JPH04159081A - Reinforcing method for particle dispersion type metal group composite material - Google Patents

Reinforcing method for particle dispersion type metal group composite material

Info

Publication number
JPH04159081A
JPH04159081A JP28459490A JP28459490A JPH04159081A JP H04159081 A JPH04159081 A JP H04159081A JP 28459490 A JP28459490 A JP 28459490A JP 28459490 A JP28459490 A JP 28459490A JP H04159081 A JPH04159081 A JP H04159081A
Authority
JP
Japan
Prior art keywords
composite material
particle dispersion
dispersion type
type metal
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28459490A
Other languages
Japanese (ja)
Inventor
Satoru Toriyama
通山 哲
Takeshi Nouchi
野内 剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP28459490A priority Critical patent/JPH04159081A/en
Publication of JPH04159081A publication Critical patent/JPH04159081A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To prevent the occurrence of a crack by applying shot peening having an arc height value of 0.1N or more on the surface of a particle dispersion type metal group composite material, where silicon carbide is arranged in a dispersed state at a base material metal, by using glass beads with a shot grain size of 50-250mum to exert a residual compression stress of 50-200MPa on the base material metal. CONSTITUTION:A shot peening having an arc height value of 0.1N or more is applied on the surface of a particle dispersion type metal base composite material 1, where silicon carbide A is arranged in a dispersed state in a base material metal B, by using glass beads 4 with a shot grain size of 50-250mum. This method exerts a residual compression stress of 50-200MPa on the base material metal B. This constitution performs uniform and high-density redispersion of reinforcing particles A of silicone carbide in the surface of the particle dispersion type metal group composite material 1 and prevents the occurrence of a crack from s surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、粒子分散型金属基複合材料の疲労強度の強化
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for increasing the fatigue strength of a particle-dispersed metal matrix composite material.

〔従来の技術〕[Conventional technology]

小さな鋼球ショットを圧縮空気又は遠心力て金属表面に
たたきつけ、表面の応力の均一化を行うことは、ショッ
トピーニング加工として知られている。実開昭61−1
63706公報には、懸架装置用ロットに圧縮残留応力
か、:15Kg−foam2以上となるようにショット
ピーニング加工を施して金属材料製ロットの疲労強度を
向上させたものか記載されている。
BACKGROUND ART The process of striking a metal surface with small steel ball shots using compressed air or centrifugal force to equalize stress on the surface is known as shot peening. Jitsukai Showa 61-1
Publication No. 63706 describes that the fatigue strength of a metal material lot is improved by subjecting the suspension system lot to a compressive residual stress or by shot peening to have a compressive residual stress of 15 kg-foam2 or more.

また、実開昭63−164002公報には、アルミ合金
製ホイールにショットピーニング加工を施して耐久寿命
を増大させたものか記載されている。
Further, Japanese Utility Model Application Publication No. 164002/1983 describes that an aluminum alloy wheel is subjected to shot peening to increase its durability.

一方、炭化珪素(SiC)、酸化アルミニウム(A12
0゜)等の粒子を粉末冶金法等で母材金属に分散配置さ
せた粒子分散型の金属基複合材料は、母材金属に比較し
て静的機械強度、疲労強度か大幅に向上することか知ら
れている。
On the other hand, silicon carbide (SiC), aluminum oxide (A12
Particle-dispersed metal matrix composite materials, in which particles such as 0°) are dispersed in a base metal using powder metallurgy, have significantly improved static mechanical strength and fatigue strength compared to the base metal. or known.

(発明が解決しようとする課題) ところか、前記の粒子分散型の金属基複合材料は、この
材料を加工した製品の表面に亀裂か発生し、その亀裂発
生度合か不規則てあって製品強度の安定性に欠ける問題
かある。これは、素材製造時における粒子の分散配置の
不均一に起因するものと推定される。
(Problems to be Solved by the Invention) However, with the above-mentioned particle-dispersed metal matrix composite material, cracks occur on the surface of products processed from this material, and the degree of cracking is irregular, resulting in poor product strength. There is a problem with the lack of stability. This is presumed to be due to non-uniform distribution of particles during the production of the material.

本発明は、粒子分散型金属基複合材料の加工表面に粒子
を高密度に且つ均一に再分散させて亀裂発生を防止する
と共に、母材金属に所定の圧縮残留応力を付与して疲労
寿命の向上を図ることを目的としだものである。
The present invention prevents cracking by re-dispersing particles uniformly and densely on the processed surface of a particle-dispersed metal matrix composite material, and also imparts a predetermined compressive residual stress to the base metal to extend fatigue life. The purpose is to improve the quality of life.

〔課題を解決するための手段及び作用〕本発明は、炭化
珪素等を母材金属に分散配置させた粒子分散型の金属基
複合材料の表面に、ショット粒g50〜250 ALm
のガラスビーズを用い、アークハイト値を0.18以上
とするショトピーニングを施し、母材金属に残留圧縮応
力50〜200MPaを付与する粒子分散型金属基複合
材料の強化法である。
[Means and effects for solving the problems] The present invention provides shot grains g50 to 250 ALm on the surface of a particle-dispersed metal matrix composite material in which silicon carbide or the like is dispersed in a base metal.
This is a method of strengthening a particle-dispersed metal matrix composite material by applying shot peening to an arc height value of 0.18 or more using glass beads, and imparting a residual compressive stress of 50 to 200 MPa to the base metal.

前記の条件てのショトピーニングにより、粒子分散型金
属基複合材料の表面に炭化珪素等の強化粒子か高密度に
且つ均一に再分散されて表面からの亀裂発生か防止され
、母材金属に所定範囲の圧縮残留応力か付与されること
で疲労寿命か向上する。
By shot peening under the above conditions, reinforcing particles such as silicon carbide are re-dispersed densely and uniformly on the surface of the particle-dispersed metal matrix composite material, preventing cracks from occurring from the surface, and forming a predetermined structure in the base metal. Fatigue life is improved by applying a range of compressive residual stress.

〔実施例〕 母材金属としてアルミニウム合金、強化粒子として炭化
珪素を用いた粒子分散型金属基複合材料の疲労強度特性
の安定化について説明する。
[Example] Stabilization of fatigue strength characteristics of a particle-dispersed metal matrix composite material using an aluminum alloy as a base metal and silicon carbide as reinforcing particles will be described.

直径3〜5゛JLmの炭化珪素の粉末粒子を体積率で約
20%、アルミニウム合金粉末(J I 5A2024
)と混合して焼結し、この素材から、第1図に示すよう
に、直径6■厘の曲げ疲労試験片1を作成した。
Approximately 20% by volume of silicon carbide powder particles with a diameter of 3 to 5 JLm, aluminum alloy powder (J I 5A2024
) and sintered, and from this material, a bending fatigue test piece 1 having a diameter of 6 cm was prepared as shown in FIG.

この試験片1をターンテーブル2に取付け、ターンチー
フル2を20rp■て回転させなから、試験片工の平行
部IAに空気明射式ノズル3からガラスビーズ4を吹き
付け、次の条件でショトピーニングを施した。
This test piece 1 is mounted on a turntable 2, and the turntable 2 is rotated at 20 rpm. Glass beads 4 are sprayed from an air spray nozzle 3 onto the parallel part IA of the test piece under the following conditions. Peening was applied.

ガラスビーズ径・177〜250 AL■ガハレーシ 
 :300% アークハイト ・0.35N 時    間   : 15 sec。
Glass bead diameter: 177-250 AL
:300% Arc height ・0.35N Time: 15 sec.

距    m    :150■l このショトピーニングを施した試験片と無処理の試験片
の回転曲げ疲労試験の結果を第31’lに示ず。
Distance m: 150 l The results of the rotating bending fatigue test of the short peened test piece and the untreated test piece are not shown in No. 31'l.

第3図は、縦軸に応力振幅MPaを、横軸に繰り返し数
Nを示し、△はショトピーニングを施した試験片の試験
結果、○は無処理の試験片の試験結果を示す。
In FIG. 3, the vertical axis shows the stress amplitude MPa, and the horizontal axis shows the number of repetitions N, where △ shows the test results of the shot-peened test piece, and ○ shows the test results of the untreated test piece.

この図にみられるように、ショトピーニングを施した場
合には、+05サイクル付近で無処理の場合に比へて約
40MPa、】07サイクル付近ては約10MPa疲労
強度か向上しており、また、実線の←て示すように、バ
ラツキか少くなっている。これに対して無処理の場合は
、破線のりで示すようにバラツキか大きくなっている。
As seen in this figure, when short peening was applied, the fatigue strength increased by about 40 MPa compared to the untreated case around the +05 cycle, and by about 10 MPa around the +07 cycle, and As shown by the solid line ←, the variation is decreasing. On the other hand, in the case of no treatment, the variation is large as shown by the broken line.

これは、無処理の場合は、第2図(B’)示すように、
試験片1の表面において、母材B中にSiC粒子粒子率
均一に配置しており、破断は材料の表面から起きるので
、疲労強度特性のバラツキか大きいか、ショトピーニン
グを施した場合には、第2図(A)に示すように 試験
片IAの表面において SiC粒子粒子率一にしかも高
′PF:度に再配置され、これにより疲労強度特性か安
定するものど考られる。
In the case of no treatment, as shown in Figure 2 (B'),
On the surface of test piece 1, the SiC particles are uniformly distributed in the base material B, and the fracture occurs from the surface of the material. As shown in FIG. 2(A), on the surface of the test piece IA, the SiC particles are rearranged to a uniform particle ratio and a high PF, which is thought to stabilize the fatigue strength properties.

第4図に応力振幅30[)MPaにおける残留応力と疲
労寿命との関係を示す。残留応力は、母材の納品面をX
線により測定した。
FIG. 4 shows the relationship between residual stress and fatigue life at a stress amplitude of 30 [) MPa. Residual stress is calculated when the delivery surface of the base material is
Measured by line.

ショトピーニングを施した場合には、表面に残留応力か
附加されて疲労寿命か向上していることか確認てきた。
It has been confirmed that when short peening is applied, residual stress is added to the surface and fatigue life is improved.

ショトピーニング(又はシヨ・ントフラスト)は、圧縮
空気に限らず、遠心力て粒子を吹き付けるようにしても
よい。
Shot peening (or shot peening) is not limited to compressed air, and may also involve spraying particles using centrifugal force.

強化粒子は、前記のSiC,Al2ozの粒子の外、S
l:lNJ、 5i02等のセラミック粒子か使用てき
る。
In addition to the aforementioned SiC and Al2oz particles, the reinforcing particles include S
Ceramic particles such as l: lNJ, 5i02, etc. can be used.

ショトピーニングの条件は、ショット粒径50〜250
鉢曹のガラスビーズを使用し、アークハイト値を0.1
8以上とし、残留圧縮応力を50〜200MPaとする
ことかてきる。
The conditions for shot peening are shot particle size of 50 to 250.
Use potted glass beads and set the arc height value to 0.1.
8 or more, and the residual compressive stress can be set to 50 to 200 MPa.

〔発明の効果〕〔Effect of the invention〕

本発明は、粒子分散型金属基複合材料の表面に炭化珪素
等の強化粒子を高密度に且つ均一に再分散させて亀裂発
生を防止し、製品強度の安定性を増すと共に、母材金属
に所定範囲の圧縮残留応力か付与されることて疲労寿命
か向上する効果か有る。
The present invention prevents the occurrence of cracks by re-dispersing reinforcing particles such as silicon carbide on the surface of a particle-dispersed metal matrix composite material at high density and uniformly, thereby increasing the stability of product strength and improving the strength of the base metal. Applying compressive residual stress within a predetermined range has the effect of improving fatigue life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はショトピーニングの説明図、第2図(A)はシ
ョトピーニングを施した材料表面部の模型図、第2図(
B)は無処理材料表面部の模型図、第3図はショトピー
ニングを施した場合と無処理の場合の回転曲げ疲労試験
の結果を示す図、第4図は残留応力と寿命との関係を示
す図である。 1、疲労試験片   2:ターンチーフル3、ノズル 
    4:ガラスヒーズA:炭化珪素粒子  B、母
Figure 1 is an explanatory diagram of short peening, Figure 2 (A) is a model diagram of the surface of the material subjected to short peening, Figure 2 (
B) is a model diagram of the untreated material surface, Figure 3 is a diagram showing the results of a rotating bending fatigue test with and without shot peening, and Figure 4 is a diagram showing the relationship between residual stress and life. FIG. 1. Fatigue test piece 2: Turntable 3. Nozzle
4: Glass heat A: Silicon carbide particles B: Base material

Claims (1)

【特許請求の範囲】[Claims] 炭化珪素等を母材金属に分散配置させた粒子分散型の金
属基複合材料の表面に、ショット粒径50〜250μm
のガラスビーズを用い、アークハイト値を0.1N以上
とするショトピーニングを施し、母材金属に残留圧縮応
力50〜200MPaを付与すことを特徴とする粒子分
散型金属基複合材料の強化法。
A shot particle size of 50 to 250 μm is applied to the surface of a particle-dispersed metal matrix composite material in which silicon carbide etc. are dispersed in a base metal.
A method for reinforcing a particle-dispersed metal matrix composite material, which comprises applying shot peening to an arc height value of 0.1 N or more using glass beads, thereby imparting a residual compressive stress of 50 to 200 MPa to the base metal.
JP28459490A 1990-10-23 1990-10-23 Reinforcing method for particle dispersion type metal group composite material Pending JPH04159081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28459490A JPH04159081A (en) 1990-10-23 1990-10-23 Reinforcing method for particle dispersion type metal group composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28459490A JPH04159081A (en) 1990-10-23 1990-10-23 Reinforcing method for particle dispersion type metal group composite material

Publications (1)

Publication Number Publication Date
JPH04159081A true JPH04159081A (en) 1992-06-02

Family

ID=17680480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28459490A Pending JPH04159081A (en) 1990-10-23 1990-10-23 Reinforcing method for particle dispersion type metal group composite material

Country Status (1)

Country Link
JP (1) JPH04159081A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0556788A2 (en) * 1992-02-20 1993-08-25 Mitsubishi Materials Corporation Hard alloy
EP0638416A1 (en) * 1993-08-12 1995-02-15 Formica Technology Inc. Improved shot peened press plate and method for producing same
US6655026B1 (en) * 1999-01-28 2003-12-02 Honda Giken Kogyo Kabushiki Kaisha Production process for connecting rod for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0556788A2 (en) * 1992-02-20 1993-08-25 Mitsubishi Materials Corporation Hard alloy
EP0638416A1 (en) * 1993-08-12 1995-02-15 Formica Technology Inc. Improved shot peened press plate and method for producing same
US6655026B1 (en) * 1999-01-28 2003-12-02 Honda Giken Kogyo Kabushiki Kaisha Production process for connecting rod for internal combustion engine

Similar Documents

Publication Publication Date Title
CN104894554B (en) A kind of preparation method and application of high-compactness cold spraying metal/metal base lithosomic body
US20210197264A1 (en) Preparation of Titanium and Titanium Alloy Powder for 3D Printing Based on Fluidized Bed Jet Milling Technique
CN101970176B (en) Shot blasting particles
CN113373400B (en) Preparation method of wear-resistant ceramic coating and wear-resistant ceramic coating
WO2007116871A1 (en) Process for producing metallic member and structural member
EP1306165B1 (en) Method of shot peening processing, and peening material and use thereof
JP6151304B2 (en) Projection material for shot peening using hard powder with high productivity and corrosion resistance
EP0492323B1 (en) Method for the surface-treatment of parts
CN110894603B (en) Material for preparing wear-resistant self-lubricating coating, wear-resistant self-lubricating coating and preparation method
JPH04159081A (en) Reinforcing method for particle dispersion type metal group composite material
RU2413776C2 (en) Procedure for strengthening metal part and structure element
US6012316A (en) Process for increasing the lifespan of dental components
JPS61265271A (en) Shot peening method of cemented product
JP3227492B2 (en) Spring shot peening method and spring product
JPH07276242A (en) Manufacture of iron-series shot grain
JPH10217122A (en) Treatment method for metal mold surface
KR102082190B1 (en) Aerosol coating method and plasma-resistant member formed by the same
CN111070106A (en) Surface treatment method for improving fatigue resistance of particle reinforced metal matrix composite
KR101531012B1 (en) Method of surface hardening treatment for overhead conductors and overhead conductors manufactured by the same
JPH0413573A (en) Finishing method for surface of metal product
JP2003285270A (en) Method for improving fatigue strength of component made of light metal
JP3441106B2 (en) Shot material
Demirer Kahraman et al. Effect of the substrate surface and coating powder hardness on the formation of a cold sprayed composite layer
CN116855871A (en) Thermal spraying pretreatment method for cooperatively improving fatigue performance and bonding strength of titanium alloy deposit
US20060018782A1 (en) Media mixture for improved residual compressive stress in a product