JPH0415993Y2 - - Google Patents

Info

Publication number
JPH0415993Y2
JPH0415993Y2 JP1985194462U JP19446285U JPH0415993Y2 JP H0415993 Y2 JPH0415993 Y2 JP H0415993Y2 JP 1985194462 U JP1985194462 U JP 1985194462U JP 19446285 U JP19446285 U JP 19446285U JP H0415993 Y2 JPH0415993 Y2 JP H0415993Y2
Authority
JP
Japan
Prior art keywords
flow path
compression element
refrigerant
suction
hermetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985194462U
Other languages
Japanese (ja)
Other versions
JPS62102882U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985194462U priority Critical patent/JPH0415993Y2/ja
Publication of JPS62102882U publication Critical patent/JPS62102882U/ja
Application granted granted Critical
Publication of JPH0415993Y2 publication Critical patent/JPH0415993Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea] 【産業上の利用分野】[Industrial application field]

この考案は、主として冷凍装置、空気調和装置
に用いる密閉形冷媒圧縮機に関するものである。
This invention mainly relates to a hermetic refrigerant compressor used in refrigeration equipment and air conditioning equipment.

【従来の技術】[Conventional technology]

第4図および第5図は従来から用いられている
慣性過給効果を利用して能力の向上を図つた密閉
形圧縮機の縦断面図および圧縮要素部分の横断面
図である。第4図、第5図において、1は密閉容
器、2および3は密閉容器1内に収納された電動
要素および圧縮要素、4は電動要素2のロータ2
aと圧縮要素3のローリングピストン6を連結す
る回転軸であり、回転軸4の偏心部5にローリン
グピストン6が嵌合されている。7は圧縮要素3
のシリンダであり、シリンダ7は密閉容器1に固
定され、ローリングピストン6とこのピストン6
とに設けられたベーン8によつて仕切られた吸入
室9が設けられている。11は密閉容器1外に配
設された吸入マフラーであり、吸入マフラー11
と上記吸入室9とがシリンダ7に設けた吸入孔1
0と吸入管12とからなる冷媒流路13によつて
接続されている。 以上のように構成された従来の密閉形冷媒圧縮
機は、電動要素2によつて回転軸4が回転し、回
転軸4の偏心部5に嵌合されたローリングピスト
ン6が回転し、この回転によつて、吸入管12、
吸入孔10を経て冷媒ガスがシリンダ7内の吸入
室9に吸入される。この時、吸入管12内では、
吸入管12の長さおよび内径、ローリングピスト
ン6の回転数などの因子によつて冷媒ガスの脈動
流が生じる。そこで、吸入管12の長さおよび内
径を最適化し、ローリングピストン6が吸入孔1
0を締切る瞬間の圧力を高めることにより、圧縮
要素3部を変更することなく、慣性過給効果によ
つて吸入室9内への冷媒ガス吸込み量を増加さ
せ、能力を向上させることができる。
FIG. 4 and FIG. 5 are a vertical cross-sectional view and a cross-sectional view of a compression element portion of a conventionally used hermetic compressor whose capacity is improved by utilizing the inertial supercharging effect. 4 and 5, 1 is a closed container, 2 and 3 are an electric element and a compression element housed in the closed container 1, and 4 is a rotor 2 of the electric element 2.
a and the rolling piston 6 of the compression element 3, and the rolling piston 6 is fitted into the eccentric portion 5 of the rotating shaft 4. 7 is compression element 3
The cylinder 7 is fixed to the closed container 1, and the rolling piston 6 and this piston 6 are connected to each other.
A suction chamber 9 is provided, which is partitioned by a vane 8 provided at both sides. 11 is a suction muffler disposed outside the sealed container 1;
and the suction chamber 9 are connected to the suction hole 1 provided in the cylinder 7.
0 and a suction pipe 12 through a refrigerant flow path 13 . In the conventional hermetic refrigerant compressor configured as described above, the rotating shaft 4 is rotated by the electric element 2, and the rolling piston 6 fitted to the eccentric portion 5 of the rotating shaft 4 is rotated. According to the suction pipe 12,
Refrigerant gas is sucked into the suction chamber 9 inside the cylinder 7 through the suction hole 10 . At this time, inside the suction pipe 12,
A pulsating flow of refrigerant gas is generated depending on factors such as the length and inner diameter of the suction pipe 12 and the rotation speed of the rolling piston 6. Therefore, by optimizing the length and inner diameter of the suction pipe 12, the rolling piston 6
By increasing the pressure at the moment when 0 is shut off, the capacity can be improved by increasing the amount of refrigerant gas sucked into the suction chamber 9 due to the inertial supercharging effect without changing the compression element 3. .

【考案が解決しようとする問題点】[Problem that the invention attempts to solve]

従来の慣性過給効果を利用して能力の向上を図
つた密閉形冷媒圧縮機は、以上のように構成され
ており、吸入管と吸入孔で構成される冷媒流路の
長さがある1点の能力ポイントに設定されている
ため、同一の圧縮要素で上記冷媒流路長の短い密
閉形冷媒圧縮機に対して能力の向上を図ることが
できるが、能力の制御はできないという問題点が
あつた。 この考案は、上記のような問題点を解決して、
段階的に能力の制御ができる密閉形冷媒圧縮機を
圧縮要素部及び吸入マフラーを変更せずに安価に
提供することを目的としている。
A conventional hermetic refrigerant compressor that uses the inertial supercharging effect to improve its capacity is configured as described above, and has a long refrigerant flow path consisting of a suction pipe and a suction hole. Since the capacity point is set at a point, it is possible to improve the capacity compared to the hermetic refrigerant compressor with the short refrigerant flow path length using the same compression element, but there is a problem that the capacity cannot be controlled. It was hot. This idea solves the above problems and
The object of the present invention is to provide a hermetic refrigerant compressor whose capacity can be controlled in stages at a low cost without changing the compression element and suction muffler.

【問題点を解決するための手段】[Means to solve the problem]

この考案に係る密閉形冷媒圧縮機は、吸入マフ
ラーと圧縮要素との間に吸入管の途中に設けられ
た流路切換弁に両端が接続され、それによつて切
換えられるバイパスループを設けたものである。
The hermetic refrigerant compressor according to this invention is provided with a bypass loop that is connected at both ends to a flow path switching valve provided in the middle of the suction pipe between the suction muffler and the compression element, and is switched by the flow path switching valve. be.

【作用】[Effect]

この考案における密閉形冷媒圧縮機は、流路切
換弁を切換えバイパスループを開閉することによ
つて、吸入マフラーと圧縮要素との間の冷媒流路
の長さが変わるので、慣性過給効果により冷媒流
路の長さに応じた脈動流が発生し、段階的に能力
制御ができ、また、冷媒流路の長さの変更を流路
切換弁で行つているので、シールなどを別個に用
いる必要がなく、圧縮要素部及び吸入マフラーを
変更する必要もないことにより、安価にしかも確
実な切換えができる能力制御機構となる。
In the hermetic refrigerant compressor of this invention, the length of the refrigerant flow path between the suction muffler and the compression element is changed by switching the flow path switching valve to open and close the bypass loop. A pulsating flow is generated depending on the length of the refrigerant flow path, and the capacity can be controlled in stages.Also, since the length of the refrigerant flow path is changed using a flow path switching valve, a seal etc. can be used separately. Since there is no need to change the compression element and the suction muffler, the capacity control mechanism can be inexpensively and reliably switched.

【実施例】【Example】

以下、この考案の実施例を図によつて説明す
る。 第1図ないし第3図はその一実施例を示す。第
1図において、15はバイパスループであり、バ
イパスループ15は、吸入マフラー11の出口側
に一端が接続され他端が圧縮要素3の吸入孔10
に接続された吸入管12の途中に流路切換弁14
を介して両端が接続されている。なお、この実施
例の上述した以外の構成は第4図、第5図に示す
従来例と同様である。 以上のように構成されたこの実施例では、流路
切換弁14の切換えによつて第2図に示すように
バイパスループ15を用いた場合は、このループ
15と吸入管12を通つて冷媒ガスが圧縮要素3
の吸入室9に導かれ、冷媒流路13が長くなる。
また、流路切換弁14の切換えによつてバイパス
ループ15を閉じた場合は、第3図に示すよう
に、このループ15を通ることなく吸入管12を
通つて冷媒ガスが圧縮要素3の吸入室9に導か
れ、冷媒流路13が短くなる。したがつて、この
実施例では、長、短2つの長さが異なる冷媒流路
によつて能力を制御することができる。 なお、この考案において、吸入管の途中に互い
に異なるn本のバイパスループを流路切換弁を介
して設け、空気調和システムからの電気信号によ
つて上記切換弁を切換えて負荷に応じたバイパス
ループに冷媒ガスを通し、あるいは通さないで、
圧縮要素に導くことにより(n+1)本の冷媒流
路が形成され、これらの長さに応じた吸入管内の
脈動流により、(n+1)段階の能力制御を行う
ことができる。
Hereinafter, embodiments of this invention will be described with reference to the drawings. 1 to 3 show one embodiment thereof. In FIG. 1, 15 is a bypass loop, one end of which is connected to the outlet side of the suction muffler 11 and the other end connected to the suction hole 1 of the compression element 3.
A flow path switching valve 14 is installed in the middle of the suction pipe 12 connected to the
Both ends are connected via. The configuration of this embodiment other than the above is the same as that of the conventional example shown in FIGS. 4 and 5. In this embodiment configured as above, when the bypass loop 15 is used as shown in FIG. 2 by switching the flow path switching valve 14, the refrigerant gas is passed through the loop 15 and the suction pipe is compression element 3
The refrigerant flow path 13 becomes longer.
Furthermore, when the bypass loop 15 is closed by switching the flow path switching valve 14, the refrigerant gas passes through the suction pipe 12 without passing through the loop 15, and the refrigerant gas is sucked into the compression element 3. The coolant is guided to the chamber 9, and the coolant flow path 13 is shortened. Therefore, in this embodiment, the capacity can be controlled by using the long and short refrigerant flow paths having different lengths. In addition, in this invention, n different bypass loops are provided in the middle of the suction pipe via flow path switching valves, and the switching valves are switched by electrical signals from the air conditioning system to create bypass loops according to the load. With or without passing refrigerant gas through the
By guiding the refrigerant to the compression element, (n+1) refrigerant flow paths are formed, and by the pulsating flow in the suction pipe depending on the length of these refrigerant flow paths, the capacity can be controlled in (n+1) stages.

【考案の効果】[Effect of the idea]

以上説明したように、この考案によれば、吸入
マフラーと圧縮要素との間が、流路切換弁の切換
えによるバイパスループの開閉によつて冷媒通路
の長さが異なるので、負荷に応じて流路切換弁を
切換えることにより、段階的な能力制御ができ、
しかも圧縮要素部及び吸入マフラーを変更せずに
単にバイパスループを付加するのみですむので、
能力制御機構は構成が簡単で安価であり、確実に
動作する密閉形冷媒圧縮機を提供できるという効
果が得られる。
As explained above, according to this invention, the length of the refrigerant passage between the suction muffler and the compression element varies depending on the opening and closing of the bypass loop by switching the flow path switching valve. By switching the road switching valve, stepwise capacity control is possible.
Moreover, it is possible to simply add a bypass loop without changing the compression element or suction muffler.
The capacity control mechanism is simple and inexpensive, and has the advantage of providing a hermetic refrigerant compressor that operates reliably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の一実施例による密閉形冷媒
圧縮機を示す縦断面図、第2図、第3図は第1図
のバイパスループの開閉による冷媒流路の説明
図、第4図は従来の密閉形冷媒圧縮機を示す縦断
面図、第5図は同圧縮要素の横断面図である。 1……密閉容器、2……電動要素、3……圧縮
要素、9……吸入室、10……吸入孔、11……
吸入マフラー、12……吸入管、13……冷媒流
路、14……流路切換弁、15……バイパスルー
プ。なお、図中同一符号は同一又は相当部分を示
す。
FIG. 1 is a vertical sectional view showing a hermetic refrigerant compressor according to an embodiment of the invention, FIGS. 2 and 3 are explanatory diagrams of the refrigerant flow path by opening and closing the bypass loop shown in FIG. 1, and FIG. FIG. 5 is a vertical cross-sectional view showing a conventional hermetic refrigerant compressor, and FIG. 5 is a cross-sectional view of the compression element. DESCRIPTION OF SYMBOLS 1...Airtight container, 2...Electric element, 3...Compression element, 9...Suction chamber, 10...Suction hole, 11...
Suction muffler, 12... Suction pipe, 13... Refrigerant channel, 14... Channel switching valve, 15... Bypass loop. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 密閉容器内に回転軸によつて連結した電動要素
および圧縮構素を収納し、上記密閉容器外に配設
した吸入マフラーから圧縮要素に冷媒ガスを送り
込むようにした密閉形冷媒圧縮機において、上記
吸入マフラーと圧縮要素との間の吸入管の途中に
設けられた流路切換弁に両端が接続され、それに
よつて切換えられるバイパスループを設けたこと
を特徴とする密閉形冷媒圧縮機。
In a hermetic refrigerant compressor, an electric element and a compression component connected by a rotating shaft are housed in a hermetic container, and refrigerant gas is sent to the compression element from a suction muffler arranged outside the hermetic container. A hermetic refrigerant compressor characterized by having a bypass loop connected at both ends to a flow path switching valve provided in the middle of a suction pipe between a suction muffler and a compression element, and switched by the flow path switching valve.
JP1985194462U 1985-12-18 1985-12-18 Expired JPH0415993Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985194462U JPH0415993Y2 (en) 1985-12-18 1985-12-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985194462U JPH0415993Y2 (en) 1985-12-18 1985-12-18

Publications (2)

Publication Number Publication Date
JPS62102882U JPS62102882U (en) 1987-06-30
JPH0415993Y2 true JPH0415993Y2 (en) 1992-04-09

Family

ID=31151456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985194462U Expired JPH0415993Y2 (en) 1985-12-18 1985-12-18

Country Status (1)

Country Link
JP (1) JPH0415993Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8011989B2 (en) 2005-02-17 2011-09-06 Lg Electronics Inc. Method of making a plasma display panel with a novel connection structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2619467B2 (en) * 1988-03-18 1997-06-11 株式会社日立製作所 Supercharged compressor
JP4055828B2 (en) * 1996-06-14 2008-03-05 松下冷機株式会社 Hermetic compressor
KR100466620B1 (en) * 2002-07-09 2005-01-15 삼성전자주식회사 Variable capacity rotary compressor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159794U (en) * 1983-04-12 1984-10-26 三菱重工業株式会社 rotary compressor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159794U (en) * 1983-04-12 1984-10-26 三菱重工業株式会社 rotary compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8011989B2 (en) 2005-02-17 2011-09-06 Lg Electronics Inc. Method of making a plasma display panel with a novel connection structure

Also Published As

Publication number Publication date
JPS62102882U (en) 1987-06-30

Similar Documents

Publication Publication Date Title
US5993177A (en) Scroll type compressor with improved variable displacement mechanism
WO2018126758A1 (en) Rotary compressor, refrigeration system and temperature adjustment apparatus
JPH07293440A (en) Compressor
KR100557057B1 (en) Scroll compressor with volume regulating capability
KR870003316A (en) Variable capacity vane compressor
CN101680450A (en) Compressor, and refrigerating apparatus
JPH0415993Y2 (en)
CA1309698C (en) Variable capacity compressor
US4137726A (en) Capacity control system of compressor for heat-pump refrigeration unit
JPS6357889A (en) Rotary type compressor
US20070148025A1 (en) Compressor
KR830005501A (en) Fluid Compression Method and Rotary Compressor Using Rotary Compressor
JPS63302134A (en) Exhaust gas turbine supercharger
JPS6338697A (en) Rotary compressor
CN100387842C (en) Rotary compressor
JPH08312821A (en) Sealed type flow rate regulating valve
US9546659B2 (en) Rotary compressor
JPS61160526A (en) Variable capacity turbocharger
JPS6346714Y2 (en)
EP0264949A2 (en) Variable capacity compressor
US3411705A (en) Refrigeration compressor
KR100680372B1 (en) Variable intake device
KR102726575B1 (en) Capacity control valve of air conditioner compressor for vehicle
JPH0320551Y2 (en)
JPS6012695U (en) 2 cylinder rotary compressor