JPH04159423A - Gas turbine and change-over method of gas turbine combustor - Google Patents

Gas turbine and change-over method of gas turbine combustor

Info

Publication number
JPH04159423A
JPH04159423A JP28533490A JP28533490A JPH04159423A JP H04159423 A JPH04159423 A JP H04159423A JP 28533490 A JP28533490 A JP 28533490A JP 28533490 A JP28533490 A JP 28533490A JP H04159423 A JPH04159423 A JP H04159423A
Authority
JP
Japan
Prior art keywords
combustor
main
turbine
gas turbine
combustors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28533490A
Other languages
Japanese (ja)
Other versions
JP2796421B2 (en
Inventor
Kuniaki Aoyama
邦明 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28533490A priority Critical patent/JP2796421B2/en
Publication of JPH04159423A publication Critical patent/JPH04159423A/en
Application granted granted Critical
Publication of JP2796421B2 publication Critical patent/JP2796421B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To enable start control step by step in the stable operation area at the time of change-over with a main combustor by connecting the main combustor to a plural number of combustors for start in parallel between a compressor and a turbine, and controlling a flow amount control valve which is provided in each pipe. CONSTITUTION:A gas turbine is provided with a main combustor 3 and a plural number of combustors for start 8a, 8b,..., which are connected in parallel by a group of pipes 11 between a compressor 1 and a turbine 5. That is, the group of pipes 11 consist of a main pipe 12 which connects the compressor 1, a main combustor 2, and the turbine 5 and a plural number of crossover pipes 10a, 10b, 10c,... which are connected to the main pipe 12 in parallel. The main pipe 12 is provided with an air control valve 2 and a gas control valve 4. On the other hand, each crossover pipe 10a,... is provided with start control valves 9a, 9b,... upstream of the combustors for start 8a,.... At the time of change-over between the combustors for start 8a,... and the main combustor 3, each start control valve 9a,' is operated from open to close or from close to open sequentially.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、発電用ガスタービン等に適用されるガスター
ビン及びガスタービン燃焼器の切替方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a gas turbine and a gas turbine combustor switching method applied to a gas turbine for power generation and the like.

従来の技術 第3図は、従来の発電用ガスタービンの系統例を示す。Conventional technology FIG. 3 shows an example of a conventional gas turbine system for power generation.

第3図において、軸流空気圧縮機1て圧縮された空気が
、空気制御弁2を通って、石炭焚ボイラ、加圧流動床ボ
イラまたは石炭ガス化炉等の主燃焼器3に流入し、高温
ガスの発生を促すようになっている。そして、発生した
高温ガスは、ガス制御弁4を通ってタービン5に導かれ
、膨張して軸流空気圧縮機1と発電機6とを駆動する。
In FIG. 3, air compressed by an axial flow air compressor 1 passes through an air control valve 2 and flows into a main combustor 3 such as a coal-fired boiler, a pressurized fluidized bed boiler, or a coal gasifier; It is designed to encourage the generation of high-temperature gas. The generated high-temperature gas is guided to the turbine 5 through the gas control valve 4, expands, and drives the axial air compressor 1 and the generator 6.

タービン5の排気は、排気ガスボイラ7へ流入し、蒸気
発生に供された後、大気に放出される。
The exhaust gas from the turbine 5 flows into the exhaust gas boiler 7, is used to generate steam, and is then released into the atmosphere.

このようなタービンシステムにおいて、従来は、主燃焼
器3とは別に、灯油、軽油、重油または天然ガス等の石
炭以外の燃料を燃焼することができる単数の起動用燃焼
器8と、該燃焼器8に流入する圧縮空気を制御する単数
の起動制御弁9とが、主燃焼器3をバイパスするように
、空気制御弁2の上流側からガス制御弁4の下流側を繋
ぐ単数の渡り配管10に設置されている。
In such a turbine system, conventionally, apart from the main combustor 3, a single startup combustor 8 capable of burning a fuel other than coal, such as kerosene, light oil, heavy oil, or natural gas, and the combustor A single jumper pipe 10 connects the upstream side of the air control valve 2 to the downstream side of the gas control valve 4 so that the single start control valve 9 that controls the compressed air flowing into the air control valve 8 bypasses the main combustor 3. It is installed in

発明が解決しようとする課題 上述した系統構成の従来のガスタービンでは、起動用燃
焼器8から主燃焼器3への切替時に、起動制御弁9を開
から閉とするが、起動制御弁9が全閉状態に近くなった
場合、起動用燃焼器8での断面風速が低下し、燃焼が不
安定になる。そして、燃焼が不安定になると、タービン
5に負荷変動や回転数変動が惹起され、切替時に安定運
転ができない。
Problems to be Solved by the Invention In the conventional gas turbine having the system configuration described above, when switching from the startup combustor 8 to the main combustor 3, the startup control valve 9 is changed from open to closed. When the state is close to a fully closed state, the cross-sectional wind speed in the starting combustor 8 decreases, and combustion becomes unstable. When combustion becomes unstable, load fluctuations and rotational speed fluctuations occur in the turbine 5, making stable operation impossible at the time of switching.

また、主燃焼器3から起動用燃焼器8への切替時には、
起動制御弁9と空気制御弁2及びガス制御弁4は逆操作
をするが、同様の不安定現象を生ずる。
Also, when switching from the main combustor 3 to the startup combustor 8,
Although the activation control valve 9, the air control valve 2, and the gas control valve 4 operate in reverse, the same unstable phenomenon occurs.

本発明は、このような従来技術の課題を解決するために
なされたもので、起動用燃焼器から主燃焼器への切替及
び逆切替の際、負荷変動や回転数変動等を惹起せず、安
定した挙動が得られるガスタービン及びガスタービン燃
焼器の切替方法を提供することを目的とする。
The present invention was made in order to solve the problems of the prior art, and it does not cause load fluctuations or rotational speed fluctuations when switching from the startup combustor to the main combustor and vice versa. It is an object of the present invention to provide a gas turbine and a gas turbine combustor switching method that provide stable behavior.

課題を解決するための手段及び作用 本発明者において、前述した従来のガスタービンにおけ
る起動用燃焼器から主燃焼器への切替及び逆切替の際の
負荷変動や回転数変動の発生原因を究明したところ、以
下のことが明らかとなった。
Means and Action for Solving the Problems The present inventor has investigated the cause of load fluctuations and rotational speed fluctuations during switching from the startup combustor to the main combustor and reverse switching in the conventional gas turbine described above. However, the following became clear.

すなわち、起動用燃焼器の空気流量割合と、断面風速と
の関係を調べると、両者は互いに逆比例の関係にあり、
かつ空気流量割合の大小に拘らず、断面風速が一定以下
の領域では、燃焼が不安定となることである。
In other words, when examining the relationship between the air flow rate of the startup combustor and the cross-sectional wind speed, the two are inversely proportional to each other;
Moreover, regardless of the size of the air flow rate ratio, combustion becomes unstable in a region where the cross-sectional wind speed is below a certain level.

従来のガスタービンでは、単数の起動用燃焼器を用いて
いるため、燃焼器切替の際、空気流量割合が大きく断面
風速の小さい燃焼不安定領域での運転が避けられず、し
たがりて、その領域での運転時に負荷変動や回転数変動
が惹起され、安定運転が損なわれていたものである。
Conventional gas turbines use a single startup combustor, so when switching between combustors, operation in an unstable combustion region where the air flow rate is high and the cross-sectional wind speed is low is unavoidable. During operation in this area, load fluctuations and rotational speed fluctuations occurred, impairing stable operation.

以上の知見に基づき、請求項1の発明に係るガスタービ
ンは、主燃焼器と、複数の起動用燃焼器と、圧縮機とタ
ービンとの間で前記主燃焼器と前記複数の起動用燃焼器
とをそれぞれ並列な関係に接続する配管群と、前記配管
群それぞれに設けられた複数の流量制御弁とを備えた構
成とし、これにより、空気流量割合が太き(、かつ断面
風速も大きい安定作動領域での運転を可能としたもので
ある。
Based on the above knowledge, the gas turbine according to the invention of claim 1 includes a main combustor, a plurality of starting combustors, and a main combustor and a plurality of starting combustors between the compressor and the turbine. The configuration includes a group of piping that connects each of the piping groups in parallel, and a plurality of flow rate control valves provided in each of the piping groups. This allows operation within the operating range.

また、請求項2の発明に係るガスタービン燃焼器の切替
方法は、圧縮機とタービンとの間で、主燃焼器と、複数
の起動用燃焼器及び流量制御弁とを、それぞれ並列な関
係で接続した請求項1の発明に係るガスタービンの運転
に際し、起動用燃焼器から主燃焼器への切替または主燃
焼器から起動用燃焼器への切替のときに、複数の流量制
御弁を順次、開から閉へ、または閉から開へと操作する
ことを特徴とする。これにより、起動用燃焼器から主燃
焼器あるいは主燃焼器から起動用燃焼器への切替時、複
数個の起動用燃焼器を順次、消火または着火していくこ
とにより、空気流量割合が大き(、かつ断面風速も大き
い安定作動領域内で段階的に切替を推移させることがで
きる。
Further, the gas turbine combustor switching method according to the invention of claim 2 provides a main combustor, a plurality of starting combustors, and a plurality of flow control valves in a parallel relationship between the compressor and the turbine. When operating the connected gas turbine according to the invention of claim 1, when switching from the startup combustor to the main combustor or from the main combustor to the startup combustor, the plurality of flow control valves are sequentially operated. It is characterized by operating from open to closed or from closed to open. As a result, when switching from the startup combustor to the main combustor or from the main combustor to the startup combustor, by sequentially extinguishing or igniting multiple startup combustors, the air flow rate becomes large ( , and the cross-sectional wind speed is also large.

実施例 以下、本発明の一実施例を第1図及び第2図を参照して
説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 1 and 2.

第1図は本実施例によるガスタービンの系統構成図、第
2図はその作用説明図である。そして、説明を簡明にす
るため、第1図中、従来と同一の構成部分については、
第3図と同一の符号を使用する。
FIG. 1 is a system configuration diagram of a gas turbine according to this embodiment, and FIG. 2 is an explanatory diagram of its operation. In order to simplify the explanation, in FIG. 1, the same components as before are as follows.
The same symbols as in FIG. 3 are used.

本実施例のガスタービンでは、第1図に示すように、単
数の主燃焼器3と、複数の起動用燃焼器8a、 8b、
 8c・・・とが備えられている。これら主燃焼器2と
複数の起動用燃焼器8a・・・とが、圧縮機1とタービ
ン5との間で、配管群11によってそれぞれ並列な関係
で接続され、また、配管群11それぞれには、複数の流
量制御弁が設けられている。
As shown in FIG. 1, the gas turbine of this embodiment includes a single main combustor 3, a plurality of starting combustors 8a, 8b,
8c... is provided. The main combustor 2 and a plurality of startup combustors 8a... are connected in parallel between the compressor 1 and the turbine 5 by a pipe group 11, and each of the pipe groups 11 is , a plurality of flow control valves are provided.

詳述すると、配管群11は、圧縮機1、主燃焼器2及び
タービン5を接続する主配管12七、この主配管12に
それぞれ並列に接続された複数の渡り配管10a、 1
0b、 10c・・・とからなっている。そして、主配
管12には、流量制御弁としての空気制御弁2とガス制
御弁4とが主燃焼器2の上下流位置に設けられている。
To be more specific, the pipe group 11 includes a main pipe 127 connecting the compressor 1, the main combustor 2, and the turbine 5, and a plurality of crossover pipes 10a and 1 connected in parallel to the main pipe 12, respectively.
It consists of 0b, 10c... In the main pipe 12, an air control valve 2 and a gas control valve 4 as flow control valves are provided at upstream and downstream positions of the main combustor 2.

また、各渡り配管10a・・・は、主配管12の圧縮機
1がら空気制御弁2に至るまでの空気配管部分と、主配
管12のガス制御弁4からタービン5に至るガス配管部
分とを繋ぐ状態で並列に設けられている。そして、各渡
り配管10a・・・には、流量制御弁としての起動制御
弁9a、 9b、 9c・・・が、それぞれ起動用燃焼
器8a・・・の上流側に位置して設置されている。
In addition, each crossover pipe 10a... connects an air pipe section of the main pipe 12 from the compressor 1 to the air control valve 2, and a gas pipe section of the main pipe 12 from the gas control valve 4 to the turbine 5. They are connected in parallel. In each crossover pipe 10a..., startup control valves 9a, 9b, 9c... as flow control valves are installed, respectively, located upstream of the startup combustor 8a... .

しかして1通常運転時には、軸流空気圧縮機1で圧縮さ
れた空気が、空気制御弁2を通って、主燃焼器3に流入
し、高温ガスの発生を促す。発生した高温ガスは、ガス
制御弁4を通ってタービン5に導かれ、彫版して細流空
気圧縮機1と発電機6とを駆動する。タービン5の排気
は、排気ガスボイラ7へ流入し、蒸気発生に供された後
、大気に放出される。
During normal operation, air compressed by the axial air compressor 1 passes through the air control valve 2 and flows into the main combustor 3, promoting the generation of high-temperature gas. The generated hot gas is led to the turbine 5 through the gas control valve 4 and is engraved to drive the trickle air compressor 1 and the generator 6. The exhaust gas from the turbine 5 flows into the exhaust gas boiler 7, is used to generate steam, and is then released into the atmosphere.

一方、起動用燃焼器8a・・・から主燃焼器3への切替
、または主燃焼器3から起動用燃焼器8a・・・への切
替のときには、各起動制御弁9a・・・を順次、開から
閉へ、または閉から開へと操作し、複数個の起動用燃焼
器8a・・・を順次、消火または着火していく。
On the other hand, when switching from the starting combustor 8a... to the main combustor 3, or from the main combustor 3 to the starting combustor 8a..., each starting control valve 9a... is sequentially operated. The multiple starting combustors 8a are sequentially extinguished or ignited by operating from open to close or from close to open.

このような切替方法によると、第2図に示すように、空
気流量割合が大きく、かつ断面風速も大きい安定作動領
域内で段階的に切替を推移させることができる。
According to such a switching method, as shown in FIG. 2, switching can be made stepwise within a stable operating region where the air flow rate is large and the cross-sectional wind speed is also large.

すなわち、第2図は、起動用燃焼器8a・・・の空気流
量割合と、断面風速との関係を示したものである。同図
に破線Aで示したように、空気流量割合と断面風速とは
互いに逆比例の関係にある。また、同図に斜線で示した
ように、断面風速が一定以下で燃焼不安定な領域(B)
が存在する。
That is, FIG. 2 shows the relationship between the air flow rate ratio of the startup combustor 8a and the cross-sectional wind speed. As shown by the broken line A in the figure, the air flow rate and the cross-sectional wind speed are inversely proportional to each other. In addition, as indicated by diagonal lines in the figure, there is an area (B) where combustion is unstable when the cross-sectional wind speed is below a certain level.
exists.

従来のガスタービンでは、単数の起動用燃焼器を用いて
いるため、燃焼器切替の際、破線Aに沿う挙動を行って
いたため、安定作動範囲(C)が狭く、燃焼不安定領域
(B)での運転が避けられなかった。したがって、その
領域(B)での運転時に負荷変動や回転数変動が惹起さ
れ、安定運転が損なわれていたものである。
Conventional gas turbines use a single startup combustor, so when switching between combustors, the behavior follows the broken line A, resulting in a narrow stable operation range (C) and an unstable combustion region (B). Driving in the car was unavoidable. Therefore, during operation in the region (B), load fluctuations and rotational speed fluctuations occur, impairing stable operation.

これに対し、本発明では、複数個の起動用燃焼器8a・
・・を順次、消火または着火していくことにより、同図
に曲線りで示すように、安定作動領域内を段階的に推移
するので、安定作動範囲(E)が拡大でき、燃焼が不安
定な作動領域を小さくできる。したがって、切替時に負
荷変動や回転数変動を惹起せず、安定な切替作用が得ら
れるようになる。
In contrast, in the present invention, a plurality of starting combustors 8a,
By sequentially extinguishing or igniting ..., the stable operation range (E) can be expanded and combustion becomes unstable, as shown by the curve in the figure. The operating area can be reduced. Therefore, stable switching action can be obtained without causing load fluctuations or rotational speed fluctuations during switching.

発明の効果 以上述べたように、本発明によれば、複数の起動用燃焼
器を用いて、主燃焼器との切替の際に安定作動域内で段
階的に起動制御が行えるようにしたので、切替時の負荷
変動や回転数変動を惹起せず、安定な切替作用が得られ
るようになるという優れた効果が奏される。
Effects of the Invention As described above, according to the present invention, by using a plurality of starting combustors, starting control can be performed in stages within a stable operating range when switching with the main combustor. An excellent effect is achieved in that a stable switching action can be obtained without causing load fluctuations or rotational speed fluctuations during switching.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るガスタービンの一実施例を示す系
統図、第2図はその作用を示す特性図、第3図は従来の
ガスタービンを示す系統図である。 1・・圧縮機、2・・空気制御弁、3・・主燃焼器、4
・・ガス制御弁、5・・タービン、6・・発電機、7・
・排気ガスボイラ、8a、 8b、 gc・・起動用燃
焼器、9a、9b、9C” ”起動制御弁、10a。 10b、 10c・・渡り配管、11・・配管群、12
・・主配管。
FIG. 1 is a system diagram showing an embodiment of a gas turbine according to the present invention, FIG. 2 is a characteristic diagram showing its operation, and FIG. 3 is a system diagram showing a conventional gas turbine. 1. Compressor, 2. Air control valve, 3. Main combustor, 4
...Gas control valve, 5..Turbine, 6..Generator, 7.
・Exhaust gas boiler, 8a, 8b, gc... Start-up combustor, 9a, 9b, 9C""Start-up control valve, 10a. 10b, 10c...crossover piping, 11...piping group, 12
...Main piping.

Claims (1)

【特許請求の範囲】 1 主燃焼器と、複数の起動用燃焼器と、圧縮機とター
ビンとの間で前記主燃焼器と前記複数の起動用燃焼器と
をそれぞれ並列な関係に接続する配管群と、前記配管群
それぞれに設けられた複数の流量制御弁とを備えたこと
を特徴とするガスタービン。 2 圧縮機とタービンとの間で、主燃焼器と、複数の起
動用燃焼器及び流量制御弁とを、それぞれ並列な関係で
接続したガスタービンの運転に際し、起動用燃焼器から
主燃焼器への切替または主燃焼器から起動用燃焼器への
切替のときに、複数の流量制御弁を順次、開から閉へ、
または閉から開へと操作することを特徴とするガスター
ビン燃焼器の切替方法。
[Claims] 1. A main combustor, a plurality of startup combustors, and piping connecting the main combustor and the plurality of startup combustors in a parallel relationship between the compressor and the turbine. A gas turbine comprising: a group of pipes; and a plurality of flow control valves provided in each of the pipe groups. 2. When operating a gas turbine in which a main combustor, multiple starting combustors, and flow control valves are connected in parallel between the compressor and the turbine, from the starting combustor to the main combustor. or when switching from the main combustor to the startup combustor, the multiple flow control valves are sequentially switched from open to closed.
Or a method for switching a gas turbine combustor, characterized by operating from closed to open.
JP28533490A 1990-10-23 1990-10-23 Gas turbine and gas turbine combustor switching method Expired - Lifetime JP2796421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28533490A JP2796421B2 (en) 1990-10-23 1990-10-23 Gas turbine and gas turbine combustor switching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28533490A JP2796421B2 (en) 1990-10-23 1990-10-23 Gas turbine and gas turbine combustor switching method

Publications (2)

Publication Number Publication Date
JPH04159423A true JPH04159423A (en) 1992-06-02
JP2796421B2 JP2796421B2 (en) 1998-09-10

Family

ID=17690208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28533490A Expired - Lifetime JP2796421B2 (en) 1990-10-23 1990-10-23 Gas turbine and gas turbine combustor switching method

Country Status (1)

Country Link
JP (1) JP2796421B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006504043A (en) * 2002-10-24 2006-02-02 エアバス ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Device for generating water in an aircraft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006504043A (en) * 2002-10-24 2006-02-02 エアバス ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Device for generating water in an aircraft
US7767359B2 (en) 2002-10-24 2010-08-03 Airbus Deutschland Gmbh Device for producing water on board of an airplane

Also Published As

Publication number Publication date
JP2796421B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
US5461853A (en) HRSG boiler design with air staging and gas reburn
US6442924B1 (en) Optimized steam turbine peaking cycles utilizing steam bypass and related process
JP3222127B2 (en) Uniaxial pressurized fluidized bed combined plant and operation method thereof
US6604354B2 (en) Combined cycle power plant
JPH0621572B2 (en) Gas turbine plant starting method and gas turbine plant
JP6749780B2 (en) Improved start-up gas turbine combined cycle plant improved method for starting a relatively low temperature steam turbine
JP2015034548A (en) Gas turbine with improved part load emissions behavior
JP2009052548A (en) System and method for extending gas turbine emission compliance
JP2010065695A (en) Low btu fuel flow rate ratio duct burner for heating and heat recovery system
JP2011530034A (en) System and method for operating a gas turbine engine with an alternative working fluid
JP2009250236A (en) Control system and method for controlling load point of gas turbine engine
KR950008937A (en) How to perform partial-load operation in a group of gas turbines
JP4775643B2 (en) Gas turbine fuel switching apparatus and method
CN101876451A (en) Be used to control the system and method for combustion dynamics
JP2015040565A (en) Duct fired combined cycle system
CN104373220A (en) Purge system for gas turbine, and method thereof
JP3266626B2 (en) Cogeneration or combined power generation system with exhaust heat recovery device
JPH11210495A (en) Gas turbine
JPH08200015A (en) Method for operating combined plant
JPH04159423A (en) Gas turbine and change-over method of gas turbine combustor
JPH045703Y2 (en)
JP3605138B2 (en) Ignition switching method for gas turbine device
JP2001336428A (en) Gas turbine power generation apparatus
JP2928678B2 (en) Pressurized fluidized bed plant and its operation method
JPS6267240A (en) Fuel converting method for burner