JPH0415964Y2 - - Google Patents

Info

Publication number
JPH0415964Y2
JPH0415964Y2 JP1985086365U JP8636585U JPH0415964Y2 JP H0415964 Y2 JPH0415964 Y2 JP H0415964Y2 JP 1985086365 U JP1985086365 U JP 1985086365U JP 8636585 U JP8636585 U JP 8636585U JP H0415964 Y2 JPH0415964 Y2 JP H0415964Y2
Authority
JP
Japan
Prior art keywords
compression ratio
engine
cylinder
map
lock pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985086365U
Other languages
Japanese (ja)
Other versions
JPS61202664U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985086365U priority Critical patent/JPH0415964Y2/ja
Publication of JPS61202664U publication Critical patent/JPS61202664U/ja
Application granted granted Critical
Publication of JPH0415964Y2 publication Critical patent/JPH0415964Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、圧縮比を段階的に変化させる機構を
もつた多気筒内燃機関において、圧縮比切換えシ
ヨツクを小さなものとするため、気筒毎に、切換
えエンジン運転域をわずかに変えて、切換えが全
気筒一時ではなく、順次行なわれるようにした可
変圧縮比機構付多気筒内燃機関の制御装置に関す
る。
[Detailed description of the invention] [Industrial application field] The present invention aims to reduce the compression ratio switching shock for each cylinder in a multi-cylinder internal combustion engine that has a mechanism for changing the compression ratio in stages. The present invention relates to a control device for a multi-cylinder internal combustion engine with a variable compression ratio mechanism, in which the switching engine operating range is slightly changed so that switching is performed sequentially instead of all cylinders at once.

[従来の技術] オツトーサイクル内燃機関においては、圧縮比
を上げるとそれだけ燃焼効率が向上し燃費が改善
されるとともに軸トルクが向上するので、圧縮比
を上げることが望まれる。しかし、圧縮比を上げ
ると燃焼室内でガスが断熱圧縮されて温度が上が
つたとき着火し易くなつてノツキングも生じやす
くなり、圧縮比の増大が制限される。ノツキング
は、燃焼室内に多量の空気が吸引される中、高負
荷時に生じやすく、吸引空気量が小で燃焼室にお
ける実質的圧縮度合の小な軽負荷時には生じにく
いので、圧縮比を負荷に応じて可変とし、中、高
負荷に適切となるように設定しておいた圧縮比を
軽負荷時に増大させるようにすることが望まれ
る。この意味で従来から内燃機関の可変圧縮比機
構が多々提案されている。
[Prior Art] In an automatic cycle internal combustion engine, increasing the compression ratio improves combustion efficiency, improves fuel efficiency, and improves shaft torque, so it is desirable to increase the compression ratio. However, when the compression ratio is increased, the gas is adiabatically compressed in the combustion chamber, and when the temperature rises, it becomes easier to ignite and cause knocking, which limits the increase in the compression ratio. Knocking tends to occur at high loads when a large amount of air is sucked into the combustion chamber, and is less likely to occur at light loads when the amount of air sucked in is small and the actual degree of compression in the combustion chamber is small. Therefore, the compression ratio should be adjusted according to the load. It is desirable that the compression ratio be made variable so that the compression ratio, which is set to be appropriate for medium to high loads, is increased during light loads. In this sense, many variable compression ratio mechanisms for internal combustion engines have been proposed.

圧縮比可変機構に係る提案には、エンジン運転
条件に応じて最適圧縮比を算出する機構と、これ
ら算出された圧縮比に応じて圧縮比を変化させる
機構とにわけられ、前者には、従来、特開昭59−
188056号公報、実開昭59−196532号公報等の提案
があり、後者には実開昭59−40537号公報等の提
案がある。本考案は前者の類に属するものであ
る。
Proposals related to variable compression ratio mechanisms are divided into mechanisms that calculate the optimal compression ratio according to engine operating conditions and mechanisms that change the compression ratio according to these calculated compression ratios. , Japanese Patent Publication No. 1983-
There are proposals such as Japanese Unexamined Utility Model Publication No. 188056 and Japanese Utility Model Application No. 59-196532, and the latter includes proposals such as Japanese Unexamined Utility Model Publication No. 59-40537. The present invention belongs to the former category.

従来の最適圧縮比を求める機構は、負荷、回転
数を制御回路に導入して同一のマツプに基づいて
最適圧縮比を求め、この出力によつて圧縮比を制
御するフイードバツク制御によつていた。
The conventional mechanism for determining the optimal compression ratio was based on feedback control, which introduced the load and rotation speed into the control circuit, determined the optimal compression ratio based on the same map, and controlled the compression ratio using this output. .

[考案が解決しようとする問題点] しかしながら、従来の圧縮比可変機構において
は、2段あるいは多段の圧縮比可変機構付きエン
ジンで圧縮比を切換えるときに、全気筒に対し同
時に圧縮比切換えが生じるので、トルク等に不連
続な変化を生じ、乗員に対して不快となるシヨツ
クが起こるおそれがあつた。
[Problems to be solved by the invention] However, in the conventional variable compression ratio mechanism, when switching the compression ratio in an engine with a two-stage or multi-stage variable compression ratio mechanism, the compression ratio is switched simultaneously for all cylinders. Therefore, there was a risk that discontinuous changes in torque etc. would occur, resulting in an uncomfortable shock for the occupants.

本考案は、多気筒エンジンにおける圧縮比切換
時のシヨツクを小さくし乗員の感知レベル以下に
して快適な運転を可能にすることを目的とする。
The object of the present invention is to reduce the shock when switching the compression ratio in a multi-cylinder engine and to lower it to a level that is perceptible to the occupants, thereby enabling comfortable driving.

[問題点を解決するための手段] この目的を達成するための本考案に係る可変圧
縮比機構付多気筒内燃機関の制御装置は、次の装
置から成る。すなわち、 各気筒毎に定められた、エンジン回転数および
エンジン負荷を含むエンジン運転条件に対して低
圧縮比領域および高圧縮比領域を定めた圧縮比マ
ツプを有し、センサにより検知された時々刻々の
エンジン運転条件に応じて、CPUにて前記圧縮
比マツプに基づいて各気筒の時々刻々の圧縮比を
決定する可変圧縮比機構付多気筒内燃機関の制御
装置において、前記各気筒毎に定められた圧縮比
マツプの、低圧縮比領域と高圧縮比領域間の圧縮
比切換えラインを、気筒間で異ならせたことを特
徴とする可変圧縮比機構付多気筒内燃機関の制御
装置。
[Means for Solving the Problems] A control device for a multi-cylinder internal combustion engine with a variable compression ratio mechanism according to the present invention to achieve this object includes the following device. In other words, each cylinder has a compression ratio map that defines a low compression ratio region and a high compression ratio region for engine operating conditions including engine speed and engine load, and the map has a compression ratio map that defines a low compression ratio region and a high compression ratio region for engine operating conditions including engine speed and engine load. In a control device for a multi-cylinder internal combustion engine with a variable compression ratio mechanism, the CPU determines the compression ratio of each cylinder from moment to moment based on the compression ratio map according to engine operating conditions. A control device for a multi-cylinder internal combustion engine with a variable compression ratio mechanism, characterized in that a compression ratio switching line between a low compression ratio region and a high compression ratio region of a compression ratio map is made different between cylinders.

[作用] 上記のように構成された可変圧縮比機構付多気
筒内燃機関の制御装置においては、各センサによ
り読まれた吸気管負圧、エンジン回転数等のエン
ジン運転条件の信号がCPUに送り込まれ、各気
筒に対して設けられた圧縮比マツプより各気筒毎
に圧縮比が決定され、決定された圧縮比に各気筒
が制御される。この場合、気筒毎に圧縮比切換え
のエンジン運転域が少しづつ変えられており、切
換えが全気筒同時に行なわれることがなくなるの
で、大きな切換えシヨツクが生じることはない。
[Function] In the control device for a multi-cylinder internal combustion engine with a variable compression ratio mechanism configured as described above, signals of engine operating conditions such as intake pipe negative pressure and engine speed read by each sensor are sent to the CPU. Then, a compression ratio is determined for each cylinder from a compression ratio map provided for each cylinder, and each cylinder is controlled to the determined compression ratio. In this case, the engine operating range for switching the compression ratio is changed little by little for each cylinder, and switching is not performed for all cylinders at the same time, so a large switching shock does not occur.

[実施例] 以下に、本考案に係る可変圧縮比機構付多気筒
内燃機関の制御装置の望ましい実施例を、図面を
参照して説明する。
[Embodiments] Hereinafter, preferred embodiments of a control device for a multi-cylinder internal combustion engine with a variable compression ratio mechanism according to the present invention will be described with reference to the drawings.

第1図は本考案実施例のブロツク図を示してい
る。図において、エンジン運転条件を検知するセ
ンサ、たとえばエンジン負荷を検知する吸気管負
圧センサ1、エンジン回転数センサ2等の信号
は、CPU3に送られ、CPU3にて、予じめ記憶
された圧縮比マツプ4、点火マツプ5より各気筒
の最適圧縮比、最適点火時期が算出される。
FIG. 1 shows a block diagram of an embodiment of the present invention. In the figure, signals from sensors that detect engine operating conditions, such as intake pipe negative pressure sensor 1 that detects engine load, engine rotation speed sensor 2, etc., are sent to CPU 3. The optimum compression ratio and optimum ignition timing for each cylinder are calculated from the ratio map 4 and the ignition map 5.

圧縮比マツプ4は、第2図に示すように、エン
ジン回転数と吸気管負圧に対して、その入力条件
において機関が高圧縮比領域12にあるべきか低
圧縮比領域13にあるべきかを各気筒毎に独立
に、かつ全気筒が同一とはならないように、決定
する。すなわち、高圧縮比領域と低圧縮比領域間
の境界である圧縮比切換ラインが気筒間で異なら
せてある。図示例ではたとえば#1,#4気筒の
圧縮比切換えラインと、#2,#3気筒の圧縮比
切換えラインが異なる場合を示している。ただ
し、第2図は、高圧縮比、低圧縮比の2段切換え
の例で示してある。
As shown in FIG. 2, the compression ratio map 4 shows whether the engine should be in the high compression ratio region 12 or in the low compression ratio region 13 under the input conditions with respect to the engine speed and intake pipe negative pressure. is determined independently for each cylinder and not the same for all cylinders. That is, the compression ratio switching line, which is the boundary between the high compression ratio region and the low compression ratio region, is different between cylinders. In the illustrated example, the compression ratio switching lines for the #1 and #4 cylinders are different from the compression ratio switching lines for the #2 and #3 cylinders, for example. However, FIG. 2 shows an example of two-stage switching of high compression ratio and low compression ratio.

点火マツプ5は、第3図に示すように、エンジ
ン回転数と吸気管負圧に対して決定された圧縮比
に付随して点火進角14が決められるようになつ
ており、各気筒に対し最適点火進角が決定される
ようになつている。
As shown in Fig. 3, the ignition map 5 is such that the ignition advance angle 14 is determined in conjunction with the compression ratio determined for the engine speed and intake pipe negative pressure, and is set for each cylinder. The optimum ignition advance angle is now determined.

CPU3にて決定された最適圧縮比および最適
点火時期は、各気筒毎に圧縮比を制御可能な圧縮
比制御機構41(後述する切換弁41)および各
気筒毎に点火時期を制御可能な点火時期制御機構
49に送られ、それぞれを制御する。
The optimum compression ratio and optimum ignition timing determined by the CPU 3 are determined by a compression ratio control mechanism 41 (switching valve 41 to be described later) that can control the compression ratio for each cylinder and an ignition timing that can control the ignition timing for each cylinder. The signals are sent to a control mechanism 49 to control each of them.

CPU3は第4図のブロツク図で示したように
各機構の作動を関係付ける。すなわち、エンジン
運転のある瞬間において工程6においてCPU3
に割り込みが行なわれ、続いて工程7で、吸気管
負圧、エンジン回転数を各センサ1,2より読み
込み、工程8で、各気筒毎に圧縮比を圧縮比マツ
プ4より決定し、工程9で、各気筒毎に決定され
た圧縮比に付随した点火マツプより点火時期を決
定し、工程10で、決定された圧縮比、点火時期に
各気筒を制御し、工程11で復帰する。以上のルー
チンをエンジンの運転条件の任意の時期に適用し
て圧縮比制御、点火時期制御が行なわれる。
The CPU 3 relates the operations of each mechanism as shown in the block diagram of FIG. In other words, at a certain moment when the engine is running, CPU3 is activated in step 6.
Then, in step 7, the intake pipe negative pressure and engine speed are read from each sensor 1, 2, in step 8, the compression ratio for each cylinder is determined from the compression ratio map 4, and in step 9. Then, the ignition timing is determined from the ignition map associated with the compression ratio determined for each cylinder, and in step 10, each cylinder is controlled to the determined compression ratio and ignition timing, and in step 11, the process returns. Compression ratio control and ignition timing control are performed by applying the above routine to any period of engine operating conditions.

上記制御において、圧縮比マツプ4、点火マツ
プ5における圧縮比の決定、点火時期の決定が、
各気筒に対して独立に行なわれ、圧縮比切換えの
条件が各気筒に対して少しづつ異ならせされてい
るので、圧縮比切換えが自動的に気筒間で異なつ
て行なわれ、全気筒が同時に圧縮比を切換えられ
ることはない。
In the above control, the determination of the compression ratio and the determination of the ignition timing in the compression ratio map 4 and the ignition map 5 are
Since compression ratio switching is performed independently for each cylinder, and the compression ratio switching conditions are slightly different for each cylinder, compression ratio switching is automatically performed differently between cylinders, and all cylinders are compressed at the same time. The ratio cannot be changed.

CPU3の出力は、第5図ないし第7図の機構
に送られて、圧縮比制御が行なわれる。
The output of the CPU 3 is sent to the mechanisms shown in FIGS. 5 to 7 to control the compression ratio.

第5図ないし第7図において、内燃機関のシリ
ンダ15にはピストン16が摺動自在に嵌挿さ
れ、ピストン16はコネクテイングロツド17に
ピストンピン18を介して連結されている。ピス
トンピン18はピストン16のピストンピン穴に
支持される。
5 to 7, a piston 16 is slidably fitted into a cylinder 15 of an internal combustion engine, and the piston 16 is connected to a connecting rod 17 via a piston pin 18. The piston pin 18 is supported in a piston pin hole of the piston 16.

コネクテイングロツド17の小端部のピストン
ピン挿通孔19とピストンピン18の外周との間
には周方向に肉厚が変化し、内周円と外周円とが
互に偏心している偏心ベアリング20が回転可能
に介装される。
An eccentric bearing is formed in which the wall thickness changes in the circumferential direction between the piston pin insertion hole 19 at the small end of the connecting rod 17 and the outer circumference of the piston pin 18, and the inner circumference circle and the outer circumference circle are eccentric from each other. 20 is rotatably interposed.

コネクテイングロツド17の、前記偏心ベアリ
ング20に対応する位置には偏心ベアリング20
の半径方向に延びるロツクピン収納穴21が形成
され、該穴21には、ロツクピン22が摺動自在
にかつ穴21から偏心ベアリング20に対して出
没自在に収納されている。一方、偏心ベアリング
20には、その半径方向の厚みが厚い部分に、ロ
ツクピン22が出没できる径をもつロツクピン係
合孔23が形成されている。該ロツクピン係合孔
23にロツクピン22が係合するとピストン16
を高い位置に保ち高圧縮比とし、ロツクピン22
による係合が解除されているときには、偏心ベア
リング20が自在に回転し、圧縮上死点でピスト
ンは低位置となり、低圧縮比状態を現出できるよ
うになつている。
An eccentric bearing 20 is located on the connecting rod 17 at a position corresponding to the eccentric bearing 20.
A lock pin storage hole 21 extending in the radial direction is formed, and a lock pin 22 is accommodated in the hole 21 so as to be slidable and retractable from the eccentric bearing 20 from the hole 21. On the other hand, in the eccentric bearing 20, a lock pin engagement hole 23 having a diameter that allows the lock pin 22 to move in and out is formed in a thicker portion in the radial direction. When the lock pin 22 engages with the lock pin engagement hole 23, the piston 16
Keep the lock pin 22 at a high position to achieve a high compression ratio.
When the engagement is released, the eccentric bearing 20 rotates freely, and the piston is in a low position at compression top dead center, making it possible to achieve a low compression ratio state.

つぎに、ロツクピン22の駆動構造について述
べると、ロツクピン収納穴21には、ロツクピン
22を挾んでロツクピンロツク用油圧通路24と
ロツクピンアンロツク用油圧通路25とが接続さ
れ、ロツクピンロツク用油圧通路24はロツクピ
ン22を偏心ベアリング20方向に付勢する位置
に開口されている。また、偏心ベアリング20の
外周にはロツクピン22に対応する位置に、周方
向に全周にわたつて延びるロツクピンガイド溝2
6が形成され、この溝26には、前記ロツクピン
係合孔23が設けられている。
Next, to describe the drive structure of the lock pin 22, the lock pin locking hydraulic passage 24 and the lock pin unlocking hydraulic passage 25 are connected to the lock pin housing hole 21 with the lock pin 22 in between. It is opened at a position that urges the eccentric bearing in the direction of the eccentric bearing 20. Further, on the outer periphery of the eccentric bearing 20, a lock pin guide groove 2 is provided at a position corresponding to the lock pin 22 and extends all the way in the circumferential direction.
6 is formed, and this groove 26 is provided with the lock pin engaging hole 23.

コネクテイングロツド17内に設けられた前記
油圧通路24,25は、コネクテイングロツド大
端部に軸受円周上に互に独立して設けられた油溝
28,29にそれぞれ連通されている。油溝2
8,29は、クランクシヤフト30内の油通路3
1を介して、クランクシヤフトのジヤーナル軸受
の円周上に互に独立して設けられた油溝32,3
3にクランクシヤフト30の回転時に間欠的に連
通可能に接続されている。油溝32は油溝28を
介してロツクピンロツク用油圧通路24に連通可
能であり、油溝33は油溝29を介してロツクピ
ンアンロツク用油圧通路25に連通可能である。
The hydraulic passages 24 and 25 provided in the connecting rod 17 communicate with oil grooves 28 and 29 provided independently on the circumference of the bearing at the large end of the connecting rod, respectively. . Oil groove 2
8 and 29 are oil passages 3 in the crankshaft 30
1, oil grooves 32, 3 independently provided on the circumference of the journal bearing of the crankshaft.
3 so that they can communicate intermittently when the crankshaft 30 rotates. The oil groove 32 can communicate with the lock pin locking hydraulic passage 24 via the oil groove 28, and the oil groove 33 can communicate with the lock pin unlocking hydraulic passage 25 via the oil groove 29.

シリンダブロツク内には、高圧縮比用メインオ
イル通路34と低圧縮比用メインオイル通路35
とが設けられており、高圧縮比用メインオイル通
路34は油溝32に連通され、低圧縮比用メイン
オイル通路35は油溝33に連通されている。オ
イルパン36の潤滑油37は、オイルストレーナ
38、リターンパイプ39を経てオイルポンプ4
0によつて汲み上げられ、切換弁41を介して高
圧縮比用メインオイル通路34か低圧縮比用メイ
ンオイル通路35の何れかに送られる。バツテリ
4に、イグニツシヨンスイツチ43、スタート信
号を感知するリレー44、ガソリン機関ではイン
テークマニホルド45に取付けられた吸気負圧ス
イツチ46、またはデイーゼル機関では燃料噴射
ポンプのポンプ室47に取付けられた圧力スイツ
チ48が図示のような回路に組み込まれており、
切換弁41を負荷に応じて作動させ、中、高負荷
の場合には低圧縮比用メインオイル通路35に圧
油が送られ、軽負荷の場合には高圧縮比用メイン
オイル通路34に圧油が送られるように制御され
る。
Inside the cylinder block, there is a main oil passage 34 for high compression ratio and a main oil passage 35 for low compression ratio.
The high compression ratio main oil passage 34 communicates with the oil groove 32, and the low compression ratio main oil passage 35 communicates with the oil groove 33. The lubricating oil 37 in the oil pan 36 passes through an oil strainer 38 and a return pipe 39 to the oil pump 4.
0 and sent via the switching valve 41 to either the high compression ratio main oil passage 34 or the low compression ratio main oil passage 35. In the battery 4, there is an ignition switch 43, a relay 44 that detects a start signal, an intake negative pressure switch 46 attached to the intake manifold 45 in a gasoline engine, or a pressure sensor attached to the pump chamber 47 of the fuel injection pump in a diesel engine. A switch 48 is incorporated in a circuit as shown,
The switching valve 41 is operated according to the load, and when the load is medium or high, pressure oil is sent to the main oil passage 35 for low compression ratio, and when the load is light, pressure is sent to the main oil passage 34 for high compression ratio. The flow of oil is controlled.

つぎに、上記のように構成された実施例におけ
る作用について説明する。
Next, the operation of the embodiment configured as described above will be explained.

まず、エンジン回転数、エンジン負荷等のエン
ジン運転条件が、それぞれのセンサー1,2によ
つて検知され、その信号が、CPU3に送られ
(工程7)、圧縮比マツプ4に基づいて圧縮比が決
定され(工程8)、続いて点火マツプ5に基づい
て点火時期が決定される(工程9)。出力値は圧
縮比制御機構41、点火時期制御機構49に送ら
れ、圧縮比と点火時期が制御される。
First, engine operating conditions such as engine speed and engine load are detected by the respective sensors 1 and 2, and the signals are sent to the CPU 3 (step 7), and the compression ratio is determined based on the compression ratio map 4. Then, the ignition timing is determined based on the ignition map 5 (Step 9). The output value is sent to a compression ratio control mechanism 41 and an ignition timing control mechanism 49 to control the compression ratio and ignition timing.

圧縮比の制御は具体的には次のように行なわれ
る。まず、低圧縮比の出力が出ているときは、切
換弁41によつて、低圧縮比用メインオイル通路
35に圧油が送られ、該圧油は油溝33、クラン
クシヤフト30内の油通路31、油溝29を介し
て、ロツクピンアンロツク用油圧通路25に送ら
れ、ロツクピン22をロツクピン収納穴21に収
納させて、ロツクピン係合孔23から外し、偏心
ベアリング20のロツクを解除する。この状態で
は偏心ベアリング20は回転可能であるから、ピ
ストン16からの慣性力、爆発力を、ピストンピ
ン18を介して受けて回転するので、ピストン1
6は、第8図のフリーの状態の規跡Aでもつて動
く。したがつて、圧縮上死点位置ではピストン1
6は下に押された状態となり、低圧縮比の状態を
現出できる。このため、中、高負荷時にかかわら
ず、ノツキングが生じにくく、圧縮比を高く維持
でき、燃費の改善、軸トルクの向上をはかること
ができる。
Specifically, the compression ratio is controlled as follows. First, when a low compression ratio output is being output, pressurized oil is sent to the low compression ratio main oil passage 35 by the switching valve 41, and the pressurized oil flows through the oil groove 33 and the oil in the crankshaft 30. The oil is sent to the lock pin unlocking hydraulic passage 25 via the passage 31 and the oil groove 29, and the lock pin 22 is housed in the lock pin storage hole 21 and removed from the lock pin engagement hole 23, and the eccentric bearing 20 is unlocked. In this state, the eccentric bearing 20 is rotatable, so it receives the inertia force and explosive force from the piston 16 via the piston pin 18 and rotates, so the piston 1
6 continues to move in the free state trajectory A in FIG. Therefore, at the compression top dead center position, piston 1
No. 6 is pushed down, and a low compression ratio can be achieved. For this reason, knocking is less likely to occur regardless of whether the load is medium or high, the compression ratio can be maintained high, and fuel efficiency and shaft torque can be improved.

一方、高圧縮比の出力が出ているときには、偏
心ベアリング20は次のようにして高圧縮比状態
を現出できる位置にロツクされる。すなわち、切
換弁41によつて高圧縮比用メインオイル通路3
4に圧油が送られ、該圧油は油溝32、クランク
シヤフト30内の油通路31、油溝28を介し
て、ロツクピンロツク用油圧通路24に送られ、
ロツクピン22をロツクピン収納穴21から出る
方向に駆動して、回転する偏心ベアリング20の
ロツクピン係合孔23に係合させ、偏心ベアリン
グ20をロツクする。ロツク状態ではピストン1
6が高い位置にロツクされるので、高圧縮比を現
出することが可能である。このとき、ピストン1
6は第8図の高圧縮比の軌跡Bに沿つて動く。な
お軌跡Cは低圧縮比の状態でピストンをロツクし
たら得られるであろう軌跡である。このようにし
て、中、高負荷状態で高圧縮比が得られるように
設定されたエンジン、したがつて軽負荷状態では
実質的に低圧縮比になつてしまうエンジンにおい
ても、本考案の適用によつて低負荷時に高圧縮比
が得られ、燃費の改善、軸トルクの増大がはから
れる。
On the other hand, when a high compression ratio output is being produced, the eccentric bearing 20 is locked at a position where a high compression ratio state can be achieved in the following manner. That is, the high compression ratio main oil passage 3 is controlled by the switching valve 41.
Pressure oil is sent to the lock pin lock hydraulic passage 24 via the oil groove 32, the oil passage 31 in the crankshaft 30, and the oil groove 28,
The lock pin 22 is driven in the direction out of the lock pin storage hole 21 and engaged with the lock pin engagement hole 23 of the rotating eccentric bearing 20, thereby locking the eccentric bearing 20. In the locked state, piston 1
6 is locked at a high position, it is possible to achieve a high compression ratio. At this time, piston 1
6 moves along the locus B of high compression ratio in FIG. Note that locus C is the locus that would be obtained if the piston was locked at a low compression ratio. In this way, the present invention can be applied to engines that are set to obtain high compression ratios under medium and high load conditions, and therefore engines that have substantially low compression ratios under light load conditions. Therefore, a high compression ratio can be obtained at low loads, improving fuel efficiency and increasing shaft torque.

[考案の効果] 本考案によれば、各気筒に対して圧縮比マツプ
の、低圧縮比領域と高圧縮比領域の境界である圧
縮比切換えラインを、気筒間で異ならせたので、
同時に全気筒の圧縮比切換えが行なわれることは
なく、切換えシヨツクを軽減でき、乗員に与える
不快感を感知レベル以下にすることができる。
[Effects of the invention] According to the invention, the compression ratio switching line, which is the boundary between the low compression ratio region and the high compression ratio region, in the compression ratio map for each cylinder is made different between the cylinders.
The compression ratios of all cylinders are not changed at the same time, which reduces the switching shock and reduces the discomfort felt to the occupants below the perceptible level.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例に係る可変圧縮比機
構付多気筒内燃機関の制御装置のブロツク図、第
2図は圧縮比マツプ図、第3図は点火マツプ図、
第4図は作動を示すブロツク図、第5図は本考案
を適用した圧縮比可変機構の断面図、第6図は第
5図とは直角方向の圧縮比可変機構の断面図、第
7図は第5図の機構の圧縮比を切換える油圧回路
の系統図、第8図は第5図において偏心ベアリン
グのロツクの有無の各状態におけるピストン軌跡
図、である。 1……吸気管負圧センサ、2……エンジン回転
数センサ、3……CPU、4……圧縮比マツプ、
41……圧縮比制御機構。
FIG. 1 is a block diagram of a control device for a multi-cylinder internal combustion engine with a variable compression ratio mechanism according to an embodiment of the present invention, FIG. 2 is a compression ratio map diagram, and FIG. 3 is an ignition map diagram.
Fig. 4 is a block diagram showing the operation, Fig. 5 is a sectional view of the variable compression ratio mechanism to which the present invention is applied, Fig. 6 is a sectional view of the variable compression ratio mechanism in a direction perpendicular to Fig. 5, and Fig. 7. 5 is a system diagram of a hydraulic circuit for switching the compression ratio of the mechanism shown in FIG. 5, and FIG. 8 is a piston locus diagram in each state in which the eccentric bearing is locked in FIG. 5. 1...Intake pipe negative pressure sensor, 2...Engine speed sensor, 3...CPU, 4...Compression ratio map,
41...Compression ratio control mechanism.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 各気筒毎に定められた、エンジン回転数および
エンジン負荷を含むエンジン運転条件に対して低
圧縮比領域および高圧縮比領域を定めた圧縮比マ
ツプを有し、センサにより検知された時々刻々の
エンジン運転条件に応じて、CPUにて前記圧縮
比マツプに基づいて各気筒の時々刻々の圧縮比を
決定する可変圧縮比機構付多気筒内燃機関の制御
装置において、前記各気筒毎に定められた圧縮比
マツプの、低圧縮比領域と高圧縮比領域間の圧縮
比切換えラインを、気筒間で異ならせたことを特
徴とする可変圧縮比機構付多気筒内燃機関の制御
装置。
Each cylinder has a compression ratio map that defines a low compression ratio region and a high compression ratio region for engine operating conditions, including engine speed and engine load, and has a compression ratio map that defines a low compression ratio region and a high compression ratio region for each engine operating condition, including engine speed and engine load. In a control device for a multi-cylinder internal combustion engine with a variable compression ratio mechanism, the CPU determines the compression ratio of each cylinder from moment to moment based on the compression ratio map according to the operating conditions. A control device for a multi-cylinder internal combustion engine with a variable compression ratio mechanism, characterized in that a compression ratio switching line between a low compression ratio region and a high compression ratio region of a ratio map is made different between cylinders.
JP1985086365U 1985-06-10 1985-06-10 Expired JPH0415964Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985086365U JPH0415964Y2 (en) 1985-06-10 1985-06-10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985086365U JPH0415964Y2 (en) 1985-06-10 1985-06-10

Publications (2)

Publication Number Publication Date
JPS61202664U JPS61202664U (en) 1986-12-19
JPH0415964Y2 true JPH0415964Y2 (en) 1992-04-09

Family

ID=30637608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985086365U Expired JPH0415964Y2 (en) 1985-06-10 1985-06-10

Country Status (1)

Country Link
JP (1) JPH0415964Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686493B2 (en) * 2007-03-09 2011-05-25 株式会社クボタ engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158349A (en) * 1982-02-26 1983-09-20 アルフア・ランチア・ソチエタ・ペル・アチオニ Modular multicylinder internal combustion engine
JPS59188056A (en) * 1983-03-08 1984-10-25 Mazda Motor Corp Variable compression ratio engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158349A (en) * 1982-02-26 1983-09-20 アルフア・ランチア・ソチエタ・ペル・アチオニ Modular multicylinder internal combustion engine
JPS59188056A (en) * 1983-03-08 1984-10-25 Mazda Motor Corp Variable compression ratio engine

Also Published As

Publication number Publication date
JPS61202664U (en) 1986-12-19

Similar Documents

Publication Publication Date Title
US5722363A (en) Cylinder-injection type internal combustion engine and a fuel injection control apparatus therefor
US5678515A (en) Valve timing control apparatus with a disallowing means
US5738053A (en) Malfunction detection apparatus for valve timing control device for engine
JPH0415964Y2 (en)
JPH07116957B2 (en) Vehicle with automatic transmission equipped with variable compression ratio mechanism of internal combustion engine
JP2518878B2 (en) Ignition timing control device for variable compression ratio internal combustion engine
JPH0426671Y2 (en)
JP2913640B2 (en) Compression ratio control device for internal combustion engine
JPH0635842B2 (en) Compression ratio control method for internal combustion engine with variable compression ratio mechanism
JP3375686B2 (en) Operation control device for two-cycle diesel engine
JPS6349057B2 (en)
JP3237512B2 (en) Fuel injection amount control device for internal combustion engine
JP2528159B2 (en) Ignition timing control device for variable compression ratio internal combustion engine
JPH082443Y2 (en) Lock pin hydraulic controller for variable compression ratio mechanism
JPS6334299B2 (en)
JP3351551B2 (en) Engine control device
JPH0430354Y2 (en)
JPH048277Y2 (en)
JPH062550A (en) Intake control device for internal combustion engine
JPS6312837A (en) Internal combustion engine with turbocharger having variable compression ratio device
JPH10238383A (en) Operation controller of two-cycle diesel engine
JP2624050B2 (en) Method for controlling compression ratio of internal combustion engine
JPH0426663Y2 (en)
JPS6131160Y2 (en)
JPS6334300B2 (en)