JPH04157310A - Measuring apparatus of shape of disk - Google Patents

Measuring apparatus of shape of disk

Info

Publication number
JPH04157310A
JPH04157310A JP27903890A JP27903890A JPH04157310A JP H04157310 A JPH04157310 A JP H04157310A JP 27903890 A JP27903890 A JP 27903890A JP 27903890 A JP27903890 A JP 27903890A JP H04157310 A JPH04157310 A JP H04157310A
Authority
JP
Japan
Prior art keywords
disk
air
hole
shape
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27903890A
Other languages
Japanese (ja)
Inventor
Taro Sonoda
園田 太郎
Takeshi Takahashi
毅 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27903890A priority Critical patent/JPH04157310A/en
Publication of JPH04157310A publication Critical patent/JPH04157310A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To measure the shape of a peripheral edge part of a hole with high accuracy by levitating a disk by air, rotating a noncontacting displacement sensor provided at the center of the disk, and measuring the inner peripheral part of the disk. CONSTITUTION:An air stage 5 provided to levitate a disk 1 has a minute hole 6 and an air inlet 7. Compressed air is sent into the stage 5 and discharged out from the minute hole 6. Therefore, owing to the discharged air, the disk 1 on the stage 5 levitates at a position where it balances with its own weight. A noncontacting displacement sensor is used to measure the shape of the disk. Sensors 2, 3 are provided in the peripheral edge part of the disk hole with the disk 1 held therebetween. Moreover, since the sensors 2, 3 have stages 8, 9 which move the respective sensors up and down minutely, and a moving stage 14 for moving the sensors in a horizontal direction, the sensors 2, 3 can be positioned to the floating disk 1. Accordingly, the data in a peripheral direction of the inner peripheral part of the hole of the disk 1 is measured, and the shape of the peripheral edge part of the hole can be measured with high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、中央に孔を持つ円板の形状精度を特に円板内
周部で測定、評価する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for measuring and evaluating the shape accuracy of a disk having a hole in the center, particularly at the inner circumference of the disk.

〔従来の技術〕[Conventional technology]

光デイスク装置、磁気ディスク装置のメディアとなるデ
ィスクや、半導体素子の素材となるシリコンウェハはそ
れらの生産・管理工程で、単品における平坦度、そり、
厚みといった品質が厳しく検査される。これらの検査手
段として第2図に示すような評価装置がある。これはデ
ィスク用の精度測定・評価装置の例である。
Disks, which are the media for optical disk devices and magnetic disk devices, and silicon wafers, which are the raw material for semiconductor devices, are subject to individual product flatness, warpage, and distortion during their production and management processes.
Quality such as thickness is strictly inspected. As these inspection means, there is an evaluation device as shown in FIG. This is an example of an accuracy measurement/evaluation device for discs.

第1図において、円板1は円板クランプ機構20により
円板中央部を円板駆動軸21に吸着もしくはねじ等を用
いて圧縮固定される。クランプされた円板1は円板駆動
モータ22により回転する。円板1の形状精度測定には
非接触変位計が用いられ、例えば、センサ2.センサ3
の様に同−半径上に対向して円板1を挾み、両者の検出
信号を増幅器A、Bを介して演算回路に導く。増幅器か
らのそれぞれの出力A、Bから上面、下面のうねりの大
きさを、さらに外周側から内周側へと、センサを移動・
計測すればクランプ条件下での円板全体のうねりを把握
することができる。円板には導体・半導体・絶縁体の種
類があり、測定対象を広くとり、かつ、高精度に計測す
る必要性から、一般にセンサとして静電容量型変位計が
多く用いられている。出力A、Hの加算、減算を求め、
初期値からの差を求めれば、円板の板厚、基準値に対す
る板厚偏差が求められる。
In FIG. 1, a disk 1 is fixed by a disk clamp mechanism 20 at its central portion on a disk drive shaft 21 by suction or compression using a screw or the like. The clamped disk 1 is rotated by a disk drive motor 22. A non-contact displacement meter is used to measure the shape accuracy of the disk 1. For example, a sensor 2. sensor 3
The disks 1 are sandwiched facing each other on the same radius as shown in FIG. The magnitude of the waviness on the top and bottom surfaces is measured from the outputs A and B from the amplifier, and the sensor is moved from the outer circumferential side to the inner circumferential side.
By measuring, it is possible to understand the waviness of the entire disk under clamped conditions. There are various types of disks, such as conductors, semiconductors, and insulators, and capacitive displacement meters are generally used as sensors because of the need to measure a wide range of objects and to measure with high precision. Find addition and subtraction of outputs A and H,
By determining the difference from the initial value, the thickness of the disk and the thickness deviation from the reference value can be determined.

以上、第2図で示した構成で代表される様に、円板締付
け(装置時)状態での円板形状(静的データ)を求め、
さらに、円板を実機運転速度で回転させての円板動特性
(動的データ)を求めていたものが従来技術であり、孔
あき円板で言うところのメディアゾーンを主に計測する
評価装置である。
As described above, as represented by the configuration shown in Figure 2, the disk shape (static data) in the disk tightened state (when the device is in use) is determined,
Furthermore, the conventional technology was to obtain the disk dynamic characteristics (dynamic data) by rotating the disk at the actual operating speed, and the evaluation device mainly measures the media zone of a perforated disk. It is.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は情報が書かれているところ(メディアゾ
ーン)を主に計測、評価する目的で構成されている。そ
れは、この種の円板は第1図で示したように中央孔の周
縁部を機械的に加圧されてクランプされることから、円
板クランプ面は隠されてしまい。従って、計測範囲もこ
のゾーンを除いた箇所に限定されてしまうという理由か
ら、さらに、メディア部の精度保証の確立という理由よ
り、このゾーンでの評価にとどまっているものである。
The above-mentioned conventional technology is configured mainly for the purpose of measuring and evaluating the area where information is written (media zone). This is because, as shown in FIG. 1, this type of disk is clamped by mechanically applying pressure to the peripheral edge of the central hole, so that the disk clamping surface is hidden. Therefore, the measurement range is limited to areas other than this zone, and furthermore, the evaluation is limited to this zone because of the need to ensure the accuracy of the media section.

しかし、クランプ後の円板形状は初期のクランプ部面精
度に大きく左右されるものであり。
However, the shape of the disk after clamping is greatly influenced by the initial surface accuracy of the clamped part.

近年の高密度、高精度、低浮上磁気ディスク装置などに
積層される円板に要求される静粛性を確保するには、ク
ランプ面の精度管理は避けて通れない問題である。従っ
て、従来の技術ではこの領域での精度管理ができず1円
板面の全体精度を評価するに至っていなかった。
In order to ensure the quietness required of disks stacked in recent high-density, high-precision, low-flying magnetic disk drives, etc., precision control of the clamping surface is an unavoidable issue. Therefore, with the conventional technology, accuracy control in this area has not been possible, and the overall accuracy of one disk surface has not been evaluated.

本発明の目的は中央孔あき円板の内縁部(クランプ面)
の形状精度を測定、評価することにあり、さらに円板を
エアー浮上させて支持し、円板に傷をつけることなく、
孔の周縁部の形状を高精度に計測できる計測・評価装置
を提供することにある。
The purpose of the present invention is to
The aim is to measure and evaluate the shape accuracy of the disc, and also to support the disc by air levitation, without damaging the disc.
An object of the present invention is to provide a measurement/evaluation device that can measure the shape of the peripheral edge of a hole with high precision.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明は円板単品をクランプ
せずにエアー浮上させておき、この状態で円板孔の周縁
部の形状を測定できるように、装置を考案したものであ
る。
In order to achieve the above object, the present invention has devised an apparatus in which a single disc is floated in air without being clamped, and the shape of the peripheral edge of the disc hole can be measured in this state.

〔実施例〕〔Example〕

第1図に本発明の一実施例を示す。円板1を浮上させる
ため、エアーステージ5を配置し、ベース13上に密着
積載する。エアーステージ5には微小孔6.空気取入ロ
アが設けられており、圧縮空気は空気取入ロアよりステ
ージ内に入り、微小孔6より吐出される。従って、エア
ーステージ5上の円板1は吐出空気により、円板自重と
釣合った位置で浮上する。浮上させたままでは円板1が
静止せずに、半径方向にずれて行くため、静止用の円板
ストッパ4をエアーステージ5上に具える。
FIG. 1 shows an embodiment of the present invention. In order to levitate the disc 1, an air stage 5 is arranged and the disc 1 is closely stacked on the base 13. Air stage 5 has micro holes 6. An air intake lower is provided, and compressed air enters the stage through the air intake lower and is discharged from the microholes 6. Therefore, the disc 1 on the air stage 5 is floated by the discharged air at a position balanced with the disc's own weight. Since the disk 1 does not come to rest but shifts in the radial direction while floating, a disk stopper 4 for stopping the disk 1 is provided on the air stage 5.

形状測定には非接触変位計を用い、センサ2.センサ3
を円板孔周縁部に円板を挾んで配置する。
A non-contact displacement meter is used for shape measurement, and sensor 2. sensor 3
is placed around the circumferential edge of the disc hole, sandwiching the disc.

センサにはセンサ上下微動台8,9センサ水平移動台1
4を備え、これにより、浮上時の円板1に対するセンサ
2,3の位置決めを行うことができる0位置決め後、ベ
ース13には駆動モータ10が配置されており、モータ
軸11.センサステージ12が回転させられると、ステ
ージ上のセンサが回転し、内周部の周方向データを計測
可能となるデータは第1図の従来例で述べた。うねり、
板厚、偏差の評価が可能である。
The sensor has a sensor vertical fine movement table 8, 9 sensor horizontal movement table 1
4, which enables positioning of the sensors 2 and 3 with respect to the disk 1 during levitation. After the 0 positioning, a drive motor 10 is disposed on the base 13, and a motor shaft 11. When the sensor stage 12 is rotated, the sensor on the stage rotates, and the circumferential direction data of the inner circumferential portion can be measured.The data was described in the conventional example shown in FIG. 1. undulation,
It is possible to evaluate plate thickness and deviation.

第3図はエアーステージ5の正面図である。円板を浮上
させるため、微小孔6を等間隔に複数あけである。
FIG. 3 is a front view of the air stage 5. In order to levitate the disk, a plurality of micro holes 6 are formed at equal intervals.

第4図は第三の実施例を部分断面図として示したもので
ある。センサ2,3はセンサステージ12の上を、半径
方向に移動可能な構造となっている。従って、センサ2
,3の先端が、円板1の内縁部より円板中心側に退避す
れば、円板1はBの円板装置位置から、センサ2,3に
触れることなくAの円板取外し位置に引離することか可
能である。
FIG. 4 shows a third embodiment as a partial sectional view. The sensors 2 and 3 have a structure that allows them to move in the radial direction on the sensor stage 12. Therefore, sensor 2
, 3 retreat toward the center of the disk from the inner edge of the disk 1, the disk 1 is pulled from the disk device position B to the disk removal position A without touching the sensors 2 and 3. It is possible to separate it.

第5図は第4図を真上からみた正面図である。FIG. 5 is a front view of FIG. 4 seen from directly above.

センサ2は通常はDのセンサ後退位置にある。測定時に
はセンサはCの円板の内縁上にセットする。
The sensor 2 is normally in the sensor retracted position D. During measurement, the sensor is set on the inner edge of the disk C.

第6図はエアーステージ6内の圧縮空気漏れを防ぐため
ベース13との接触面に、0リング14゜15を外径側
、内径側にそれぞれ配置した例である。空気漏れを防ぐ
ことにより、より安定した位置で円板を浮上させておく
ことが可能となる。
FIG. 6 shows an example in which O-rings 14 and 15 are arranged on the outer diameter side and the inner diameter side, respectively, on the contact surface with the base 13 in order to prevent leakage of compressed air inside the air stage 6. By preventing air leakage, it becomes possible to keep the disk floating in a more stable position.

第7図は第2図で示した構造に加えて、ベース13の下
に傾斜台13を配置したものである。センサ2,3と円
板1は同時に傾斜させられているため、お互いの平行度
は維持されている。さらに傾斜させたことにより、円板
1は自重効果で傾斜の下側へ押付力を発生し、従って、
円板ストッパ4に接触して安定となる。第8図は円板側
からみた第7図の正面図である。自重による押付力が発
生するため、円板ストッパ4は、二個で済む。
In addition to the structure shown in FIG. 2, FIG. 7 shows a structure in which a tilting table 13 is arranged below the base 13. Since the sensors 2 and 3 and the disk 1 are tilted at the same time, their parallelism is maintained. By further tilting the disk 1, the disk 1 generates a pressing force toward the lower side of the slope due to its own weight, and therefore,
It comes into contact with the disk stopper 4 and becomes stable. FIG. 8 is a front view of FIG. 7 seen from the disk side. Since a pressing force is generated due to its own weight, only two disc stoppers 4 are required.

第9図は本発明の例を、傾斜台を持つものを代表して、
示したものである。エアーステージ5にはモータ19が
固定され、これに駆動ローラ18が装着されている。駆
動ローラ18は従動ローラ17を介し、円板1を摩擦力
で回転できる構造となっている。第1o図は第9図を上
方向からみた正面図である。傾斜させているため、円板
1は自重効果で従動ローラ17に接触する。二個所の従
動ローラ17をそれぞれ周方向に回転させれば、円板1
は第10図における矢印方向へ回転でき、センサ2によ
る孔周縁部の形状測定が可能となる。
FIG. 9 shows an example of the present invention having a tilting table.
This is what is shown. A motor 19 is fixed to the air stage 5, and a drive roller 18 is attached to the motor 19. The drive roller 18 has a structure that allows the disc 1 to be rotated by frictional force via the driven roller 17. FIG. 1o is a front view of FIG. 9 viewed from above. Since it is tilted, the disc 1 comes into contact with the driven roller 17 due to its own weight. If the two driven rollers 17 are rotated in the circumferential direction, the disc 1
can be rotated in the direction of the arrow in FIG. 10, allowing the sensor 2 to measure the shape of the peripheral edge of the hole.

第11図は本発明の他の実施例を示す。第9図。FIG. 11 shows another embodiment of the invention. Figure 9.

第10図の実施例では円板1をローラ駆動する方式であ
り、円板1の回転精度はローラのラジアル。
In the embodiment shown in FIG. 10, the disc 1 is driven by a roller, and the rotation accuracy of the disc 1 is the radial of the roller.

スラスト両方向の回転精度に左右される。一方、円板1
が吐出エアー浮上刃を与えられ、円板自重とバランスさ
せている構造であるため、浮上方向の空気はね特性が非
線型となり、特に浮上量が上がる方向に対してばね剛性
が弱くなるため、ローラによりスラスト方向に外乱とな
る強制力が印加された場合に浮上量変動が大きくなる可
動性がある。第11図で示した実施例は以上の特性を補
助するためのものである。円板1の上面にノズル23を
配設し、圧縮空気を円板1の上面に吹きつける。これに
より円板1をエアーステージ5側に押し付けることにな
り、円板1の上面側空気ばね剛さが増加し、ローラ17
からの浮上方向外力が働いても円板1の浮上量変動を押
さえることができる。よって1円板内周部の形状測定時
の円板変動が少なく、安定した位置に浮上しているため
、測定精度も向上する利点がある。
It depends on the rotation accuracy in both thrust directions. On the other hand, disk 1
Since the structure is such that the discharge air is provided with a flotation blade and balanced with the disc's own weight, the air splash characteristics in the flotation direction become non-linear, and the spring stiffness becomes weaker in the direction of increasing flotation. It has a mobility that increases the variation in flying height when a force that causes disturbance is applied in the thrust direction by the rollers. The embodiment shown in FIG. 11 is intended to assist in achieving the above characteristics. A nozzle 23 is arranged on the upper surface of the disk 1 to blow compressed air onto the upper surface of the disk 1. As a result, the disk 1 is pressed against the air stage 5 side, the stiffness of the air spring on the upper surface of the disk 1 increases, and the roller 17
Fluctuations in the flying height of the disk 1 can be suppressed even if an external force in the flying direction is applied. Therefore, when measuring the shape of the inner circumferential portion of one disk, there is little disk fluctuation and the disk floats at a stable position, which has the advantage of improving measurement accuracy.

第12図は、円板交換の作業性を考慮した構造例である
。空気吐出孔を持つノズル23を円周上等間隔に複数個
配置する。ノズル23はノズル回転軸24で回動自在に
支持されている。ノズル23はノズルセット位WEから
ノズル後退位置Fまで回動する。センサ2も円板1の孔
内を円板半径方向に移動可能なため、ノズル23.セン
サ2をそれぞれ退避した位置に置けば、円板1のエアー
テーブル5上での着脱が可能となる。
FIG. 12 is an example of a structure that takes into account the workability of disc replacement. A plurality of nozzles 23 having air discharge holes are arranged at equal intervals on the circumference. The nozzle 23 is rotatably supported by a nozzle rotation shaft 24. The nozzle 23 rotates from the nozzle set position WE to the nozzle retreat position F. Since the sensor 2 is also movable within the hole of the disk 1 in the disk radial direction, the nozzle 23. If the sensors 2 are placed in their respective retracted positions, the disk 1 can be attached and detached on the air table 5.

尚、本発明の特徴であるエアー浮上機構では、極力、圧
力変動を無くし円板の浮上量変動を押さえ、円周計測時
に計測誤差を生じさせないよう設け、構成する必要があ
る。また、メディアである円板面にエアーを噴出させる
ため、極力、クリーンエアーとする必要がある。本構造
図例では図示していないが、この必要性に鑑み、精密圧
力調整弁、容量大のエアータンク、高効率の塵埃除去フ
ィルタの設置が別途、要求される。
It should be noted that the air levitation mechanism, which is a feature of the present invention, must be provided and configured so as to eliminate pressure fluctuations as much as possible, suppress fluctuations in the flying height of the disk, and avoid measurement errors when measuring the circumference. In addition, in order to blow air onto the surface of the disk, which is the media, it is necessary to use as clean air as possible. Although not shown in this structural diagram example, in view of this necessity, a precision pressure regulating valve, a large-capacity air tank, and a highly efficient dust removal filter are separately required to be installed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来技術で測定不可能であった円板中
央部孔の周縁部の形状を高精度で、非接触で測定が可能
であり、かつ、円板自身もエアー浮上させる構造とした
ため、円板表面の損傷もなく極めて信頼性の高い評価装
置を提供することができる。
According to the present invention, it is possible to measure the shape of the peripheral edge of the central hole of a disk with high precision and without contact, which was impossible to measure with conventional techniques, and the disk itself is also floated with air. Therefore, it is possible to provide an extremely reliable evaluation device without damage to the disk surface.

また、センサ本体、エアーステージ全体を傾斜させた構
造を用いると、円板自重を利用でき、従って、円板スト
ッパ配置数の低減に有効である。
Further, by using a structure in which the entire sensor body and air stage are tilted, the weight of the disc itself can be utilized, which is effective in reducing the number of disc stoppers to be arranged.

また、円板中央孔にセンサ本体を配置し、センサ自体を
回転させて円板孔の周縁部を計測する構造も、逆にセン
サ側を固定し、浮上中の円板を駆動ローラ等で回転させ
て円板孔の周縁部をも計測する構造もいずれも提供する
ことができる。
In addition, there is also a structure in which the sensor body is placed in the center hole of the disk and the sensor itself is rotated to measure the peripheral edge of the disk hole.Conversely, the sensor side is fixed and the floating disk is rotated by a drive roller, etc. It is also possible to provide a structure in which the peripheral edge of the disc hole is also measured.

さらに、円板上面からもエアーを噴出する構造を用いる
と、円板両面の空気ばね剛性が強くなり。
Furthermore, by using a structure that blows air out from the top of the disc, the air spring rigidity on both sides of the disc becomes stronger.

円板の浮上量変動を低減することができる。Fluctuations in the flying height of the disk can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の縦断面図、第2図は従来形
の円板形状測定装置の測定ブロック図、第3図は本発明
でのエアーステージ正面図、第4図は本発明での円板装
着動作図を示す部分断面図、第5図は円板静止用ストッ
パの配置を現わした実施例の正面図、第6図は本発明で
示したエアーステージからの漏れ防止の説明図、第7図
、第8図は傾斜方向を用いた実施例の縦断面図と円板正
面図、第9図、第10図は円板駆動方式における実施例
を示す縦断面図ならびに円板正面図、第11図、第12
図は円板上面に空気噴出ノズルを備えた実施例を示す縦
断面図ならびに、円板正面図である。 1・・・円板、2,3・・・非接触センサ、4・・・円
板ストッパ、5・・・エアーステージ、6・・・微小孔
、7・・・空気取入口、8,9・・・センサ上下微動台
、10・・・駆動モータ、12・・・センサステージ、
13・・ベース、16・・・傾斜台、17・・・従動ロ
ーラ、19・・・モータ、23・・・ノズル。
Fig. 1 is a longitudinal sectional view of an embodiment of the present invention, Fig. 2 is a measurement block diagram of a conventional disk shape measuring device, Fig. 3 is a front view of the air stage of the present invention, and Fig. 4 is a main FIG. 5 is a front view of the embodiment showing the arrangement of the stopper for stopping the disk; FIG. 6 is a partial cross-sectional view showing the disc mounting operation according to the invention; FIG. 6 is a diagram showing the prevention of leakage from the air stage according to the invention. FIGS. 7 and 8 are longitudinal cross-sectional views and disk front views of an embodiment using an inclined direction, and FIGS. 9 and 10 are longitudinal cross-sectional views showing an embodiment using a disk drive method, and FIGS. Disc front view, Figures 11 and 12
The figures are a longitudinal sectional view and a front view of the disk, showing an embodiment in which an air jet nozzle is provided on the upper surface of the disk. 1... Disc, 2, 3... Non-contact sensor, 4... Disc stopper, 5... Air stage, 6... Microhole, 7... Air intake, 8, 9 ...sensor vertical fine movement table, 10...drive motor, 12...sensor stage,
13... Base, 16... Inclined table, 17... Followed roller, 19... Motor, 23... Nozzle.

Claims (1)

【特許請求の範囲】 1、中央部に孔を持つ円板の内周側の面形状を非接触変
位計で計測する装置において、 前記円板をエアー浮上させ、前記円板中心位置に配置し
た非接触変位計を回転移動させ、前記円板の内周部の形
状や板厚を測定できるようにしたことを特徴とする円板
形状測定装置。
[Claims] 1. In an apparatus for measuring the surface shape of the inner peripheral side of a disk having a hole in the center using a non-contact displacement meter, the disk is floated by air and placed at the center position of the disk. A disk shape measuring device characterized in that the shape and thickness of the inner circumferential portion of the disk can be measured by rotationally moving a non-contact displacement meter.
JP27903890A 1990-10-19 1990-10-19 Measuring apparatus of shape of disk Pending JPH04157310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27903890A JPH04157310A (en) 1990-10-19 1990-10-19 Measuring apparatus of shape of disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27903890A JPH04157310A (en) 1990-10-19 1990-10-19 Measuring apparatus of shape of disk

Publications (1)

Publication Number Publication Date
JPH04157310A true JPH04157310A (en) 1992-05-29

Family

ID=17605535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27903890A Pending JPH04157310A (en) 1990-10-19 1990-10-19 Measuring apparatus of shape of disk

Country Status (1)

Country Link
JP (1) JPH04157310A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039408A (en) * 2006-08-01 2008-02-21 Justem:Kk Thickness multipoint measurement method and its apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039408A (en) * 2006-08-01 2008-02-21 Justem:Kk Thickness multipoint measurement method and its apparatus

Similar Documents

Publication Publication Date Title
US8723536B2 (en) Inspection apparatus, substrate mounting device and inspection method
EP0383336B1 (en) Article assembling device
CN112729158B (en) Method for measuring geometric parameters of wafer
TWI674624B (en) Substrate processing apparatus
KR20010071449A (en) High stability spin stand platform
US5560743A (en) Method of fine grain milling and machine therefor
CN112276384A (en) Air floating platform for semiconductor wafer laser cutting
JPS6158763B2 (en)
TW202003157A (en) Method of detecting a polishing surface of a polishing pad using a polishing head, and polishing apparatus
KR20010076144A (en) Magnetic disk drive
JP2003151233A (en) Head slider adapted to smooth surface magnetic disk, head slider assembly, magnetic disk device, magnetic disk examining and manufacturing method, and magnetic disk device assembling method
WO2002017354A9 (en) Ring chuck to hold 200 and 300 mm wafer
JPH06330944A (en) Static pressure moving guide device
US5923499A (en) Air bearing slider having shaped air bearing surface extending portion located on central axis
US4434649A (en) Gauge having a surface follower with peripheral vent
US6239951B1 (en) Air bearing slider with increased speed sensitivity
JPH04157310A (en) Measuring apparatus of shape of disk
JP3987811B2 (en) XY stage, head carriage and magnetic head or magnetic disk tester
US6985315B2 (en) Magnetic disk evaluation apparatus
US6666076B2 (en) Glide head with outer active rail
JP7383147B2 (en) Substrate holding device and substrate processing device
US6353590B1 (en) Media stabilization for laser servowriting
Natsu et al. Effects of support method and mechanical property of 300 mm silicon wafer on sori measurement
JPS6145907A (en) Flatness detector
JP2679015B2 (en) XY stage