JPH04158581A - Film transistor - Google Patents

Film transistor

Info

Publication number
JPH04158581A
JPH04158581A JP2283805A JP28380590A JPH04158581A JP H04158581 A JPH04158581 A JP H04158581A JP 2283805 A JP2283805 A JP 2283805A JP 28380590 A JP28380590 A JP 28380590A JP H04158581 A JPH04158581 A JP H04158581A
Authority
JP
Japan
Prior art keywords
region
gate electrode
channel region
film
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2283805A
Other languages
Japanese (ja)
Inventor
Masataka Shingu
新宮 正孝
Yoshitsugu Nishimoto
西本 佳嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2283805A priority Critical patent/JPH04158581A/en
Publication of JPH04158581A publication Critical patent/JPH04158581A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To see that the current path by the carrier of the same conductivity type as those of a source region and a drain region is hard to be made and that the leak current during off is small by elevating the concentration of the impurities of a conductivity type opposite to that of the source region and the drain region, on the side opposite to a gate electrode out of a channel region. CONSTITUTION:In a bottom gate type transistor, a gate electrode 17 is lower than the polycrystalline Si film 12 where a channel region 15 is provided. But, the concentration of the n-type impurities in the channel region 15 becomes higher as it goes away from the gate region 17 in the thickness direction of the polycrystalline Si film 12, so positive holes are hard to generate on the side opposite to a gate electrode 17 out of the channel region 15. Accordingly, the current path by these positive holes are hard to be made, and the operation of the accumulation mode is suppressed, and the leak currents between the source and the drain during off are small. What is more, the concentration of the n-type impurities is low on the side of the gate electrode 17 out of channel region 15, so the inversion layer is not hard to be formed, and the threshold voltage becomes large to negative side.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、絶縁体上の半導体薄膜内にチャネル領域が設
けられている薄膜トランジスタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a thin film transistor in which a channel region is provided in a semiconductor thin film on an insulator.

〔発明の概要〕[Summary of the invention]

本発明は、上記の様な薄膜トランジスタにおいて、チャ
ネル領域の不純物濃度をゲート電極側とこれとは反対の
面側とで異ならせることによって、オフ時のリーク電流
を少なくしたものである。
The present invention reduces leakage current when off by making the impurity concentration of the channel region different between the gate electrode side and the opposite side of the thin film transistor as described above.

〔従来の技術〕[Conventional technology]

MOS−3RAMを高集積且つ低消費電力化する構造と
して、抵抗負荷型に代って、Pチャネル薄膜トランジス
タをフリップフロップの負荷素子にした積み上げCMO
3型が考えられている。
As a structure for high integration and low power consumption of MOS-3RAM, stacked CMO uses P-channel thin film transistors as flip-flop load elements instead of resistive load type.
Type 3 is considered.

第7図及び第8図は、所謂トップゲート型のPチャネル
薄膜トランジスタの一従来例を示している。
FIGS. 7 and 8 show a conventional example of a so-called top gate type P-channel thin film transistor.

この−従来例では、絶縁膜であるSiO□膜11上の多
結晶Si膜12に、ソース領域13、ドレイン領域I4
及びチャネル領域15が設けられている。
In this conventional example, a source region 13 and a drain region I4 are formed on a polycrystalline Si film 12 on an SiO
and a channel region 15 are provided.

多結晶Si膜12上には、5i02膜であるゲート酸化
膜16と、不純物を添加した多結晶Si膜であるゲート
電極17とが順次に設けられている。
A gate oxide film 16, which is a 5i02 film, and a gate electrode 17, which is a polycrystalline Si film doped with impurities, are sequentially provided on the polycrystalline Si film 12.

この様な薄膜トランジスタには、積み上げCM0S型S
RAM等を実現するためにも、オン時の電流■。Nが大
きく且つオフ時のリーク電流I。FFが小さいという特
性が要求される。
For such thin film transistors, stacked CM0S type S
In order to realize RAM, etc., the current when on is ■. Leakage current I when N is large and off. A characteristic of small FF is required.

[発明が解決しようとする課題] ところで、第9図は、第7図及び第8図に示したー従来
例のV6− Iゎ特性を示している。
[Problems to be Solved by the Invention] By the way, FIG. 9 shows the V6-I characteristics of the conventional example shown in FIGS. 7 and 8.

第9図の左半分の右下がりの曲線は、反転モードの動作
を示している。この動作領域では、ノ\ルクトランジス
タと同様に、第7図に示す様に、ゲート電極17の直下
に反転層が形成され、この反転層がチャネルになって電
流が流れる。
The downward sloping curve in the left half of FIG. 9 indicates the inversion mode of operation. In this operating region, as in the Nork transistor, as shown in FIG. 7, an inversion layer is formed directly under the gate electrode 17, and this inversion layer becomes a channel through which current flows.

これに対して、第9図の右半分の右上がりの曲線は、バ
ルクトランジスタでは見られない蓄積モードの動作を示
している。この動作領域では、第8図に示す様に、ゲー
ト電極17の直下には蓄積層が形成されるが、チャネル
領域15のうちのSiO□膜11に近い側には正孔が滞
留し、これによって電流バスが形成される。
On the other hand, the upward-sloping curve in the right half of FIG. 9 indicates an accumulation mode operation that is not seen in bulk transistors. In this operating region, as shown in FIG. 8, an accumulation layer is formed directly under the gate electrode 17, but holes remain in the side of the channel region 15 that is close to the SiO□ film 11. A current bus is formed by

このため、オフ時のリーク電流がI。FF′とはならず
にI。FF と大きくなり、SRAMとしては、消費電
流が増大したりデータ保持特性が劣化したりする。
Therefore, the leakage current when off is I. I instead of FF'. FF becomes large, and as an SRAM, current consumption increases and data retention characteristics deteriorate.

〔課題を解決するための手段〕 本発明による薄膜トランジスタでは、チャネル領域15
のうちのゲート電極17とは反対の面側で且つ少なくと
もソース領域13またはトレイン領域14の近傍領域に
おいて、前記ソース領域I3及びトレイン領域14とは
逆導電型の不純物の濃度が、前記近傍領域以外の領域の
前記濃度よりも高い。
[Means for Solving the Problems] In the thin film transistor according to the present invention, the channel region 15
On the side opposite to the gate electrode 17 and at least in a region near the source region 13 or the train region 14, the concentration of impurities having a conductivity type opposite to that of the source region I3 and the train region 14 is higher than that in the region other than the near region. higher than the concentration in the region of .

〔作用〕[Effect]

本発明による薄膜トランジスタでは、蓄積モード時に、
チャネル領域15のうちのゲート電極17とは反対の面
側で、ソース領域13及びドレイン領域14と同一導電
型のキャリアによる電流バスが形成されにくい。
In the thin film transistor according to the present invention, in the accumulation mode,
On the side of the channel region 15 opposite to the gate electrode 17, a current bus is difficult to be formed by carriers having the same conductivity type as the source region 13 and the drain region 14.

〔実施例〕〔Example〕

以下、Pチャネル薄膜トランジスタに適用した本発明の
第1〜第5実施例を、第1図〜第6図を参照しながら説
明する。
Hereinafter, first to fifth embodiments of the present invention applied to P-channel thin film transistors will be described with reference to FIGS. 1 to 6.

第1図及び第2図が、第1実施例を示している。1 and 2 show a first embodiment.

この第1実施例は、所謂ボトムゲート型であり、チャネ
ル領域15が設けられている多結晶Si膜12よりもゲ
ート電極17の方が下層側にある。
This first embodiment is of the so-called bottom gate type, and the gate electrode 17 is located lower than the polycrystalline Si film 12 in which the channel region 15 is provided.

しかし、この第1実施例では、チャネル領域15におけ
るN型不純物の濃度が、多結晶Si膜12の厚さ方向へ
ゲート電極17から遠ざかるにつれて高くなっている。
However, in the first embodiment, the concentration of N-type impurities in the channel region 15 increases as the distance from the gate electrode 17 increases in the thickness direction of the polycrystalline Si film 12.

この様なN型不純物の濃度の変化は、第2A図に示す様
に連続的でもよいし、第2B図に示す様に階段状でもよ
い。
Such a change in the concentration of the N-type impurity may be continuous as shown in FIG. 2A, or may be stepwise as shown in FIG. 2B.

この様な第1実施例では、チャネル領域15のうちのゲ
ート電極17とは反対の面側で、第8図の場合に比べて
正孔が発生しにくい。従って、この正孔による電流バス
が形成されにくり、蓄積モードの動作が抑制されて、オ
フ時のソース・ドレイン間のリーク電流が少ない。
In the first embodiment, holes are less likely to be generated on the side of the channel region 15 opposite to the gate electrode 17 than in the case of FIG. Therefore, a current bus is less likely to be formed by these holes, and the operation in the accumulation mode is suppressed, resulting in less leakage current between the source and drain when off.

しかも、チャネル領域15のうちのゲート電極17側で
はN型不純物の濃度が低いので、反転層が形成されにく
くなることはな(、闇値電圧が負側へ大きくなることは
ない。
Moreover, since the concentration of N-type impurities is low on the gate electrode 17 side of the channel region 15, the formation of an inversion layer does not become difficult (and the dark value voltage does not increase to the negative side).

なお、第2図に示したN型不純物の濃度は、N型不純物
のみの濃度ではなく、不純物補償をした場合は正味のN
型不純物の濃度を示している。
Note that the concentration of N-type impurities shown in Figure 2 is not the concentration of only N-type impurities, but the concentration of net N-type impurities when compensation is made for impurities.
It shows the concentration of type impurities.

第3図は、製造過程にある第2実施例を示している。こ
の第2実施例を製造するためには、SiO□膜11上に
厚さ200人程残存多結晶Si膜12aをまず形成し、
この多結晶si膜12a中へAs” イオンを20ke
V程度のエネルギで5 X 10 ”cm−2程度のド
ーズ量に注入する。
FIG. 3 shows the second embodiment in the manufacturing process. In order to manufacture this second embodiment, a residual polycrystalline Si film 12a with a thickness of about 200 layers is first formed on the SiO□ film 11,
20ke of As'' ions are introduced into this polycrystalline Si film 12a.
The implantation is performed at an energy of about V and a dose of about 5×10” cm −2 .

次に、多結晶Si膜12a上に厚さ200人程残存多結
晶Si膜12bを追加し、その後は従来公知の工程を行
う。
Next, a remaining polycrystalline Si film 12b with a thickness of about 200 layers is added on the polycrystalline Si film 12a, and then conventionally known processes are performed.

即ち、ゲート酸化膜16をCVDで成長させ、多結晶S
i膜の成長とゲート電極へのバターニングを行い、B゛
のイオン注入でソース領域及びドレイン領域を形成し、
へ1等で電極配線を形成する。
That is, the gate oxide film 16 is grown by CVD, and the polycrystalline S
After growing an i film and patterning the gate electrode, a source region and a drain region are formed by ion implantation of B.
Form electrode wiring using a first grade.

この様にして製造した第2実施例でも、多結晶S1膜1
2a、12bのうちでゲート電極から遠い方の多結晶S
i膜12a中にN型不純物がドープされているので、こ
の多結晶Si膜1.2 a中で正孔が発生しに<<、オ
フ時のソース・ドレイン間のリーク電流が少ない。
In the second embodiment manufactured in this manner as well, the polycrystalline S1 film 1
The polycrystalline S which is farther from the gate electrode among 2a and 12b
Since the i-film 12a is doped with N-type impurities, holes are generated in the polycrystalline Si film 1.2a, resulting in less leakage current between the source and drain when off.

し7かも、多結晶Si膜12a中にN型不純物をトープ
した後に多結晶Si膜1.2 bを形成しているので、
上述の第1実施例の様に単一層の多結晶Si膜12中で
不純物の濃度を変化させる場合よりも工程が簡単で且つ
制御が容易である。
Also, since the polycrystalline Si film 1.2b is formed after doping the N-type impurity into the polycrystalline Si film 12a,
The process is simpler and easier to control than the case where the impurity concentration is changed in the single-layer polycrystalline Si film 12 as in the first embodiment described above.

なお、多結晶Si膜12a中ヘドープしたヒ素は、同じ
N型不純物である例えばリンよりも拡散係数が小さく、
しかもドーズ量が5X10”印−2程度と少ないので、
拡散しにくい。従って、このヒ素がゲート電極の直下に
まで拡散し、て閾値電圧に影響を与えることも少ない。
Note that arsenic doped into the polycrystalline Si film 12a has a smaller diffusion coefficient than, for example, phosphorus, which is the same N-type impurity.
Moreover, the dose is as small as 5X10” mark -2, so
Difficult to spread. Therefore, this arsenic is less likely to diffuse directly under the gate electrode and affect the threshold voltage.

第4図は、第3実施例を示している。この第3実施例で
は、チャネル領域15等が設けられている多結晶Si膜
12が単一層であるが、チャネル領域】5のうちでN型
不純物をトープしたN領域18は、チャ矛ル領域15下
の全面ではなくソース領域13及びトレイン領域14の
近傍にのみ設けられている。
FIG. 4 shows a third embodiment. In this third embodiment, the polycrystalline Si film 12 in which the channel region 15 etc. are provided is a single layer, but the N region 18 doped with N type impurities in the channel region 5 is a contradictory region. It is provided only in the vicinity of the source region 13 and the train region 14 instead of the entire surface under the region 15 .

この様な第3実施例でも、チャネル領域15のうちのゲ
ート電極17とは反対の面側で正孔による電流バスが形
成されるのが、N 91域18によって防止される。従
って、オフ時のソース・トレイン間のリーク電流が少な
い。
In this third embodiment as well, the N 91 region 18 prevents the formation of a current bus due to holes on the side of the channel region 15 opposite to the gate electrode 17 . Therefore, there is little leakage current between the source and the train when it is off.

ところで、多結晶Si膜12が極めて薄くなった場合、
第3図に示した第2実施例では、多結晶S1膜12a中
から多結晶Si膜1.2 b中へゲート電極下の全面に
亘って不純物が拡散し、闇値電圧等の特性がばらつく。
By the way, if the polycrystalline Si film 12 becomes extremely thin,
In the second embodiment shown in FIG. 3, impurities diffuse from the polycrystalline S1 film 12a into the polycrystalline Si film 1.2b over the entire surface under the gate electrode, causing variations in characteristics such as dark voltage. .

しかし、第4図に示す第3実施例では、N領域18がソ
ース領域13及びドレイン領域14の近傍にのみ設けら
れており、ゲート電極17下の全面に亘−、−て不純物
が拡散するということがないので、閾(!電圧等の特性
のばらつきが少ない。
However, in the third embodiment shown in FIG. 4, the N region 18 is provided only in the vicinity of the source region 13 and drain region 14, and the impurity is diffused over the entire surface under the gate electrode 17. Therefore, there is little variation in characteristics such as threshold (!voltage).

第5図は、第4実施例を示している。この第4実施例は
、N領域18がドレイン領域14の近傍にのみ設けられ
ていることを除いて、第4図に示した第3実施例と実質
的に同様の構成を有している。
FIG. 5 shows a fourth embodiment. This fourth embodiment has substantially the same structure as the third embodiment shown in FIG. 4, except that N region 18 is provided only in the vicinity of drain region 14.

この様な第4実施例でも、第3実施例と同様の作用効果
を奏することができる。なお、N %M域18はソース
領域13の近傍にのみ設けてもよい。
Even in such a fourth embodiment, the same effects as in the third embodiment can be achieved. Note that the N%M region 18 may be provided only in the vicinity of the source region 13.

第6図は、第5実施例を示し、でいる。この第5実施例
は、チャネル領域15のうちの多結晶Si膜12a側で
且つドレイン領域14の近傍にのみN領域18が形成さ
れていることを除いて、第3図に示した第2実施例及び
第5図に示した第4実施例と実質的に同様の構成を有し
ている。
FIG. 6 shows a fifth embodiment. This fifth embodiment is similar to the second embodiment shown in FIG. This embodiment has substantially the same structure as the fourth embodiment shown in the example and FIG.

この様な第5実施例でも、第2及び第4実施例と同様の
作用効果を奏することができる。なお、この第5実施例
でも、ソース領域13及びドレイン領域14の近傍、ま
たはソース領域13の近傍にのみ、N 1,7J域18
を設けてもよい。
Even in such a fifth embodiment, the same effects as in the second and fourth embodiments can be achieved. In this fifth embodiment as well, the N 1,7J region 18 is formed only in the vicinity of the source region 13 and the drain region 14 or in the vicinity of the source region 13.
may be provided.

〔発明の効果〕〔Effect of the invention〕

本発明による薄膜トランジスタでは、蓄積モード時に、
ヲヤネル領域のうちのゲート電極とは反対の面側で、ソ
ース領域及びトレイン領域と同一導電型のキャリアによ
る電流パスが形成されにくいので、オフ時のリーク電流
が少ない。
In the thin film transistor according to the present invention, in the accumulation mode,
On the side of the channel region opposite to the gate electrode, a current path is less likely to be formed by carriers of the same conductivity type as the source region and the train region, so leakage current during off-time is small.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の側断面図、第2図は第1
実施例のチャネル領域における不純物濃度の分布を示す
グラフ、第3図は製造過程にある第2実施例の側断面図
、第4図〜第6図はそれぞれ第3〜第5実施例の側断面
間である。 第7図及び第8図は夫々反転モード及び蓄積モードにあ
る本発明の一従来例の側断面図、第9図は一従来例のV
c’−1o特性を示すグラフである。 なお図面に用いた符号において、 13−一−・−−−−−−−−ソース領域14−−−一
一−−−ドレイン領域 15 −−−−・−チャネル令頁域 17−・−一−−−−−−・−・・・ゲート電極である
FIG. 1 is a side sectional view of the first embodiment of the present invention, and FIG. 2 is a side sectional view of the first embodiment of the present invention.
A graph showing the distribution of impurity concentration in the channel region of the example, FIG. 3 is a side sectional view of the second example in the manufacturing process, and FIGS. 4 to 6 are side cross sections of the third to fifth examples, respectively. It is between. 7 and 8 are side sectional views of a conventional example of the present invention in inversion mode and accumulation mode, respectively, and FIG. 9 is a side sectional view of a conventional example of V
It is a graph showing c'-1o characteristics. In addition, in the symbols used in the drawings, 13-1------- Source region 14---11-- Drain region 15----- Channel area 17---1 -----------...Gate electrode.

Claims (1)

【特許請求の範囲】[Claims] チャネル領域のうちのゲート電極とは反対の面側で且つ
少なくともソース領域またはドレイン領域の近傍領域に
おいて、前記ソース領域及びドレイン領域とは逆導電型
の不純物の濃度が、前記近傍領域以外の領域の前記濃度
よりも高い薄膜トランジスタ。
On the side of the channel region opposite to the gate electrode and at least in the vicinity of the source or drain region, the concentration of impurities having a conductivity type opposite to that of the source and drain regions is higher than that of the region other than the vicinity region. A thin film transistor whose concentration is higher than the above concentration.
JP2283805A 1990-10-22 1990-10-22 Film transistor Pending JPH04158581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2283805A JPH04158581A (en) 1990-10-22 1990-10-22 Film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2283805A JPH04158581A (en) 1990-10-22 1990-10-22 Film transistor

Publications (1)

Publication Number Publication Date
JPH04158581A true JPH04158581A (en) 1992-06-01

Family

ID=17670375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2283805A Pending JPH04158581A (en) 1990-10-22 1990-10-22 Film transistor

Country Status (1)

Country Link
JP (1) JPH04158581A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444771B1 (en) * 1997-12-30 2004-10-14 주식회사 하이닉스반도체 Semiconductor fabrication method for forming transistor of ldd structure by performing photo-mask process only once
JP2009130209A (en) * 2007-11-26 2009-06-11 Fujifilm Corp Radiation imaging device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444771B1 (en) * 1997-12-30 2004-10-14 주식회사 하이닉스반도체 Semiconductor fabrication method for forming transistor of ldd structure by performing photo-mask process only once
JP2009130209A (en) * 2007-11-26 2009-06-11 Fujifilm Corp Radiation imaging device

Similar Documents

Publication Publication Date Title
US7843018B2 (en) Transistor providing different threshold voltages and method of fabrication thereof
US7709311B1 (en) JFET device with improved off-state leakage current and method of fabrication
US5536962A (en) Semiconductor device having a buried channel transistor
US20070278613A1 (en) Semiconductor device
US20080272403A1 (en) JFET Device With Virtual Source and Drain Link Regions and Method of Fabrication
US7944017B2 (en) Semiconductor device and manufacturing method of the same
US7316941B1 (en) Semiconductor device with a MOSFET formed in close proximity to a bipolar device and method of manufacture
JP2002185011A (en) Semiconductor device
JPH01158775A (en) Thin film transistor and its manufacture
US4106044A (en) Field effect transistor having unsaturated characteristics
JP2617477B2 (en) Floating gate memory device and method of manufacturing nonvolatile memory cell
JP3522433B2 (en) Thin film semiconductor device
JPH04158581A (en) Film transistor
EP0571976B1 (en) Static RAM with thin film transistor
JPH0669094B2 (en) Field effect transistor
KR100206877B1 (en) A method of fabricating a thin film transistor
JPH03160761A (en) Semiconductor device
JPH0645353A (en) Manufacture of one-sided polysilicon thin- film transistor
US5298764A (en) Semiconductor memory device having a field effect transistor with a channel formed from a polycrystalline silicon film
JPS6123669B2 (en)
JPH04162477A (en) Thin film transistor
JPS61210673A (en) Mis type semiconductor device
JPS5951146B2 (en) Method for manufacturing insulated gate semiconductor integrated circuit
WO2022133652A1 (en) Field effect-transistor and manufacturing method therefor
US20240063256A1 (en) Semiconductor device and method for fabricating same