JPH0415970A - Semiconductor laser exciting solid laser device - Google Patents

Semiconductor laser exciting solid laser device

Info

Publication number
JPH0415970A
JPH0415970A JP11923390A JP11923390A JPH0415970A JP H0415970 A JPH0415970 A JP H0415970A JP 11923390 A JP11923390 A JP 11923390A JP 11923390 A JP11923390 A JP 11923390A JP H0415970 A JPH0415970 A JP H0415970A
Authority
JP
Japan
Prior art keywords
solid
semiconductor laser
laser beams
state laser
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11923390A
Other languages
Japanese (ja)
Other versions
JP2685331B2 (en
Inventor
Hideo Nagai
秀男 永井
Masahiro Kume
雅博 粂
Kazunari Ota
一成 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP2119233A priority Critical patent/JP2685331B2/en
Publication of JPH0415970A publication Critical patent/JPH0415970A/en
Application granted granted Critical
Publication of JP2685331B2 publication Critical patent/JP2685331B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To prevent instable mode pattern by alternately forming first films, which reflect solid laser beams and transmit semiconductor laser beams, and second films, which have at least either functions of passing solid laser beams or reflecting semiconductor laser beams. CONSTITUTION:Since the reflection points of YAG laser beams are positioned at intervals of 1mm on three places of exciting faces 1d, two kinds of coatings should be positioned at intervals of 1mm, so two kinds of coatings are applied alternately at intervals of 1mm. To the parts (white part) corresponding to the reflection points of YAG laser beams and the focus points of semiconductor laser beams, high reflection coating, for the wavelength of YAG laser beams, and nonreflecting coating, for the wavelength of semiconductor laser beams, are applied, and to each section between reflection points (oblique line part), high reflection coating is applied to the wavelength of semiconductor laser beams. By the above constitution, the stability of mode pattern and the alignment with excellent accuracy can be attained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、金属、半導体、セラミックスなどの加工ある
いはコアギユレータとして医療などに用いる高出力の半
導体レーザ励起固体レーザ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a high-output semiconductor laser-excited solid-state laser device used for processing metals, semiconductors, ceramics, etc., or for medical purposes as a coagulator.

従来の技術 従来、固体レーザ装置の励起には、アークランプやフラ
ッシュランプなどが用いられてきたが、励起に寄与する
スペクトル以外を多く含むために励起効率が悪く、また
、ランプや固体レーザ媒質の放熱のための装置は大型と
ならざるを得なかった。近年、高出力の半導体レーザが
開発されるにおよび、これを固体レーザの励起光源とし
て用いるようになってきた。半導体レーザは、固体レー
ザ媒質の吸収帯に波長を合わせることができるため、励
起効率が大幅に改善されるばかりでなく、余分なスペク
トルを吸収しないので、発熱せず、高効率で小型の半導
体レーザ励起固体レーザ装置が得られる。
Conventional technology Traditionally, arc lamps, flash lamps, etc. have been used to excite solid-state laser devices. The equipment for heat dissipation had to be large. In recent years, with the development of high-power semiconductor lasers, they have come to be used as excitation light sources for solid-state lasers. Semiconductor lasers can match the wavelength to the absorption band of the solid-state laser medium, which not only greatly improves the excitation efficiency, but also does not absorb excess spectrum, so it does not generate heat, making it a highly efficient and compact semiconductor laser. A pumped solid-state laser device is obtained.

従来、互いに60°で交わる関係にある3側面を有する
多角柱状Nd:YAGロッドの各多角柱構成面で、固体
レーザ光としてのYAGレーザ光を螺旋状に反射させて
、各構成面の反射点をアレイ型半導体レーザで励起する
側面励起方式が提案されている。
Conventionally, a YAG laser beam as a solid-state laser beam is reflected in a spiral manner on each polygonal columnar surface of a polygonal columnar Nd:YAG rod having three side surfaces that intersect with each other at 60 degrees, and the reflection points of each component surface are reflected. A side pumping method has been proposed in which the laser beam is pumped by an array type semiconductor laser.

従来の側面励起方式の半導体レーザ励起固体レーザ装置
について、以下、説明する。
A conventional side pump type semiconductor laser pumped solid-state laser device will be described below.

第4図は従来の半導体レーザ励起固体レーザ装置の構成
を示す斜視図である。第4図において、側面励起方式の
半導体レーザ励起固体レーザ装置は、固体レーザ媒質と
しての六角柱状のNd:YAGロッド1と、その側面の
うち互いに60度で交わる3側面に相対向するようにア
レイ型半導体レーザ2と集光用のファイバーレンズ3お
よび外部反射鏡4とから構成されている。第4図の場合
、他の2側面も、アレイ型半導体レーザ2およびファイ
バーレンズ3の構造が存在しているが図面が複雑になる
ので、ここでは、省略している。この六角柱状Nd:Y
AGロッド1は、第6図の展開図に示すように、断面に
長さ2−と3.8閣の辺を交互に連ねた六角形を持つ、
高さ11−の六角柱で上面および底面に、この両面の法
線方向に対して角度θ=4度の傾きを持つ内部反射鏡と
なる反射面1aおよび出射面1bを持っている。YAG
レーザ光は第5図に示すように、六角柱状のNd:YA
Gロッド1内を、内部反射鏡である反射面1aおよび外
部反射鏡4を共振器として、Nd:YAGロッド1の3
側面1cで反射させることにより、螺旋状の光路を描く
。Nd:YAGロッド1の3側面1c上にできる各反射
点(・印)に対して1−間隔に10個のGRlN−8C
R−QWレレーから成るアレイ状半導体レーザ2からの
各ビームをファイバーレンズ3により集光して励起して
いる。さらに、反射面1aは平面でYAGレーザ光の波
長1.06μmに対して99%以上の反射率を出射面1
bは平面でこの波長1.06μmに対して99%以上の
透過率を外部反射面4は曲率半径1mの凹面で波長1.
06μmに対して80%以上の反射率を、六角柱状Nd
 : YAGロッド1の側面1cは波長1.06μmに
対して99%以上の反射率と半導体レーザ光の波長0.
809μmに対して90%以上の透過率をそれぞれ有す
るようにコーティングがほどこされている。
FIG. 4 is a perspective view showing the configuration of a conventional semiconductor laser pumped solid-state laser device. In FIG. 4, a side-pumping type semiconductor laser pumped solid-state laser device has a hexagonal column-shaped Nd:YAG rod 1 as a solid-state laser medium, and an array is arranged so as to face each other on three side surfaces that intersect with each other at 60 degrees. It consists of a type semiconductor laser 2, a fiber lens 3 for condensing light, and an external reflecting mirror 4. In the case of FIG. 4, the structures of the array type semiconductor laser 2 and the fiber lens 3 are also present on the other two sides, but they are omitted here because the drawing becomes complicated. This hexagonal columnar Nd:Y
As shown in the exploded view of FIG. 6, the AG rod 1 has a hexagonal cross section with sides of lengths 2 and 3.8 lengths arranged alternately.
It is a hexagonal prism with a height of 11- and has a reflection surface 1a and an output surface 1b on the top and bottom surfaces, which serve as internal reflection mirrors and are inclined at an angle .theta.=4 degrees with respect to the normal direction of both surfaces. YAG
As shown in Figure 5, the laser beam is a hexagonal columnar Nd:YA
Inside the G rod 1, the reflecting surface 1a, which is an internal reflecting mirror, and the external reflecting mirror 4 are used as resonators, and 3 of the Nd:YAG rod 1 is
By reflecting off the side surface 1c, a spiral optical path is drawn. 10 GRlN-8C are placed at 1-intervals for each reflection point (marked with a mark) on the three side surfaces 1c of the Nd:YAG rod 1.
Each beam from an arrayed semiconductor laser 2 consisting of an R-QW relay is focused and excited by a fiber lens 3. Furthermore, the reflecting surface 1a is a flat surface, and the output surface 1a has a reflectance of 99% or more for the wavelength of 1.06 μm of YAG laser light.
b is a flat surface that has a transmittance of 99% or more for this wavelength of 1.06 μm;
Hexagonal columnar Nd
: The side surface 1c of the YAG rod 1 has a reflectance of 99% or more for a wavelength of 1.06 μm and a reflectance of 0.05% for a wavelength of semiconductor laser light.
The coatings are applied so that each has a transmittance of 90% or more at 809 μm.

発明が解決しようとする課題 しかしながら、ファイバーレンズ3でアレイ型半導体レ
ーザ2からの半導体レーザ光を励起面ICに集光する上
記従来の方法では、ファイバーレンズ3の長さ方向に対
する各半導体レーザ光の集光が十分とはいえないため、
半導体レーザの励起入力を高くしていくにつれてYAG
レーザ光のモードパターンが、T EMoo (【ta
asvetseelecrramagneHc)モード
から、はずれてくるという現象がみられ、また、励起面
lc上でのYAGレーザ光の反射点と半導体レーザ光の
集光点を一致させる際、励起面lc上に反射点を決める
ものがないため、精度よく一致させるのが困難であると
いう問題を有していた。
Problems to be Solved by the Invention However, in the above-mentioned conventional method in which the fiber lens 3 focuses the semiconductor laser beams from the array type semiconductor laser 2 onto the excitation surface IC, each semiconductor laser beam in the length direction of the fiber lens 3 is Because the light concentration is not sufficient,
As the excitation input of the semiconductor laser is increased, the YAG
The mode pattern of the laser beam is T EMoo ([ta
There is a phenomenon that the reflection point of the YAG laser beam on the excitation surface lc and the convergence point of the semiconductor laser beam are aligned, and the reflection point is determined on the excitation surface lc. There was a problem in that it was difficult to match accurately because there was no such thing.

本発明は上記従来の問題を解決するもので、半導体レー
ザの高出力化によるモードパターンの不安定化を防ぐと
ともに精度よく励起光をYAGレーザ光の反射点に集光
させることができる半導体レーザ励起固体レーザ装置を
提供することを目的とするものである。
The present invention solves the above-mentioned conventional problems, and provides a semiconductor laser excitation system that can prevent the mode pattern from becoming unstable due to the increase in the output power of the semiconductor laser, and can accurately focus the excitation light onto the reflection point of the YAG laser beam. The purpose of this invention is to provide a solid-state laser device.

課題を解決するための手段 上記課題を解決するために本発明の半導体レーザ励起固
体レーザ装置は、断面多角形の柱状体である固体レーザ
媒質内を前記固体レーザ媒質の側面で反射しながら螺旋
状の光路を描く固体レーザ光の反射点に対応した配列を
有するアレイ型半導体レーザを前記固体レーザ媒質の前
記反射点を有するすべての面に設けた半導体レーザ励起
固体レーザ装置であって、前記固体レーザ光の反射点を
有する前記固体レーザ媒質の側面に、前記反射点に対応
する位置に設けられて前記固体レーザ光を反射させ、か
つ前記アレイ型半導体レーザからの半導体レーザ光を透
過させる第1の膜と、前記反射点間の位置に設けられて
前記固体レーザ光を透過させるか、あるいは前記半導体
レーザ光を反射させるかの少なくとも一方の機能を有す
る第2の膜とを交互に形成してなるものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the semiconductor laser pumped solid-state laser device of the present invention provides a solid-state laser device excited by a semiconductor laser. A semiconductor laser-excited solid-state laser device in which array-type semiconductor lasers having an array corresponding to the reflection points of the solid-state laser light that draw an optical path are provided on all surfaces of the solid-state laser medium having the reflection points, the solid-state laser A first lens provided on a side surface of the solid-state laser medium having a light reflection point at a position corresponding to the reflection point to reflect the solid-state laser light and transmit the semiconductor laser light from the array type semiconductor laser. A film and a second film provided at a position between the reflection points and having at least one function of transmitting the solid-state laser light or reflecting the semiconductor laser light are formed alternately. It is something.

作用 上記構成により、固体レーザ光の反射点間の位置に、固
体レーザ光を透過させるか、あるいは、半導体レーザ光
を反射させるかの少なくとも一方の機能を有する第2の
膜を設けて、固体レーザ光に対して反射損を与え、また
、半導体レーザ光に対して励起損を与えるので、アレイ
型半導体レーザを励起源に使用して高出力化しても、従
来のように、モードパターンからはずれるようなことは
なく、安定なTEMooモードが得られるとともに、固
体レーザ光の反射点が容易に決まり、精度よく半導体レ
ーザ光の励起光を固体レーザ光の反射点に一致させるこ
とができることになる。
Effect With the above configuration, a second film having at least one function of transmitting the solid-state laser light or reflecting the semiconductor laser light is provided between the reflection points of the solid-state laser light, and the solid-state laser Reflection loss is caused to the light, and excitation loss is caused to the semiconductor laser light, so even if an array type semiconductor laser is used as the excitation source and the output is increased, it will not deviate from the mode pattern as in the past. Without this, a stable TEMoo mode can be obtained, the reflection point of the solid-state laser beam can be easily determined, and the excitation light of the semiconductor laser beam can be accurately matched with the reflection point of the solid-state laser beam.

実施例 以下、本発明の一実施例について図面を参照しながら説
明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の半導体レーザ励起固体レー
ザ装置の構成を示す斜視図、第2図は第1図における励
起面の説明図である。なお、基本的な構造は従来例の構
造と一致するので同一符号を付してその説明を省略し、
ここでは、ストライプコート励起面1dについて説明す
る。第1図および第2図において、励起面1d上にYA
Gレーザ光の反射点は〜1mm間隔で位置しているので
、2種類のコーティングも1−間隔に交互にほどこしで
ある。YAGレーザ光の反射点および半導体レーザ光の
集光点に相当する部分(白部)には、YAGレーザ光の
波長1.06μ田に対してHR(高反射)コーティング
を、半導体レーザ光の波長0.809μmに対してはA
R(無反射)コーティングをほどこしてあり、また、各
反射点間(斜線部)には、半導体レーザ光の波長080
9μmに対してHR(高反射)コーティングがほどこし
である。
FIG. 1 is a perspective view showing the configuration of a semiconductor laser pumped solid-state laser device according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram of the pumping surface in FIG. 1. The basic structure is the same as that of the conventional example, so the same reference numerals are given and the explanation is omitted.
Here, the stripe coat excitation surface 1d will be explained. In FIGS. 1 and 2, YA is placed on the excitation surface 1d.
Since the reflection points of the G laser beam are located at intervals of ~1 mm, the two types of coatings are also applied alternately at intervals of 1 mm. The part (white part) corresponding to the reflection point of the YAG laser beam and the condensing point of the semiconductor laser beam is coated with HR (high reflection) coating for the wavelength of 1.06 μm of the YAG laser beam, and for the wavelength of the semiconductor laser beam. A for 0.809μm
R (non-reflection) coating is applied, and between each reflection point (shaded area), the wavelength 080 of the semiconductor laser light is applied.
HR (high reflection) coating is applied to 9 μm.

各部分の幅は前者(白部)が〜04−1後者(斜線部)
が〜0.6mである。このような同様のストライプ状の
2種類のコーティングが、3カ所の励起面1dにほどこ
されである。
The width of each part is ~04-1 for the former (white part) and 04-1 for the latter (hatched part)
is ~0.6m. Two types of similar stripe-like coatings are applied to the excitation surface 1d at three locations.

第3図に本実施例の入出力特性を示す。第3図において
、半導体レーザの最大入力20W時に6.9WのYAG
レーザ出力が得られると同時に安定なT E M ao
モードでの動作が得られた。
FIG. 3 shows the input/output characteristics of this embodiment. In Figure 3, when the maximum input power of the semiconductor laser is 20W, the YAG output is 6.9W.
Stable TEM ao while providing laser output
Operation in mode was obtained.

なお、本実施例では励起面上d上の各反射点間(斜線部
)のコーティングを半導体レーザ光の波長0809μm
に対してHR(高反射)コーティングをほどこしたが、
YAGレーザ光の波長1.06μmに対してAR(無反
射)コーティングをほどこしても同様の効果が期待でき
、あるいは、両方向をほどこした場合にはいっそうの効
果が期待できる。すなわち、YAGレーザ光の各反射点
の間には、YAGレーザ光の波長1,06μmに対して
AR(無反射)コーティング、あるいは半導体レーザ光
の波長0809μmに対してHR(高反射)コーティン
グのどちらか一方か、あるいは両方のコーティングをほ
どこして、YAGレーザ光の各反射点間に、YAGレー
ザ光の波長1.06μmに対して反射損を与え、また、
半導体レーザ光の波長0.8Hμmに対して励起損を与
えるようなコーティングをほどこし、これにより、モー
ドパターンの安定性および精度のよい位置合せを得るこ
とができる。
In this example, the coating between the reflection points (shaded areas) on the excitation surface d was applied to the wavelength of the semiconductor laser light, which was 0809 μm.
Although HR (high reflection) coating was applied to the
A similar effect can be expected by applying an AR (anti-reflection) coating to the wavelength of 1.06 μm of the YAG laser beam, or an even greater effect can be expected if it is applied in both directions. In other words, between each reflection point of the YAG laser beam, there is either an AR (anti-reflection) coating for the YAG laser beam with a wavelength of 1.06 μm, or an HR (high reflection) coating for the wavelength of 0,809 μm of the semiconductor laser beam. Either one or both coatings are applied between each reflection point of the YAG laser beam to give a reflection loss to the wavelength of 1.06 μm of the YAG laser beam, and
A coating is applied to give an excitation loss to the wavelength of the semiconductor laser light of 0.8 H μm, thereby making it possible to obtain stable mode patterns and highly accurate alignment.

発明の効果 以上のように本発明によれば、固体レーザ光の反射点を
有する固体レーザ媒質の側面に第1および第2の2種類
の膜を交互にほどこすことにより、固体レーザ光の反射
点以外の部分に損失を与えて、高出力化による従来のよ
うな、モードパターンの不安定化を防ぐことができると
ともに、精度よく半導体レーザ光の励起光を固体レーザ
光の反射点に集光させることができるものである。
Effects of the Invention As described above, according to the present invention, the reflection of the solid-state laser beam is achieved by alternately applying two types of films, the first and the second, on the side surface of the solid-state laser medium having the reflection point of the solid-state laser beam. It is possible to prevent the conventional mode pattern from becoming unstable due to high output by adding loss to areas other than the point, and to accurately focus the excitation light of the semiconductor laser beam onto the reflection point of the solid-state laser beam. It is something that can be done.

特に、高出力を要する加工・医療用などの固体レーザと
して大きな効果を有するものである。
In particular, it has great effects as a solid-state laser for processing, medical, and other applications that require high output.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体レーザ励起固体レーザ装置の構
成を示す斜視図、第2図は同半導体レーザ励起固体レー
ザ装置における励起面の説明図、第3図は同半導体レー
ザ励起固体レーザ装置の入出力特性図、第4図は従来の
半導体レーザ励起固体レーザ装置の構成を示す斜視図、
第5図は従来の固体レーザ媒質内でのYAGレーザ光の
光路を説明する図、 第6図は従来の固体レーザ媒質の展 開図である。 1・・・六角柱状Nd : YAGロッ ド、 1b・・・スト ライブコート励起面、 2・・・アレイ型半導体レーザ。
FIG. 1 is a perspective view showing the configuration of the semiconductor laser pumped solid-state laser device of the present invention, FIG. 2 is an explanatory diagram of the excitation plane in the semiconductor laser pumped solid-state laser device, and FIG. 3 is a diagram showing the structure of the semiconductor laser pumped solid-state laser device. Input/output characteristic diagram; FIG. 4 is a perspective view showing the configuration of a conventional semiconductor laser pumped solid-state laser device;
FIG. 5 is a diagram illustrating the optical path of a YAG laser beam within a conventional solid-state laser medium, and FIG. 6 is a developed view of the conventional solid-state laser medium. 1... Hexagonal columnar Nd: YAG rod, 1b... Strive coat excitation surface, 2... Array type semiconductor laser.

Claims (1)

【特許請求の範囲】[Claims] 1.断面が多角形の柱状体である固体レーザ媒質内を前
記固体レーザ媒質の側面で反射しながら螺旋状の光路を
描く固体レーザ光の反射点に対応した配列を有するアレ
イ型半導体レーザを前記固体レーザ媒質の前記反射点を
有するすべての面に設けた半導体レーザ励起固体レーザ
装置であって、前記固体レーザ光の反射点を有する前記
固体レーザ媒質の側面に、前記反射点に対応する位置に
設けられて前記固体レーザ光を反射させ、かつ前記アレ
イ型半導体レーザからの半導体レーザ光を透過させる第
1の膜と、前記反射点間の位置に設けられて前記固体レ
ーザ光を透過させるか、あるいは前記半導体レーザ光を
反射させるかの少なくとも一方の機能を有する第2の膜
とを交互に形成してなる半導体レーザ励起固体レーザ装
置。
1. The solid-state laser includes an array-type semiconductor laser having an array corresponding to the reflection points of solid-state laser light that traces a spiral optical path while reflecting from the side surfaces of the solid-state laser medium in a solid-state laser medium that is a columnar body with a polygonal cross section. A semiconductor laser-excited solid-state laser device provided on all surfaces of the medium having the reflection points, the solid-state laser device being provided on a side surface of the solid-state laser medium having the reflection points of the solid-state laser beam at positions corresponding to the reflection points. a first film that reflects the solid-state laser light and transmits the semiconductor laser light from the array type semiconductor laser; and a first film that is provided at a position between the reflection points and transmits the solid-state laser light; A semiconductor laser-excited solid-state laser device in which second films having at least one function of reflecting semiconductor laser light are alternately formed.
JP2119233A 1990-05-09 1990-05-09 Semiconductor laser pumped solid-state laser device Expired - Lifetime JP2685331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2119233A JP2685331B2 (en) 1990-05-09 1990-05-09 Semiconductor laser pumped solid-state laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2119233A JP2685331B2 (en) 1990-05-09 1990-05-09 Semiconductor laser pumped solid-state laser device

Publications (2)

Publication Number Publication Date
JPH0415970A true JPH0415970A (en) 1992-01-21
JP2685331B2 JP2685331B2 (en) 1997-12-03

Family

ID=14756258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2119233A Expired - Lifetime JP2685331B2 (en) 1990-05-09 1990-05-09 Semiconductor laser pumped solid-state laser device

Country Status (1)

Country Link
JP (1) JP2685331B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008110193A (en) * 2006-10-05 2008-05-15 M & F Technology Co Ltd Golf tee

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288386A (en) * 1985-10-15 1987-04-22 Nec Corp Semiconductor-laser exciting solid-state laser
JPH01105586A (en) * 1987-08-28 1989-04-24 General Electric Co <Ge> Solid laser apparatus
JPH01122180A (en) * 1987-09-30 1989-05-15 Spectra Physics Inc High efficiency mode harmonic solid state laser utilizing lateral pumping

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288386A (en) * 1985-10-15 1987-04-22 Nec Corp Semiconductor-laser exciting solid-state laser
JPH01105586A (en) * 1987-08-28 1989-04-24 General Electric Co <Ge> Solid laser apparatus
JPH01122180A (en) * 1987-09-30 1989-05-15 Spectra Physics Inc High efficiency mode harmonic solid state laser utilizing lateral pumping

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008110193A (en) * 2006-10-05 2008-05-15 M & F Technology Co Ltd Golf tee

Also Published As

Publication number Publication date
JP2685331B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
US5351259A (en) Semiconductor laser-pumped solid-state laser with plural beam output
US4785459A (en) High efficiency mode matched solid state laser with transverse pumping
US5271031A (en) High efficiency mode-matched solid-state laser with transverse pumping and cascaded amplifier stages
US4908832A (en) High efficiency mode-matched solid-state laser with transverse pumping
US7729046B2 (en) Solid-state laser device with a crystal array
US5181223A (en) High-efficiency mode-matched transversely-pumped solid state laser amplifier
EP0354807A2 (en) High efficiency mode-matched solid-state laser with trasverse pumping
JPH06196827A (en) Raman laser inside self-aligning cavity
US6625194B1 (en) Laser beam generation apparatus
JP3053273B2 (en) Semiconductor pumped solid-state laser
JPH0415970A (en) Semiconductor laser exciting solid laser device
US5966392A (en) Butt-coupling pumped single-mode solid-state laser with fiber-coupled diode
JP2957637B2 (en) Narrow band laser device
JPH1168197A (en) Solid laser device excited by semiconductor laser
JP2757608B2 (en) Semiconductor laser pumped solid state laser
JPH05121802A (en) Semiconductor excitation solid-state laser
JP2599087Y2 (en) LD pumped solid-state laser device
JPH0478180A (en) Array semiconductor laser excitation solid-state laser device
JP2576794B2 (en) Laser diode pumped solid-state laser oscillator
JPH0482281A (en) Solid laser oscillator
JP2676920B2 (en) Semiconductor laser pumped solid-state laser device
JPH03286583A (en) Laser diode excitated solid state laser
JP2021108357A (en) Laser device
JP2558523B2 (en) Semiconductor laser pumped solid-state laser device
JPH04287988A (en) Semiconductor excited solid-state laser