JPH04160127A - Manufacture of parts composed of particle dispersed composite material - Google Patents

Manufacture of parts composed of particle dispersed composite material

Info

Publication number
JPH04160127A
JPH04160127A JP28632190A JP28632190A JPH04160127A JP H04160127 A JPH04160127 A JP H04160127A JP 28632190 A JP28632190 A JP 28632190A JP 28632190 A JP28632190 A JP 28632190A JP H04160127 A JPH04160127 A JP H04160127A
Authority
JP
Japan
Prior art keywords
preform
molten metal
alloy
composite material
ceramic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28632190A
Other languages
Japanese (ja)
Inventor
Satoru Ishizuka
哲 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP28632190A priority Critical patent/JPH04160127A/en
Publication of JPH04160127A publication Critical patent/JPH04160127A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To obtain a composite material having high density and excellent hardness, wear resistance, heat resistance, strength, fatigue strength and Young's modulus by incorporating ceramic particles into a die, pressurizing to form a preform, pouring molten metal for matrix and immediately pressurizing. CONSTITUTION:The preheated ceramic particles 10 are incorporated into a side die 1 having outer shape of valve retainer, etc., in the inner wall thereof. The particles together with the die are pressurized with an upper punch 3 and a lower punch 2 to form the preform 4. The molten metal 6 of Al alloy or Mg alloy is supplied on the upper part of the preform 4 and immediately pressurized with the upper punch 3. The molten metal is penetrated among the ceramic particles 10 to form the parts composed of particle dispersed composite material. The part composed of only the matrix alloy at the upper part of the obtd. composite part 8 is removed by cutting and a through-hole is finish-worked to complete the valve retainer.

Description

【発明の詳細な説明】 a、 産業上の利用分野 本発明は^!合金またはMg合金をマトリックスとして
、高硬度のセラミックス粒子を均一に分散複合化した自
動車部品、特にエンジン用のバルブリテーナ−などの複
合材料からなる部品の製造方法に関する。
[Detailed Description of the Invention] a. Industrial Application Field The present invention is ^! The present invention relates to a method for manufacturing automobile parts, particularly parts made of composite materials such as valve retainers for engines, in which high-hardness ceramic particles are uniformly dispersed and composited using an alloy or Mg alloy as a matrix.

b、 従来の技術 複合材料に関し、次のような従来技術が知られている。b. Conventional technology Regarding composite materials, the following conventional techniques are known.

たとえば、SiCやCなどの繊維やウィスカーでプリフ
ォームを製作し、これを金型内にセットしたあと、Al
合金などの溶湯を注いで、プリフォームに加圧含浸させ
ることで複合材料(FRM)  とする方法である。
For example, after making a preform using fibers or whiskers such as SiC or C, and setting this in a mold,
This is a method to create a composite material (FRM) by pouring molten metal such as an alloy and impregnating it into a preform under pressure.

また、SiCやCなどの粒子を、完全溶融、または部分
溶融の溶湯に添加し、これに機械的攪拌を与えて複合材
料(MMC) とするコンポキャスト法がある。
There is also a composite casting method in which particles of SiC, C, etc. are added to a completely or partially melted molten metal and mechanically stirred to form a composite material (MMC).

さらにSiCやCなどの粒子とAI!合金等の粉末とを
混合し、静水圧圧縮や熱間押出し、または焼結等によっ
て複合材料を製造する方法(粉末冶金法)が広くおこな
われている。
Furthermore, particles such as SiC and C and AI! A widely used method (powder metallurgy method) is to mix powders such as alloys and produce composite materials by hydrostatic compression, hot extrusion, sintering, or the like.

また、5iC4’Cなどの粒子と^1合金等の粉末を混
合し、これに熱間で機械的攪拌を与えて、合金粉末中に
SiCやCなどの粒子を練り込み、粒子分散複合材料と
する方法(メカニカルアロイング法)がある。
In addition, particles such as 5iC4'C and powders such as ^1 alloy are mixed, and this is mechanically stirred under hot conditions to knead particles such as SiC and C into the alloy powder, resulting in a particle-dispersed composite material. There is a method (mechanical alloying method).

また、自動車部品であるエンジンのバルブリテーナ−は
、通常、鉄系材料、例えばJIS 520Cや、JIS
 5Cr415などを用い、調質や浸炭焼入・焼戻しな
どの熱処理を施している。
In addition, engine valve retainers, which are automobile parts, are usually made of iron-based materials, such as JIS 520C or JIS
Using 5Cr415 etc., heat treatments such as refining, carburizing and quenching, and tempering are performed.

其他AlMg合金を使用したダイキャスト法や溶湯鋳造
法によって各種部品を製造することが一般に行われてい
る。
In addition, various parts are generally manufactured by a die casting method or a molten metal casting method using an AlMg alloy.

C1発明が解決しようとする課題 SiCやCなどの繊維やウィスカーは高価であり、また
、これらを用いておこなうプリフォームの製作には手間
がかかり、製品コストが高くなるという欠点がある。
C1 Problems to be Solved by the Invention Fibers and whiskers such as SiC and C are expensive, and manufacturing a preform using them is labor-intensive, resulting in high product costs.

また、前記コンポキャスト法においては、溶湯に添加す
る粒子に濡れ性の良いものを用いても、むらな(均一に
分散させるためには、溶湯に対する添加割合は20−t
%が上限であり、これ以上の添加は困難である。
In addition, in the above-mentioned composite casting method, even if particles with good wettability are used as particles added to the molten metal, they are uneven (in order to disperse uniformly, the addition ratio to the molten metal is 20-t).
% is the upper limit, and it is difficult to add more than this.

さらに粉末冶金に用いる合金粉末は製造が難しく、その
ため高価であり、また複合材料として完成するまでの工
程が多くかかるという欠点がある。
Furthermore, the alloy powder used in powder metallurgy is difficult to manufacture and therefore expensive, and has the disadvantage that it takes many steps to complete it as a composite material.

そして押出しの方法で製造するため、単純形状に限られ
てしまうという問題がある。
Since it is manufactured by extrusion, there is a problem in that it is limited to simple shapes.

また、メカニカルアロイング法に用いる合金粉末は、前
述のように高価であり、混合割合も50wt%程度が限
度であり、製品製造には押出し工程が必要で、前記粉末
冶金と同様な問題点がある。
In addition, the alloy powder used in the mechanical alloying method is expensive as mentioned above, the mixing ratio is limited to about 50 wt%, and an extrusion process is required to manufacture the product, which has the same problems as the powder metallurgy. be.

一方、前記のようなバルブリテーナ−に鉄系部品を用い
た場合、重くなり動弁系部品としては発生荷重(p=−
・a)が大きくなるため、機能的に不利となるという問
題がある。
On the other hand, when iron parts are used for the valve retainer as described above, it becomes heavy and the generated load (p=-
- Since a) becomes large, there is a problem that it becomes functionally disadvantageous.

また、通常の^1合金やMg合金ではヤング率、硬さな
どの機械的性質が低く、特に動弁系部品にそのまま適用
することはできない。
In addition, ordinary ^1 alloys and Mg alloys have low mechanical properties such as Young's modulus and hardness, and cannot be applied directly to valve train parts in particular.

本発明は、前記事情に鑑みてなされたもので、前記問題
点を解消し、特にセラミックス粒子を分散複合化した部
品の製造方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and aims to solve the above-mentioned problems and, in particular, to provide a method for manufacturing parts in which ceramic particles are dispersed and composited.

d、 課題を解決するための手段 前記目的に添い、本発明は、部品の外形形状を内壁に形
成した金型を設け、この金型内にセラミックス粒子を収
容加圧して予成形体を形成したあと、そのまま、これに
^lまたはMgのマトリックス合金の溶湯を注ぎ、直ち
に加圧して、予成形体内に溶湯を浸透させることによっ
て前記課題を解消した。
d. Means for Solving the Problems In accordance with the above object, the present invention provides a mold in which the outer shape of the component is formed on the inner wall, and forms a preformed body by housing and pressurizing ceramic particles in the mold. Then, the above-mentioned problem was solved by pouring the molten metal of ^l or Mg matrix alloy into the preform and applying pressure immediately to infiltrate the molten metal into the preform.

以下、本発明の実施例について、図面を参照しながら詳
細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明において使用する金型を概念的に図示し
たもので、製造する部品、例えばバルブリテーナ−の外
形形状を、その内壁とした横金型lと、該横金型Mgの
中央底部に嵌接した下パンチ2と、下バンチ2の上方に
あって横金型1に上方から嵌入する上パンチ3とから構
成されている。
FIG. 1 conceptually illustrates the molds used in the present invention, including a horizontal mold L whose inner wall has the external shape of a component to be manufactured, for example, a valve retainer, and a center of the horizontal mold Mg. It is composed of a lower punch 2 fitted to the bottom, and an upper punch 3 located above the lower bunch 2 and fitted into the horizontal mold 1 from above.

下パンチ2は製造するバルブリテーナ−の中央の貫通孔
を形成するため、バー部2aを立設しである。
The lower punch 2 has a bar portion 2a erected in order to form a central through hole of the valve retainer to be manufactured.

使用する複合用の添加材料は、SiC+^j!□0.。The composite additive material used is SiC+^j! □0. .

Si嵩Na、TiCt WC+ Zr0t等の硬度の高
いセラミックス粒子を用いる。このセラミックスの粒子
径(平均粒子径)は0.01〜30μ腸の範囲のものを
用いる。
Ceramic particles with high hardness such as Si bulk Na, TiCt WC+Zr0t, etc. are used. The particle size (average particle size) of this ceramic is in the range of 0.01 to 30 microns.

粒子径が0.01μ−未満のものは製造が難しく高価で
あり、かつ均一な複合化が困難である。また、粒子径が
30μmを越えると、これを用いて製造した部品の強度
の改善が期待できない。
Particles with a particle diameter of less than 0.01 μ are difficult and expensive to manufacture, and are difficult to form into a uniform composite. Furthermore, if the particle size exceeds 30 μm, no improvement in the strength of parts manufactured using the particles can be expected.

マトリックス合金には、へE合金、 Mg合金のたとえ
ばJISニア075. MP 5などを用いる。
Matrix alloys include He-E alloy and Mg alloy such as JIS Near 075. Use MP5 etc.

まず、セラミックス粒子を、そこに含まれている水分を
除去するためと、後に添加する合金溶湯が浸入し易いよ
うにするため、300〜900℃の温度で予熱する。こ
の予熱温度が300℃未満の場合であると接触した溶湯
がすぐ凝固してしまうため、セラミックス粒子内へ充分
浸透しない、また、900℃を越えて予熱すると溶湯が
凝固するまでに時間がかかり、そのためセラミックス粒
子中の一部成分(たとえば遊離Cなど)と溶湯の^!な
どが反応して化合物(たとえばA j! scaなと)
を作るため好ましくない。
First, the ceramic particles are preheated at a temperature of 300 to 900° C. in order to remove moisture contained therein and to make it easier for molten alloy to be added later to penetrate. If the preheating temperature is less than 300°C, the molten metal that comes into contact with it will solidify immediately and will not penetrate into the ceramic particles sufficiently.If the preheating temperature exceeds 900°C, it will take time for the molten metal to solidify. Therefore, some components in the ceramic particles (such as free C) and the molten metal ^! etc. react to form a compound (for example, A j! sca)
This is not desirable because it creates

まず、前記横金型1及び下バンチ2は、収容するセラミ
ックス粒子が急冷されないように予め加熱しておく、即
ち第1図(萄に示すように温度100〜400℃に加熱
した横金型1内に、セラミックス粒子10を収容したあ
と、これを同図(b)に示すように上バンチ3と下バン
チ2とによって1〜100100O0/C4の圧力P、
で加圧し、セラミックス粒子の予成形体4を形成する。
First, the horizontal mold 1 and the lower bunch 2 are heated in advance so that the ceramic particles to be accommodated are not rapidly cooled. After accommodating the ceramic particles 10 in the chamber, as shown in FIG.
Pressure is applied to form a preformed body 4 of ceramic particles.

ここで圧力P1が1 kgf/cj未満の場合は予成形
体に強度かえられず、後の工程で変形したり、壊れたり
する。また、圧力P、が10000 kgf/c+4を
越えると、粒子密度が高くなりすぎたり、後の工程で添
加する溶湯が浸透しにくくなり、また金型自体の強度上
の問題も発生する。
Here, if the pressure P1 is less than 1 kgf/cj, the strength of the preformed body will not be increased, and it will be deformed or broken in a later process. Furthermore, if the pressure P exceeds 10,000 kgf/c+4, the particle density becomes too high, the molten metal added in a later step becomes difficult to penetrate, and problems arise in the strength of the mold itself.

次に、^1合金またはh合金を660〜850 ”Cに
加熱して溶融した溶湯6を、同図(C)に示すように横
金型1内の前記予成形体4の上部に給湯する。
Next, molten metal 6 made by heating ^1 alloy or h alloy to 660 to 850''C is supplied to the upper part of the preformed body 4 in the horizontal mold 1, as shown in the same figure (C). .

次に、同図(切に示すようにその上部がら上パンチ3に
よって100〜100100O0/dの圧力Ptテ加圧
する。ここで圧力P、が100kgf/cj未満の場合
は、セラミックス粒子の間への溶湯の浸透は充分ではな
く、また100100O0/dを越えると金型の強度に
問題を生ずる。
Next, as shown in the same figure, a pressure Pt of 100 to 100,100 O0/d is applied using the upper punch 3. If the pressure P is less than 100 kgf/cj, the gap between the ceramic particles is Penetration of the molten metal is not sufficient, and if it exceeds 100,100 O0/d, problems will arise in the strength of the mold.

このようにして製造されたバルブリテーナ−は、予成形
体4を形成したセラミックス粒子の層の間隙にマトリッ
クス合金の溶湯6が浸透して、そこで粒子分散複合部8
が形成され、上部には削り代となる複合化されていない
マトリックス合金のみからなる構成のバルブリテーナ−
が得られる。
In the valve retainer manufactured in this way, the molten metal 6 of the matrix alloy penetrates into the gaps between the layers of ceramic particles forming the preformed body 4, and there, the particle-dispersed composite part 8
is formed, and the upper part is made of a non-composite matrix alloy, which serves as a machining allowance.
is obtained.

このバルブリテーナ−は、その複合部8の上部にマトリ
ックス合金のみからなる部分を切削除去し、貫通孔を仕
上加工することによって第2図に示すようなバルブリテ
ーナ−が完成する。
The valve retainer as shown in FIG. 2 is completed by cutting away a portion consisting only of the matrix alloy on the upper part of the composite portion 8 and finishing the through hole.

なお、前記削り代となるマトリックス合金の部分は、パ
ンチ3によって加圧した際に、下パンチ2のバー部2a
の先端付近となるように調整し、切削加工を容易するこ
とが好ましい。
In addition, the part of the matrix alloy that becomes the cutting allowance is the bar part 2a of the lower punch 2 when pressurized by the punch 3.
It is preferable to adjust it so that it is near the tip of the tip to facilitate cutting.

このようにして得られたバルブリテーナ−の複合部分は
、セラミックス粒子が50〜90wt%の高密度で複合
している。
The thus obtained composite portion of the valve retainer contains ceramic particles at a high density of 50 to 90 wt%.

次に、いくつかの具体例について述べる。Next, some specific examples will be described.

具体例1 まず、セラミックス粒子として粒径1μ■のSiCを用
い、これを予めsoo ’cに予熱する0次に300″
Cに加熱した前記下パンチ2と横金型1にこれを収容し
たあと、500kgf/dのP、圧力で加圧して予成形
体を得た。
Specific Example 1 First, SiC with a particle size of 1μ■ is used as the ceramic particles, and it is preheated to soo 'c to 300''
After this was placed in the lower punch 2 and the horizontal mold 1 heated to C, it was pressed with P of 500 kgf/d to obtain a preform.

次に、マトリックス合金として^!合金のJIS606
1を用い、これを750 ”Cに加熱溶融して横金型1
内の前記予成形体の上方に注ぎ、次に100100O/
dの圧力Ptによって上方から加圧した。脱型後、仕上
加工を施して第2図に示すようなバルブリテーナ−を得
た。
Next, as a matrix alloy ^! Alloy JIS606
1, heat it to 750"C and melt it to form horizontal mold 1.
100100O/
Pressure was applied from above at a pressure Pt of d. After demolding, finishing was performed to obtain a valve retainer as shown in FIG.

具体例2 セラミックス粒子に^i tosを、マトリックス合金
として1合金JISMP5をそれぞれ用い、前記具体例
1と同じ条件で処理し、A j! gosが均等に分散
した複合材料からなる部品を得た。
Concrete Example 2 Using ^i tos as the ceramic particles and 1 alloy JISMP5 as the matrix alloy, they were treated under the same conditions as in Concrete Example 1, and A j! A component made of a composite material in which gos was evenly distributed was obtained.

e、 発明の効果 以上のように本発明の方法によって製造した部品は、予
め粒子を分散してなる複合材料を用いて成形した場合に
比較して非常に高密度(50〜90wt%)の粒子分散
複合材料によって形成されており、したがって硬度、耐
摩性、耐熱性1強度9疲労強度、ヤング率の優れたもの
が得られ、鉄系部品に代替することができる。また、こ
れをバルブリテーナ−に適用した場合には従来の鉄系の
バルブリテーナ−に代替することが可能となり、エンジ
ンの高回転化または低燃費化に寄与し、軽量化による効
果が得られる。
e. Effects of the Invention As described above, parts manufactured by the method of the present invention have particles with a very high density (50 to 90 wt%) compared to when molded using a composite material in which particles are dispersed in advance. It is made of a dispersed composite material, and therefore has excellent hardness, wear resistance, heat resistance, 1 strength, 9 fatigue strength, and Young's modulus, and can be used as a substitute for iron-based parts. Furthermore, when this is applied to a valve retainer, it becomes possible to replace the conventional iron-based valve retainer, contributing to higher engine speeds and lower fuel consumption, and resulting in weight reduction.

さらに本発明の方法は鋳造方法によるため、製造コスト
が安く、工程数が少なくて済む。
Furthermore, since the method of the present invention uses a casting method, the manufacturing cost is low and the number of steps is small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、 (b)、 (C)、 (d)は、本発
明に係る方法を用いておこなうバルブリテーナ−の製造
要領を説明する図、第2図は完成したバルブリテーナ−
の斜視図である。 1・・・横金型、     2・・・下パンチ、3・・
・上パンチ、    4・・・予成形体、6・・・溶湯
、      8・・・複合部。
FIGS. 1(a), (b), (C), and (d) are diagrams explaining the procedure for manufacturing a valve retainer using the method according to the present invention, and FIG. 2 is a diagram showing the completed valve retainer.
FIG. 1...Horizontal mold, 2...Lower punch, 3...
- Upper punch, 4... Preformed body, 6... Molten metal, 8... Composite part.

Claims (1)

【特許請求の範囲】 1)部品の外形形状を内壁に形成した金型を設け、この
金型内にセラミックス粒子を収容加圧して予成形体を形
成したあと、そのまま、これにAlまたはMgのマトリ
ックス合金の溶湯を注ぎ、直ちに加圧して、予成形体内
に溶湯を浸透させることを特徴とする粒子分散複合材料
からなる部品の製造方法。 2)バルブリテーナーの外形形状を内壁に形成した横金
型と、この横金型内に同じくバルブリテーナーの中央貫
通孔を形成するバー部を立設した下パンチとを設け、こ
の横金型内に所定量のセラミックス粒子を収容後、加圧
してセラミックスの予成形体を形成し、次にこの予成形
体を、この横金型内に収容したまま、予成形体上部にA
lまたはMgのマトリックス合金の所定量の溶湯を注い
だあと、直ちに加圧して、この溶湯を予成形体内に浸透
させることを特徴とする特許請求の範囲第1項に記載の
粒子分散複合材料からなる部品の製造方法。
[Scope of Claims] 1) A mold with the outer shape of the part formed on the inner wall is provided, and ceramic particles are placed in the mold and pressurized to form a preform, and then directly coated with Al or Mg. A method for manufacturing a part made of a particle-dispersed composite material, characterized by pouring a molten metal of a matrix alloy and immediately applying pressure to infiltrate the molten metal into a preform. 2) A horizontal mold in which the outer shape of the valve retainer is formed on the inner wall, and a lower punch having a bar portion that forms the central through hole of the valve retainer erected within this horizontal mold, and After accommodating a predetermined amount of ceramic particles, pressure is applied to form a ceramic preform.Next, while this preform is housed in this horizontal mold, A is placed on the top of the preform.
From the particle-dispersed composite material according to claim 1, characterized in that after pouring a predetermined amount of molten metal of a matrix alloy of Mg or Mg, pressure is immediately applied to infiltrate the molten metal into the preform. How to manufacture parts.
JP28632190A 1990-10-24 1990-10-24 Manufacture of parts composed of particle dispersed composite material Pending JPH04160127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28632190A JPH04160127A (en) 1990-10-24 1990-10-24 Manufacture of parts composed of particle dispersed composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28632190A JPH04160127A (en) 1990-10-24 1990-10-24 Manufacture of parts composed of particle dispersed composite material

Publications (1)

Publication Number Publication Date
JPH04160127A true JPH04160127A (en) 1992-06-03

Family

ID=17702874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28632190A Pending JPH04160127A (en) 1990-10-24 1990-10-24 Manufacture of parts composed of particle dispersed composite material

Country Status (1)

Country Link
JP (1) JPH04160127A (en)

Similar Documents

Publication Publication Date Title
US4915605A (en) Method of consolidation of powder aluminum and aluminum alloys
DE2644272A1 (en) METHOD AND APPARATUS FOR MANUFACTURING FIBER-REINFORCED PRODUCTS
DE102011012142B3 (en) Aluminum matrix composite, semi-finished aluminum matrix composite material and process for its production
US4588551A (en) Article having cast metal portion and sintered metallic portion and method of producing same
US20110150694A1 (en) METHOD FOR MANUFACTURING Ti PARTICLE-DISPERSED MAGNESIUM-BASED COMPOSITE MATERIAL
JP2921030B2 (en) Vane pump vane material and manufacturing method thereof
JPH02145703A (en) High strength alloy steel powder for powder metallurgy
JPH04160127A (en) Manufacture of parts composed of particle dispersed composite material
JP4507348B2 (en) High-density iron-based powder molded body and method for producing high-density iron-based sintered body
US4270951A (en) Sintering of coated briquette
JPS61136640A (en) Production of alloy by oxidation-reduction reaction
JP3010714B2 (en) Method for producing particle-dispersed composite material
JP3104244B2 (en) Particle-dispersed composite material and method for producing the same
JPH0428835A (en) Manufacture of particle dispersed composite
DE10360824B4 (en) Iron-based sintered body with excellent properties for embedding by casting in light alloy and method for its production
JP3931503B2 (en) Lubricant for warm mold lubrication, high-density iron-based powder molded body, and method for producing high-density iron-based sintered body
JP3087913B2 (en) Particle-dispersed composite material and method for producing the same
Duggirala et al. Effects of processing parameters in P/M steel forging on part properties: a review Part I powder preparation, compaction, and sintering
JPH0483833A (en) Particle dispersed composite and its manufacture
JPH01283330A (en) Manufacture of aluminum-based composite member
JPS61136642A (en) Production of alloy by oxidation-reduction reaction
JPH0645833B2 (en) Method for manufacturing aluminum alloy-based composite material
JPH08269591A (en) Aluminum alloy powder molding partially containing ceramic particles and its production
KR20220099483A (en) Castings with hardened surface layer and manufacturing method for the same
JP2936695B2 (en) Aluminum alloy powder forging method