JPH0415914A - Vapor growth film formation device - Google Patents

Vapor growth film formation device

Info

Publication number
JPH0415914A
JPH0415914A JP12078290A JP12078290A JPH0415914A JP H0415914 A JPH0415914 A JP H0415914A JP 12078290 A JP12078290 A JP 12078290A JP 12078290 A JP12078290 A JP 12078290A JP H0415914 A JPH0415914 A JP H0415914A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor wafer
temperature
raw material
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12078290A
Other languages
Japanese (ja)
Inventor
Hiroaki Ishikawa
博章 石川
Satoru Koto
古藤 悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12078290A priority Critical patent/JPH0415914A/en
Publication of JPH0415914A publication Critical patent/JPH0415914A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a film of uniform crystal thickness or uniform thickness by a method wherein material and a substrate are heated to different temperatures in an air-tight container with a transport agent enclosed in, a crystal is developed on the substrate and the temperature is equalized near the substrate at the time of formation of a film. CONSTITUTION:A semiconductor wafer for material supply 5 and a semiconductor wafer for a substrate 6 are secured on both ends of a grow chamber 4 in a quartz ampoule 10. With a transport agent enclosed in the grow room 4, the quartz ampoule 10 is so heated in a temperature gradient electric furnace 9 that the semiconductor wafer for material supply 5 is heated to high temperature and the semiconductor wafer for a substrate 6 is heated to low temperature. If a liner tube 8 is installed outside of the quartz ampoule 10 at this time, radiant heat emitted from the wall of the furnace 9 is first absorbed by the liner tube 8 to be made uniform and then is emitted again toward the quartz ampoule 10. Thus, the temperature is equalized near the semiconductor wafer for a substrate 6 and a semiconductor film of uniform thickness and uniform quality can be formed on the surface of the semiconductor wafer for a substrate 6.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、閉管気相成長法による半導体エピタキシャ
ル結晶成長を行ない成膜する気相成長成膜装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a vapor phase deposition film forming apparatus for performing semiconductor epitaxial crystal growth and film formation by closed tube vapor phase growth.

[従来の技術] 第4図(a)は従来から使用されてきた例えは特願平2
−2275号明細書に記載の閉管気相成長法による半導
体エピタキシャル結晶成長て成膜を行う気相成長成膜装
置を示す断面構成図である。この図において(1)は内
容物を収納する石英外管、(2)は内容物の固定並びに
真空融着用の石英内管で、この石英外管(1)と石英内
管(2)で密閉容器である石英アンプル(10)が構成
される。  (3)は石英外管(1)と石英内管(2)
を真空融着する際のくぼみ、(4)は石英アンプル(l
O)内の気相成長による成膜が行われる成長室、(5)
は成長室(4)の一端に配設されるエピタキシャル結晶
構成元素を供給する原料の原料供給用半導体ウェハ、(
6)は成長室(4)の他端に原料供給用半導体ウェハ(
5)と対向して配設され結晶が成長される基板の基板用
半導体ウェハ、(7)は輸送剤、(9)は石英アンプル
(10)に温度差をつけて加熱するための温度勾配型電
気炉で、温度勾配型電気炉高温部ヒーター(9a)と温
度勾配型電気炉低温部ヒーター(9b)で構成されてい
る。
[Prior art] Figure 4(a) is an analogy that has been used in the past.
FIG. 2 is a cross-sectional configuration diagram showing a vapor phase growth film forming apparatus that performs semiconductor epitaxial crystal growth and film formation by the closed tube vapor phase growth method described in the specification of Japanese Patent Application No. 2275. In this figure, (1) is a quartz outer tube for storing the contents, and (2) is a quartz inner tube for fixing the contents and vacuum welding, and the quartz outer tube (1) and quartz inner tube (2) are sealed together. A quartz ampoule (10), which is a container, is constructed. (3) is the quartz outer tube (1) and the quartz inner tube (2)
(4) is a quartz ampoule (L).
(5) a growth chamber in which film formation is performed by vapor phase growth in O);
is a semiconductor wafer for supplying raw materials for supplying epitaxial crystal constituent elements, which is disposed at one end of the growth chamber (4);
6) is a semiconductor wafer for raw material supply (
5) is a substrate semiconductor wafer which is a substrate on which crystals are grown, (7) is a transport agent, and (9) is a temperature gradient type for heating a quartz ampoule (10) with a temperature difference. The electric furnace is composed of a temperature gradient type electric furnace high temperature section heater (9a) and a temperature gradient type electric furnace low temperature section heater (9b).

次に動作について説明する。Next, the operation will be explained.

原料供給用半導体ウェハ(例えばInP)(5)と基板
用半導体ウェハ(例えばInP)(6)を石英アンプル
(10)内の成長室(4)の両端に固定し、輸送剤(例
えばI nCh)(7)を成長室(4)内に封入する。
A raw material supply semiconductor wafer (e.g. InP) (5) and a substrate semiconductor wafer (e.g. InP) (6) are fixed at both ends of the growth chamber (4) in a quartz ampoule (10), and a transport agent (e.g. InCh) (7) is sealed in the growth chamber (4).

この石英アンプル(10)を原料供給用半導体ウェハ(
5)が高温(例えば750℃)、基板用半導体ウニA(
6)が低温(例えは650℃)になるように温度勾配型
電気炉(9)内に配置し加熱する。その際のこの従来装
置における石英アンプル(10)壁面の温度分布をv!
I4図(b)のグラフに示す。加熱により、成長室(4
)内には以下の現象が起こる。すなわち、原料供給用半
導体ウェハ(5)においてはガス化した輸送剤(7)の
エツチング作用により原料ガスの発生が見られ、この発
生した原料ガスは原料供給用半導体ウェハ(5)および
基板用半導体ウェハ(6)の間に設けられた温度差分の
平衡分圧により、低温部に位置する基板用半導体ウェハ
(6)の表面に拡散および対流等により輸送される。輸
送された原料ガスにより基板用半導体ウェハ(6)表面
に結晶の成長反応が起こり膜が形成される。ところが、
成長室(4)内において重力および温度差の存在に起因
したガスの対流が発生し、基板用半導体ウェハ(6)表
面に原料ガスの濃度差が生じる。そのため 成長結晶膜
厚あるいは膜質に不均一が発生するという問題があった
。なお、第5図(a)は3次元熱流動解析により得られ
た、この従来例における、重力下、石英アンプル(lO
)を水平とした場合の原料ガスの速度分布を模式的に示
す説明図、第5図(b)は同、原料ガスの濃度分布を等
濃度線で示す説明図である。
This quartz ampoule (10) is transferred to a semiconductor wafer for raw material supply (
5) is high temperature (e.g. 750°C), semiconductor sea urchin A for substrate (
6) is placed in a temperature gradient electric furnace (9) and heated so that the temperature is low (for example, 650° C.). At that time, the temperature distribution on the wall surface of the quartz ampoule (10) in this conventional device was v!
This is shown in the graph of Figure I4 (b). By heating, the growth chamber (4
), the following phenomena occur. That is, generation of raw material gas is observed in the raw material supply semiconductor wafer (5) due to the etching action of the gasified transport agent (7), and this generated raw material gas is transferred to the raw material supply semiconductor wafer (5) and the semiconductor substrate. Due to the equilibrium partial pressure of the temperature difference provided between the wafers (6), it is transported by diffusion, convection, etc. to the surface of the substrate semiconductor wafer (6) located in the low temperature part. The transported raw material gas causes a crystal growth reaction to occur on the surface of the semiconductor wafer (6) for substrate, forming a film. However,
Gas convection occurs in the growth chamber (4) due to the presence of gravity and temperature difference, and a concentration difference of the source gas occurs on the surface of the semiconductor wafer for substrate (6). As a result, there is a problem in that the thickness or quality of the grown crystal becomes non-uniform. In addition, FIG. 5(a) shows a quartz ampoule (lO
) is an explanatory diagram schematically showing the velocity distribution of the raw material gas when horizontal, and FIG. 5(b) is an explanatory diagram showing the concentration distribution of the raw material gas using isoconcentration lines.

[発明が解決しようとする課題] 従来の気相成長成膜装置における半導体閉管気相成長は
以上のように行なわれるので、成長室内において重力お
よび温度差の存在に起因したガスの対流が発生し、この
ため、基板表面に原料ガスの濃度差が生じて成長結晶膜
厚あるいは膜質が不均一ζこなるという問題点があった
[Problems to be Solved by the Invention] Since semiconductor closed-tube vapor phase growth is performed in the conventional vapor phase deposition apparatus as described above, gas convection occurs in the growth chamber due to gravity and temperature differences. Therefore, there is a problem that a difference in the concentration of the raw material gas occurs on the substrate surface, resulting in non-uniformity in the thickness or quality of the grown crystal film.

この発明は上記のような問題点を解消するためになされ
たもので、重力下においても均一な結晶膜厚あるいは膜
質の膜を得ることのできる気相成長を実現できる成膜H
置を提供することを目的とする。
This invention was made in order to solve the above-mentioned problems, and it is a film-forming H that can realize vapor phase growth that can obtain a film with a uniform crystalline thickness or film quality even under gravity.
The purpose is to provide a

[課題を解決するための手段] この発明の気相成長成膜装置は、輸送剤を封入した密閉
容器内で原料と基板との間に温度差をつけて加熱するこ
とにより原料から発生する原料ガスを輸送して基板玉に
結晶を成長させ成膜するもので、その基板近情部を均一
温度とする均熱手段を設けたものである。
[Means for Solving the Problems] The vapor phase growth film forming apparatus of the present invention produces raw materials generated from raw materials by heating the raw materials and a substrate by creating a temperature difference between the raw materials and the substrate in a closed container filled with a transport agent. This device transports gas to grow crystals on a substrate ball to form a film, and is equipped with a heating means to maintain a uniform temperature in the vicinity of the substrate.

[作用] この発明の気相成長酸M装置における均熱手段、例えば
基板近傍の密閉容器の外周に設けられた均熱管が、密閉
容器の基板付近の温度を均一にし、基板付近にほぼ一定
な等温領域を形成する。従って、この装置における気相
成長では、密閉容器の温度が、基板付近でほぼ一定であ
ることにより、この部分では重力および温度差の存在に
起因したガスの対流が抑制され、基板への原料ガスの輸
送は拡散によるものが支配的で、基板表面の原料ガスの
濃度差は小さくなるので、重力下でも結晶膜厚および膜
質が均一になる。
[Function] The heat equalizing means in the vapor phase growth acid M apparatus of the present invention, for example, the heat equalizing tube provided on the outer periphery of the sealed container near the substrate, makes the temperature near the substrate of the sealed container uniform, and maintains a substantially constant temperature near the substrate. Form an isothermal region. Therefore, in vapor phase growth using this device, the temperature of the sealed container is almost constant near the substrate, so gas convection caused by gravity and temperature differences is suppressed in this area, and the source gas flows toward the substrate. The transport of is mainly due to diffusion, and the difference in the concentration of the raw material gas on the substrate surface becomes small, so the crystal film thickness and film quality become uniform even under gravity.

[実施例コ 以下、この発明の実施例を図について説明する。[Example code] Embodiments of the present invention will be described below with reference to the drawings.

第1図(a)はこの発明の一実施例の気相成長成膜装置
を示す断面構成図である。図において、(8)は基板で
ある基板用半導体ウェハ(6)近傍部を均一温度とする
均熱手段で、この場合は温度勾配型電気炉(9)と石英
アンプル(10)との閏で、基板用判導体ウェハ(6)
近傍部に設けた均熱管(例えは鋼管)である。なお、第
3図と同一符号は同一構成部分を示す。
FIG. 1(a) is a cross-sectional configuration diagram showing a vapor phase growth film forming apparatus according to an embodiment of the present invention. In the figure, (8) is a heating means for keeping the vicinity of the substrate semiconductor wafer (6) at a uniform temperature. , conductor wafer for substrates (6)
This is a heat soaking pipe (for example, a steel pipe) installed in the vicinity. Note that the same reference numerals as in FIG. 3 indicate the same components.

次に動作について説明する。Next, the operation will be explained.

原料供給用半導体ウェハ(例えば1nP)(5)と基板
用半導体ウェハ(6)(例えばI nP )を石英アン
プル(10)内の成長室(4)の両端に固定し、輸送剤
(例えはI nCI+)を成長室(4)内に封入する。
A raw material supply semiconductor wafer (for example, 1nP) (5) and a substrate semiconductor wafer (6) (for example, I nP) are fixed at both ends of the growth chamber (4) in a quartz ampoule (10), and a transport agent (for example, I nCI+) is sealed in the growth chamber (4).

この石英アンプル(10)を原料供給用半導体ウェハ(
5)が高温(例えば750℃)、基板用半導体ウェハ(
6)が低温(例えは650℃)になるように温度勾配型
電気炉(9)内に配置し加熱する。この時、石英アンプ
ル(10)外側に均熱管(8)を設けているため炉(9
)壁からの輻射熱は均熱管(8)に吸収されて均一化さ
れ、石英アンプル(lO〉に向けて再輻射されるので、
基板用半導体ウェハ(6)付近(図中Aて示す)に石英
アンプル(lO)の温度がほぼ一定な等温度領域ができ
ることになる。即ち、基板用半導体ウェハ(6)付近の
温度が均一となる。第1図(b)のグラフにこの時の石
英アンプル(10)壁面の温度分布を示す。加熱により
、成長室(4)内には以下の現象が起こる。すなわち、
原料供給用半導体ウェハ(5〉においてはガス化した輸
送剤(7)のエツチング作用により原料ガスの発生が見
られ、この発生したガスは原料供給用半導体ウェハ(5
)および基板用半導体ウェハ(6)の間に設けられた温
度差分の平衡分圧により、低温部に位置する基板用半導
体ウェハ(6)の表面に拡散および対流等により輸送さ
れる。輸送された原料ガスにより基板用半導体ウェハ(
6)表面に結晶の成長反応が起こり膜が形成される。と
ころで、この実施例では基板用半導体ウェハ(6)付近
の温度分布は均熱管(8)によりほぼ一定であるので、
この部分では重力および温度差の存在に起因したガスの
対流は抑制され、原料ガスの輸送は拡散によるものが主
体となり、基板用半導体ウェハ(6)表面の濃度差は小
さくなる。従って、膜厚及び膜質の均一な半導体膜が得
られる。
This quartz ampoule (10) is transferred to a semiconductor wafer for raw material supply (
5) When the temperature is high (e.g. 750°C), the semiconductor wafer for substrate (
6) is placed in a temperature gradient electric furnace (9) and heated so that the temperature is low (for example, 650° C.). At this time, since the soaking tube (8) is provided outside the quartz ampoule (10), the furnace (9)
) The radiant heat from the wall is absorbed by the heat soaking tube (8), made uniform, and re-radiated toward the quartz ampoule (lO), so that
A constant temperature region where the temperature of the quartz ampoule (lO) is approximately constant is created near the semiconductor wafer (6) for substrate (indicated by A in the figure). That is, the temperature near the semiconductor wafer (6) for substrate becomes uniform. The graph in FIG. 1(b) shows the temperature distribution on the wall surface of the quartz ampoule (10) at this time. Due to heating, the following phenomenon occurs in the growth chamber (4). That is,
On the semiconductor wafer for raw material supply (5), generation of raw material gas was observed due to the etching action of the gasified transport agent (7), and this generated gas was transferred to the semiconductor wafer for raw material supply (5).
) and the semiconductor wafer for substrate (6) due to the equilibrium partial pressure of the temperature difference, the semiconductor wafer for substrate (6) is transported to the surface of the semiconductor wafer for substrate (6) located at the low temperature part by diffusion, convection, etc. Semiconductor wafers for substrates (
6) A crystal growth reaction occurs on the surface and a film is formed. By the way, in this embodiment, the temperature distribution near the semiconductor wafer for substrate (6) is almost constant due to the soaking tube (8).
In this part, gas convection due to the presence of gravity and temperature difference is suppressed, and the transport of the raw material gas is mainly due to diffusion, so that the concentration difference on the surface of the semiconductor wafer (6) for substrate becomes small. Therefore, a semiconductor film with uniform thickness and quality can be obtained.

第2図(a)はこの発明の他の実施例の気相成長成膜装
置を示す断面構成図である。上記実施例では基板用半導
体ウェハ(6)付近のみに均熱管(8)を設けて等温度
領域を形成したが、この実施例では原料ガスの供給をも
均一とするために原料供給用半導体ウェハ(5)付近(
図中Bで示す)と基板用半導体ウェハ(6)付近の両方
に均熱管(8)を設けて等温度領域を形成している。第
2図(b)はこの時の石英アンプル(10)壁面の温度
分布を示すグラフである。
FIG. 2(a) is a cross-sectional configuration diagram showing a vapor phase growth film forming apparatus according to another embodiment of the present invention. In the above embodiment, the soaking tube (8) was provided only near the semiconductor wafer (6) for the substrate to form an equal temperature region, but in this embodiment, in order to uniformly supply the raw material gas, (5) Near (
A soaking tube (8) is provided both in the vicinity of the semiconductor wafer (6) (indicated by B in the figure) and the substrate semiconductor wafer (6) to form an equal temperature region. FIG. 2(b) is a graph showing the temperature distribution on the wall surface of the quartz ampoule (10) at this time.

なお、第3図(a)は従来例と同じ条件で3次元熱流動
解析により得られた、この第2図(a)の実施例におけ
る原料ガスの速度分布を模式的に示す説明図、第3図(
b)は同、原料ガスの濃度分布を等濃度線で示す説明図
である。壁面に温度勾配が存在する領域で大きな対流が
生じ、温度勾配が存在しない部分、等温度領域では対流
が小さく原料供給用半導体ウェハ<5)付近と基板用半
導体ウェハ(6)付近のガス輸送は拡散によるものが支
配的となる。このため、原料供給用半導体ウェハ(5)
付近と基板用半導体ウェハ(6)の丘部と下部の原料ガ
スの濃度差は小さくなっている。従って均一性の高い結
晶成膜が実現できるのである。
Note that FIG. 3(a) is an explanatory diagram schematically showing the velocity distribution of the raw material gas in the example of FIG. 2(a), obtained by three-dimensional thermal-hydraulic analysis under the same conditions as the conventional example. Figure 3 (
b) is an explanatory diagram showing the concentration distribution of the raw material gas using isoconcentration lines. Large convection occurs in areas where there is a temperature gradient on the wall surface, and in areas where there is no temperature gradient, convection is small in areas of equal temperature. Diffusion becomes dominant. For this reason, semiconductor wafers for raw material supply (5)
The difference in the concentration of the raw material gas near the hill and the lower part of the substrate semiconductor wafer (6) is small. Therefore, highly uniform crystal film formation can be achieved.

このように、基板付近に温度の均一な等温度領域を形成
することにより重力下においても膜厚及び膜質の均一な
結晶成膜ができる。
In this way, by forming an isothermal region with a uniform temperature near the substrate, it is possible to form a crystalline film with a uniform thickness and quality even under gravity.

なお、上記実施例では密閉容器の材料に石英を用いた場
合を示したが、耐熱性の他の材料を用いた場合にも同一
の効果を奏する。
In addition, although the above embodiment shows the case where quartz is used as the material of the closed container, the same effect can be obtained even when other heat-resistant materials are used.

また、均熱管として鋼管を例に示したが、耐熱性を有し
、熱伝導性のよいものであれば、他の材料を用いた場合
にも同一の効果を奏する。
Further, although a steel pipe is used as an example of the heat-uniforming pipe, the same effect can be achieved even if other materials are used as long as they have heat resistance and good thermal conductivity.

〔発明の効果] 以上のように、この発明は、輸送剤を封入した密閉容器
内で原料と基板との間に温度差をつけて加熱することに
より原料から発生する原料ガスを輸送して基板上に結晶
を成長させ成膜する気相成長成膜装置に、その基板近傍
部を均一温度とする均熱手段を;9けたので、基板(」
近の温度がほぼ一定となる。その結果、重力および温度
差の存在に起因したガスの対流はこの部分で抑制される
ので、この部分では、基板への原料ガスの輸送は拡散が
支配的となり、基板表面近傍での原料ガスの濃度分布が
一様になり、重力下でも結晶膜厚および膜質が均一な膜
を形成できる効果がある。
[Effects of the Invention] As described above, the present invention transports the raw material gas generated from the raw material by heating the raw material and the substrate by creating a temperature difference between the raw material and the substrate in a closed container filled with a transport agent. The vapor phase growth film deposition system that grows crystals and forms films on the substrate is equipped with a soaking means to maintain a uniform temperature near the substrate.
The nearby temperature remains almost constant. As a result, gas convection caused by the presence of gravity and temperature differences is suppressed in this region, so diffusion is dominant in the transport of the source gas to the substrate in this region, and the source gas near the substrate surface is This has the effect of making the concentration distribution uniform and forming a film with uniform crystal film thickness and film quality even under gravity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)はこの発明の一実施例の気相成長成膜装置
を示す断面構成図、第1図(b)はその密閉容器の温度
分布を示すグラフ、第2図(a)はこの発明の他の実施
例の気相成長成膜装置を示す断面構成図、第2図(b)
はその密閉容器の温度分布を示すグラフ、第3図(a)
はこの発明の他の実施例における原料ガスの速度分布を
示す説明図、第3図(b)は同、濃度分布を示す説明図
、第4図(a)は従来の気相成長成膜装置を示す断面構
成図、第4図(b)はその密閉容器の温度分布を示すグ
ラフ、第5図(a)は従来例における原料ガスの速度分
布を示す説明図、第5図(b)は同、濃度分布を示す説
明図である。 図において、(lO)は密閉容器である石英アンプルで
、石英外管(1)と石英内管(2)で構成され、成長M
(4)を有する。(5)は原料であるエピタキシャル結
晶構成元素を供給する原料供給用半導体ウェハ、(6)
は基板である結晶が成長される基板用半導体ウェハ、(
7)は輸送剤、(8)は均熱手段である均熱管、(9)
は温度勾配型電気炉で、温度勾配型高温部ヒーター(9
a)、温度勾配型電気炉低温部ヒーター(9b)で構成
される。 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1(a) is a cross-sectional configuration diagram showing a vapor phase growth film forming apparatus according to an embodiment of the present invention, FIG. 1(b) is a graph showing the temperature distribution of the closed container, and FIG. 2(a) is a graph showing the temperature distribution of the closed container. A cross-sectional configuration diagram showing a vapor phase growth film forming apparatus according to another embodiment of the present invention, FIG. 2(b)
is a graph showing the temperature distribution of the sealed container, Figure 3(a)
is an explanatory diagram showing the velocity distribution of the source gas in another embodiment of the present invention, FIG. 3(b) is an explanatory diagram showing the concentration distribution of the same, and FIG. 4(a) is a conventional vapor phase growth film forming apparatus. FIG. 4(b) is a graph showing the temperature distribution of the closed container, FIG. 5(a) is an explanatory diagram showing the velocity distribution of the raw material gas in the conventional example, and FIG. It is an explanatory diagram showing concentration distribution in the same case. In the figure, (lO) is a quartz ampoule that is a closed container, consisting of an outer quartz tube (1) and an inner quartz tube (2).
(4). (5) is a raw material supply semiconductor wafer that supplies epitaxial crystal constituent elements, which are raw materials; (6)
is a substrate semiconductor wafer on which crystals are grown, (
7) is a transport agent, (8) is a heat soaking tube which is a heat soaking means, (9)
is a temperature gradient type electric furnace with a temperature gradient type high temperature section heater (9
a) Consists of a temperature gradient type electric furnace low temperature section heater (9b). In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  密閉容器内に原料と基板を対向配置するとともに輸送
剤を封入し、上記原料と基板との間に温度差をつけて全
体を加熱することにより上記原料から発生する原料ガス
を輸送して上記基板上に結晶を成長させ成膜する装置に
おいて、上記基板近傍部を均一温度とする均熱手段を設
けたことを特徴とする気相成長成膜装置。
A raw material and a substrate are arranged facing each other in a sealed container, a transport agent is sealed, and a temperature difference is created between the raw material and the substrate to heat the whole, thereby transporting the raw material gas generated from the raw material to the substrate. What is claimed is: 1. A vapor phase growth film forming apparatus for forming a film by growing crystals thereon, characterized in that the apparatus is provided with a soaking means for maintaining a uniform temperature in the vicinity of the substrate.
JP12078290A 1990-05-09 1990-05-09 Vapor growth film formation device Pending JPH0415914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12078290A JPH0415914A (en) 1990-05-09 1990-05-09 Vapor growth film formation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12078290A JPH0415914A (en) 1990-05-09 1990-05-09 Vapor growth film formation device

Publications (1)

Publication Number Publication Date
JPH0415914A true JPH0415914A (en) 1992-01-21

Family

ID=14794869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12078290A Pending JPH0415914A (en) 1990-05-09 1990-05-09 Vapor growth film formation device

Country Status (1)

Country Link
JP (1) JPH0415914A (en)

Similar Documents

Publication Publication Date Title
JP3090339B2 (en) Vapor growth apparatus and method
US3293074A (en) Method and apparatus for growing monocrystalline layers on monocrystalline substrates of semiconductor material
US5002630A (en) Method for high temperature thermal processing with reduced convective heat loss
JPH07176482A (en) Method and apparatus for epitaxial growth
JPH04210476A (en) Formation of silicon carbide film
JP3206375B2 (en) Method for manufacturing single crystal thin film
US7314519B2 (en) Vapor-phase epitaxial apparatus and vapor phase epitaxial method
JPS63316425A (en) Manufacturing apparatus for semiconductor device
JP2000012463A (en) Film formation device
JPH0415914A (en) Vapor growth film formation device
KR100625823B1 (en) Vapor Phase Epitaxy Device
JPH01253229A (en) Vapor growth device
JP2525348B2 (en) Vapor growth method and apparatus
JPWO2003003432A1 (en) Vapor phase growth method and vapor phase growth apparatus
JPH03233294A (en) Heat treatment device
JPS63181414A (en) Apparatus for forming semiconductor film
JP2551172B2 (en) Vapor phase epitaxial growth system
JPS587817A (en) Vapor growth method for semiconductor
JPH0493026A (en) Apparatus for forming insulating film
JPS6214127Y2 (en)
JPH01201926A (en) Vapor phase epitaxial growth
JPS6372111A (en) Method for controlling temperature of semiconductor substrate
JPS60109222A (en) Device for vapor growth of compound semiconductor of iii-v group
JPH0559080B2 (en)
JPS61242998A (en) Production of semiconductor single crystal of silicon carbide