the ratio of the cross-sectional area that blocks the optical path is 75 % or less of a structure.
JP28539290A 1990-10-22 1990-10-22 Vacuum apparatus with atomic absorption device Pending JPH04160158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28539290A JPH04160158A (en) 1990-10-22 1990-10-22 Vacuum apparatus with atomic absorption device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28539290A JPH04160158A (en) 1990-10-22 1990-10-22 Vacuum apparatus with atomic absorption device

Publications (1)

Publication Number Publication Date
JPH04160158A true JPH04160158A (en) 1992-06-03

Family

ID=17690945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28539290A Pending JPH04160158A (en) 1990-10-22 1990-10-22 Vacuum apparatus with atomic absorption device

Country Status (1)

Country Link
JP (1) JPH04160158A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6712927B1 (en) * 1998-06-11 2004-03-30 Applied Materials Inc. Chamber having process monitoring window
JP2012052180A (en) * 2010-08-31 2012-03-15 Fujifilm Corp Apparatus for measuring vapor deposition flux, and vacuum vapor deposition device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6712927B1 (en) * 1998-06-11 2004-03-30 Applied Materials Inc. Chamber having process monitoring window
JP2012052180A (en) * 2010-08-31 2012-03-15 Fujifilm Corp Apparatus for measuring vapor deposition flux, and vacuum vapor deposition device

Similar Documents

Publication Publication Date Title
US7435300B2 (en) Dynamic film thickness control system/method and its utilization
US7321424B2 (en) Self-referencing instrument and method thereof for measuring electromagnetic properties
KR102182057B1 (en) Plasma oes diagnostic window systen, method of calibrating plasma oes value and window for plasma oes diagnosis
JP2560362B2 (en) Multiple reflector
JPH04160158A (en) Vacuum apparatus with atomic absorption device
US4676883A (en) Optical disk transmission monitor for deposited films
CN85104270A (en) Gas analyzer
US5247188A (en) Concentrator funnel for vacuum line particle monitors
CN111630367B (en) Spectrum analysis device, spectrum analysis method, steel strip manufacturing method, and steel strip quality assurance method
CN210071648U (en) Triple optical path air chamber and gas detection equipment
JP2005520132A (en) Method and apparatus for polarization measurement of sample characteristic parameters
JPH06172977A (en) Atomic-absorption type vapor deposition rate sensor
US4103163A (en) Infrared gas analyzing apparatus
CN111081584B (en) Spectrometer-based ion etching end point detection device and etching system using same
Jennings et al. A gas Čerenkov detector for the accurate determination of electron beam energy
JPH07253373A (en) Density measuring apparatus of fluid and semiconductor manufacturing apparatus
JPH1137847A (en) Narrow-field thermistor bolometer
Barbera et al. Simple gas scintillation proportional counter soft x-ray detector for laboratory usage
SU1346946A1 (en) Device for checking film thickness in course of applying it on large-size optical component
JPH0720046A (en) Infrared spectroscopic cell for liquid chromatography
KR820001024B1 (en) Pneumatie infrared analyzer of the single beam type
JPH05240783A (en) Spectrophotometer
KR20020005314A (en) Revised method for surface photoabsorption measurement
SU1053600A1 (en) Target adjusting device
JPS6177708A (en) Method and apparatus for measuring diameter of particle in silicon film