JPH0415728B2 - - Google Patents

Info

Publication number
JPH0415728B2
JPH0415728B2 JP60007413A JP741385A JPH0415728B2 JP H0415728 B2 JPH0415728 B2 JP H0415728B2 JP 60007413 A JP60007413 A JP 60007413A JP 741385 A JP741385 A JP 741385A JP H0415728 B2 JPH0415728 B2 JP H0415728B2
Authority
JP
Japan
Prior art keywords
film
polyester
stretching
thermal
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60007413A
Other languages
Japanese (ja)
Other versions
JPS61167529A (en
Inventor
Shigeo Uchiumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diafoil Co Ltd
Original Assignee
Diafoil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diafoil Co Ltd filed Critical Diafoil Co Ltd
Priority to JP60007413A priority Critical patent/JPS61167529A/en
Publication of JPS61167529A publication Critical patent/JPS61167529A/en
Publication of JPH0415728B2 publication Critical patent/JPH0415728B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Impression-Transfer Materials And Handling Thereof (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は熱溶融転写あるいは熱昇華転写により
記録を行なうサーマルプリンタ等に使用される転
写インクを担持した感熱転写記録媒体用ポリエス
テルフイルムに関する。 従来の技術と解決すべき問題点 近年サーマルプリンター、サーマルフアクシミ
リ等で、薄いポリエステルフイルム上に熱溶融型
転写インクあるいは熱昇華転写型転写インクを塗
布してなる熱転写記録材が用いられ、普通紙上に
鮮明で堅牢な画像が得られている。しかしこのポ
リエステルフイルムは熱伝導率が低いために良好
な熱伝導性を得るためには厚さを薄くする必要が
あるが、3〜6μのごとき極薄フイルムとなると
機械的強度が低下し、切断やしわが生じ作業性が
極めて悪化する。これらの問題を解決するため
に、ポリエステル中に熱伝導率の高い微粒子を混
在させることにより基材フイルムの熱伝導率をあ
げる工夫がなされている(特開昭59−162090,特
開昭59−174392)。 しかしながら、これらの方法においても基材フ
イルムの熱伝導率を高めるためには熱良導体を多
量に含有せしめる必要があり、その結果フイルム
の機械的性質が悪化したり粗大ツブが生じたりす
る欠点がある。又、該熱良導体の含有量が増大す
ればする程コストアツプとなる等、末だ満足な方
法がないのが現状であり、これらの点から熱良導
体のフイルム中の含有量を減少せしめて同等の効
果を得る方法を見出すことが要望されていた。 問題点を解決するための手段 本発明者はポリエステルフイルム中の熱良導体
含量量を減少させて該フイルムの機械的性質を保
持し、熱伝導性の点ですぐれた効果を得るべく鋭
意検討の結果、ポリエステルフイルムの物性をあ
る特定の範囲にすることにより解決できる事を見
出し本発明に到達したものである。 すなわち本発明はX線回折で測定した〔100〕
面のピーク値X100と〔110〕面のピーク値X110
比XI=X110/X100の値が0.09以上の基材フイルム
中に基材の熱伝導率より高い熱伝導率を有する熱
良導体の微粒子を含有せしめたことを特徴とする
感熱転写記録媒体用ポリエステルフイルムに関す
るものである。 本発明にいうポリエステルとは、テレフタル
酸、イソフタル酸、ナフタレン−2,6−ジカル
ボン酸のごとき芳香族ジカルボン酸、又はそのエ
ステルと、エチレングリコール、ジエチレングリ
コール、テトラメチレングリコール、ネオペンチ
ルグリコール等のジオールとを重縮合させて得る
ことのできる結晶性芳香族ポリエステルである。 該ポリエステルは芳香族ジカルボン酸とグリコ
ールを直接重縮合させて得られる他、芳香族ジカ
ルボン酸ジアルキルエステルとグリコールとをエ
ステル交換反応させた後重縮合せしめる、あるい
は芳香族ジカルボン酸のジグリコールエステルを
重縮合せしめる等の方法によつても得られる。 かかるポリマーの代表的なものとして、ポリエ
チレンテレフタレート、ポリエチレン−2,6ナ
フタレンジカルボキシレート、ポリテトラメチレ
ンテレフタレート、ポリテトラメチレン−2,6
−ナフタレート等がある。 このポリマーは共重合されないホモポリマーで
あつてもよいが、その特性を低下させない限りに
おいて、繰り返し単位の80モル%以上がエチレン
テレフタレート或いはエチレン−2,6−ナフタ
レート単位よりなり、繰り返し単位の20モル%以
下が他の成分である共重合ポリエステル、又はこ
れらのポリエステルに他のポリマーを添加、混合
した混合ポリエステルであつても良い。ポリエス
テルに他のポリマーを添加、混合する場合はポリ
エステルの性質を本質的に変化させない範囲内で
添加、混合する必要があり、ポリオレフイン、ポ
リアミド、ポリカーボネート、その他のポリエス
テル等を15重量%未満の割合で添加することが出
来る。 また前記ポリエステルには、必要に応じて滑剤
等として作用する通常用いられる不活性微粒子を
含有せしめてもよい。該不活性微粒子は重合中折
出させる内部粒子であつてもよく、又外部から添
加する無機又は有機不活性微粒子であつてもよ
い。 本発明の熱良導体微粒子としては、アルミナ粒
子のごとき金属酸化物、アルミニウム等の金属、
CaCO3、石英ガラス等の無機化合物、セルロー
ス等の高分子有機物等、273Kにおける熱伝導率
が10W/m・deg以上、好ましくは50W/m・
deg以上のものであれば特に限定するものではな
い。熱良導体微粒子は粉体状、繊維状いずれでも
よいが、本発明においては、繊維状、棒状のもの
が特に好ましい。粒子径としては0.001〜5.0μm
で、含有量としては0.1〜15wt%である。 該外部粒子及び良熱伝導粒子の添加はポリエス
テル重合前でもよく、重合反応中でもよく、又重
合終了後ペレタイズする時に押出機中で混練させ
てもよいし、更にシート状に溶融押出する際に添
加し、押出機中で分散させて押出してもよい。 本発明において、基体フイルムであるポリエス
テルフイルムはX線回折で測定した〔100〕面の
ピーク値X100と〔110〕面のピーク値X110の比XI
=X110/X100の値が0.09以上であることが必要で
ある。 ここでXIが0.09以上のフイルムはベンゼン環の
フイルム面内への配向を低く抑えることにより得
られる。その方法としては例えば常法により2軸
延伸したフイルムを245℃以上の高温で1段階で
熱固定したり、230℃以上の高温で2段階以上熱
固定することにより達せられる。又より好ましい
方法としては、逐次2軸延伸の際、第1軸方向の
延伸後の配向が低くなるように延伸したのち、そ
れと直角方向に110℃〜150℃で延伸し熱固定する
ことである。この場合第1軸方向の配向を低下せ
しめる事により、2軸延伸後のフイルムにおいて
ベンゼン環のフイルム面への配向度合を低くし、
XIを0.09以上とすることが可能となる。この第1
軸方向の延伸後の複屈折率を0.08以下となる具体
的方法としては、1段で延伸する際は90℃以上
3.5倍以下で延伸することにより得られるが、好
ましい方法としては多段階で最終延伸前の複屈折
率を0.015〜0.055としたのち更に同一方向に85℃
〜130℃の温度下で1.1〜1.9倍最終段で延伸する
ことにより得られる。 但し上記延伸処方において熱良導体の微粒子が
多量に含有されている場合にはフイルムが不透明
となるため複屈折率が測定出来ない場合が生じ
る。それ故、微粒子を多量に含有するフイルムの
複屈折率は微粒子を享有しないフイルムの複屈折
率で代用することとした。 上式を満足するフイルムは上式の範囲外のフイ
ルムに比べて同種の熱良導体微粒子を用いた際、
少量の含有量ですぐれた印字の鮮明度を得ること
ができる。 理由は定かではないが、おそらく本発明のフイ
ルムはポリエステル中のベンゼン環のフイルム平
面に対しての傾きが大きいため、混入した良熱伝
導性微粒子が厚み方向に連続して存在し得、その
ためフイルム全体としての熱伝導率が向上するも
のと思われる。 次に本発明のポリエステルフイルムの製膜方法
を具体的に説明する。 重合体中にマツト化剤、熱良導体微粒子、滑り
剤を必要量含有せしめたポリマーレジンを常法の
手段で乾燥し、押出機を通して押出しをし、回転
冷却体ドラム上で冷却固化し未延伸ポリエステル
シートを形成する。この際、静電印加冷却法等、
公知の冷却手段を採用することも好ましい。 このようにして得た未延伸フイルムは、まず第
一軸方向、通常は縦方向にその複屈折率Δnが
0.080以下となるよう延伸し、次に該一軸方向と
直角方向に90℃〜150℃の温度で2.5〜4.5倍延伸
し、200℃〜250℃で1秒から10分間熱固定する。 本発明においては第一軸延伸、通常は縦延伸後
のΔnを0.080以下とすることによりXを0.09以下
とする事が最も好ましい。第一軸延伸を多段延伸
化したり、スーパードロー又はスーパードロー近
傍の延伸を適用することも好ましい。 フイルムの厚みは特に限定するものではない
が、該用途としては1μ〜50μが好ましい。 実施例 以下に本発明を実施例で更に詳しく説明する
が、本発明がこれらの実施例によつて限定される
ものでないことは言うまでもない。 フイルムの各物性の評価法を以下に示す。 (1) 複屈折率 カールツアイス社製偏光顕微鏡により、リター
デーシヨンを測定し、次式により複屈折率(Δn)
を求めた。 Δn=R/d但しR:リターデーシヨンd:フ
イルム厚さ (2) X線回折測定 X線自動回折装置でフイルム状でサンプルを測
定し2θ=26゜付近の(100)面のピーク値と2θ=
23゜付近の(110)面のピーク値を読みその比
(XI)を取つた。X線出力は30kV,15mAで行な
つた。 (3) 感熱転写材の評価 6μのPETフイルムの片面にステイツク防止の
ためシリコーン樹脂加工を行ない、その反対面に
ホツトメルトコーターで融点65℃の熱転写性着色
インキを塗布して感熱転写記録材とし、ブラザー
ー工業(株)製タイプライターEP−20及び富士ゼロ
ツクス(株)製ラインプリンタP6を使用して評価し
た。 評価結果が良好なものを〇、不良なものを×と
した。Δはその中間である。 (4) F5−値 1/2インチ幅、チヤツク間50mmの長の試料フイ
ルムを東洋ボールドウイン社製テンシロン
(UTN−)により、20℃、65%RHにて50mm/
minで引張り、5%伸張時の荷重を初期の断面積
で割り、Kg/mm2単位で表わした。 実施例 1,2 (ポリエステルの製造) ジメチルテレフタレート100部、エチレングリ
コール70部、酢酸カルシウム−水塩0.11部を反応
器にとり加熱昇温すると共にメタノールを留去さ
せエステル交換反応を行ない、反応開始後約4時
間を要して230℃に達せしめ、実質的にエステル
交換反応を終了した。 次にこの反応混合物にトリエチルホスフアイト
0.062部とトリエチルホスフエート0.27部とをエ
チレングリコールに均一に溶解させた液を添加
し、次いで三酸化アンチモン0.04部を添加したの
ち10分間を要して236℃に達せしめた。 この時点から系内の圧力を徐々に減じ三酸化ア
ンチモン添加後80分で系内の温度を265℃、圧力
を30mmHgとし、以後も徐々に昇温減圧し最終的
に285℃、1mmHg以下とした。4時間後系内を常
圧に戻し、ポリマーを吐出しチツプ化してポリエ
ステルAを得た。 一方該ポリエステルAに0.7μの平均粒径をもつ
アルミナ10wt%を押出機で練り混みチツプ化し
てポリエステルBを得た。 これらポリエステルA,Bの〔η〕は0.63とな
るよう調製した。 (ポリエステルフイルムの製造法) 上記のチツプをA:B=9:1となるよう混合
し、常法により乾燥し、285℃で押出機によりシ
ート状に押し出し急冷して無定形シートとした。 該無定形シートを105℃で3.4倍延伸しΔnを
0.040としたのち、更に105℃で1.25倍及び1.35倍
延伸した。 かくして得られた縦延伸フイルムを次にテンタ
ーで145℃で3.9倍に横方向に延伸し、205℃で熱
固定を行ない6μ(実施例1,2)とした。 フイルムの物性を第1表に示す。該フイルムを
用いて感熱転写材としての評価を行なつたとこ
ろ、サーマルヘツドの再現性が良く鮮明な画像を
与えた。 比較例 1,2 前記実施例と同様に作製した無定形シートを用
いて該無定形フイルムを85℃で縦方向に3.7倍延
伸し、次いで100℃で横方向に3.9倍延伸し205℃
で熱固定を行なつて6μ(比較例1)のフイルムを
得た。フイルムの物性を第1表に示す。該フイル
ムについて感熱転写材としての評価を行なつたと
ころ、サーマルヘツドの再現性が悪く、線が細か
つたり切れたり、また文字の一部が欠けたりして
不鮮明な画像を与えた。 そこで感熱転写材としての評価が良好になるア
ルミナの量を知るべくポリエステルAとポリエス
テルBの配合比を変えて検討した所、該延伸法で
はフイルム中のアルミナ量を6wt%と極めて多量
に混入する必要があることが分つた。 実施例 3 実施例1と同様の方法で横延伸まで行ない、更
に縦方向に1.15倍延伸したのち205℃で熱固定し
た。 比較例 3 実施例1と同様に作成した無定形フイルムを用
いて、該無定形フイルムを85℃縦方向に3.95倍延
伸し、次いで100℃で横方向に3.9倍延伸し205℃
で熱固定した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a polyester film for thermal transfer recording media carrying transfer ink used in thermal printers and the like that perform recording by thermal melt transfer or thermal sublimation transfer. Conventional technology and problems to be solved In recent years, thermal printers, thermal facsimile machines, etc. have used thermal transfer recording materials that are made by coating a thin polyester film with heat-melting transfer ink or heat-sublimation transfer ink. Clear and robust images are obtained. However, since this polyester film has a low thermal conductivity, it is necessary to reduce the thickness in order to obtain good thermal conductivity, but when it becomes an extremely thin film such as 3 to 6 μm, its mechanical strength decreases and it cannot be cut easily. Wrinkles occur and workability becomes extremely poor. In order to solve these problems, attempts have been made to increase the thermal conductivity of the base film by mixing fine particles with high thermal conductivity in polyester (JP-A-59-162090, JP-A-59- 174392). However, even in these methods, in order to increase the thermal conductivity of the base film, it is necessary to contain a large amount of a good thermal conductor, which has the drawback of deteriorating the mechanical properties of the film and causing coarse lumps. . In addition, as the content of the thermally good conductor increases, the cost increases, and at present there is no satisfactory method. There was a desire to find a way to obtain an effect. Means for Solving the Problems The present inventor has made extensive studies in order to reduce the content of a good thermal conductor in a polyester film, maintain the mechanical properties of the film, and obtain an excellent effect in terms of thermal conductivity. The inventors discovered that the problem could be solved by adjusting the physical properties of the polyester film within a certain range, and arrived at the present invention. That is, the present invention was measured by X-ray diffraction [100]
The ratio of the peak value X 100 of the plane to the peak value X 110 of the [110] plane XI = X 110 / The present invention relates to a polyester film for thermal transfer recording media characterized by containing fine particles of a good conductor. The polyester referred to in the present invention refers to aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, and naphthalene-2,6-dicarboxylic acid, or esters thereof, and diols such as ethylene glycol, diethylene glycol, tetramethylene glycol, and neopentyl glycol. It is a crystalline aromatic polyester that can be obtained by polycondensation of The polyester can be obtained by directly polycondensing aromatic dicarboxylic acid and glycol, or by polycondensing aromatic dicarboxylic acid dialkyl ester and glycol after transesterification, or by polycondensing diglycol ester of aromatic dicarboxylic acid. It can also be obtained by methods such as condensation. Representative examples of such polymers include polyethylene terephthalate, polyethylene-2,6 naphthalene dicarboxylate, polytetramethylene terephthalate, polytetramethylene-2,6
- Naphthalates, etc. This polymer may be a homopolymer that is not copolymerized, but as long as its properties are not deteriorated, 80 mol% or more of the repeating units are ethylene terephthalate or ethylene-2,6-naphthalate units, and 20 mol% of the repeating units are % or less of other components, or a mixed polyester obtained by adding and mixing other polymers to these polyesters. When adding or mixing other polymers to polyester, it is necessary to add or mix within a range that does not essentially change the properties of the polyester, and polyolefins, polyamides, polycarbonates, other polyesters, etc. must be added in a proportion of less than 15% by weight. Can be added. Further, the polyester may contain commonly used inert fine particles that act as a lubricant or the like, if necessary. The inert fine particles may be internal particles precipitated during polymerization, or may be inorganic or organic inert particles added from the outside. The thermally conductive fine particles of the present invention include metal oxides such as alumina particles, metals such as aluminum,
CaCO 3 , inorganic compounds such as quartz glass, polymeric organic substances such as cellulose, etc., whose thermal conductivity at 273K is 10 W/m・deg or more, preferably 50 W/m・
There is no particular limitation as long as it is more than deg. The thermally conductive fine particles may be in either powder or fibrous form, but in the present invention, fibrous or rod-like particles are particularly preferred. Particle size is 0.001-5.0μm
The content is 0.1 to 15 wt%. The external particles and the thermally conductive particles may be added before polyester polymerization or during the polymerization reaction, or they may be kneaded in an extruder when pelletizing after polymerization, or they may be added during melt extrusion into a sheet. However, it may be dispersed in an extruder and extruded. In the present invention, the polyester film that is the base film has a ratio X I of the peak value X 100 of the [100] plane and the peak value X 110 of the [110] plane measured by X-ray diffraction.
It is necessary that the value of =X 110 /X 100 be 0.09 or more. Here, a film with X I of 0.09 or more can be obtained by suppressing the orientation of the benzene ring in the film plane. This can be accomplished, for example, by heat-setting a biaxially stretched film by a conventional method in one step at a high temperature of 245°C or higher, or by heat-setting it in two or more stages at a high temperature of 230°C or higher. A more preferable method is to stretch the film in a manner such that the orientation after stretching in the first axial direction is low during sequential biaxial stretching, and then to heat set it by stretching at 110°C to 150°C in a direction perpendicular to the first axial direction. . In this case, by lowering the orientation in the first axis direction, the degree of orientation of benzene rings on the film surface in the film after biaxial stretching is lowered,
It becomes possible to set X I to 0.09 or more. This first
A specific method for achieving a birefringence index of 0.08 or less after axial stretching is 90°C or higher when stretching in one step.
It can be obtained by stretching at 3.5 times or less, but a preferred method is to use multiple steps to achieve a birefringence of 0.015 to 0.055 before final stretching, and then further stretching at 85°C in the same direction.
Obtained by final stage stretching of 1.1 to 1.9 times at a temperature of ~130°C. However, if the above-mentioned stretching recipe contains a large amount of fine particles of a good thermal conductor, the birefringence index may not be measured because the film becomes opaque. Therefore, the birefringence of a film containing a large amount of fine particles is substituted with the birefringence of a film that does not contain fine particles. A film that satisfies the above formula has a lower temperature when using the same type of thermally conductive fine particles than a film that does not fall within the range of the above formula.
Excellent print clarity can be obtained with a small amount of content. Although the reason is not clear, it is probably because the benzene rings in the polyester in the film of the present invention have a large inclination with respect to the plane of the film, and the mixed fine particles with good thermal conductivity may exist continuously in the thickness direction. It is thought that the overall thermal conductivity is improved. Next, the method for forming a polyester film of the present invention will be specifically explained. A polymer resin containing the necessary amounts of a matting agent, thermally conductive fine particles, and a slipping agent is dried by a conventional method, extruded through an extruder, and cooled and solidified on a rotating cooling drum to form an unstretched polyester. Form a sheet. At this time, electrostatic application cooling method etc.
It is also preferable to employ known cooling means. The unstretched film obtained in this way first has a birefringence Δn in the first axis direction, usually in the longitudinal direction.
0.080 or less, then stretched 2.5 to 4.5 times in a direction perpendicular to the uniaxial direction at a temperature of 90°C to 150°C, and heat set at 200°C to 250°C for 1 second to 10 minutes. In the present invention, it is most preferable to control X to 0.09 or less by setting Δn to 0.080 or less after first axial stretching, usually longitudinal stretching. It is also preferable to convert the first axial stretching into multistage stretching, or to apply super draw or near super draw stretching. Although the thickness of the film is not particularly limited, it is preferably 1μ to 50μ for this purpose. EXAMPLES The present invention will be explained in more detail below with reference to Examples, but it goes without saying that the present invention is not limited to these Examples. The evaluation method for each physical property of the film is shown below. (1) Birefringence Measure the retardation using a Carl Zeiss polarizing microscope, and calculate the birefringence (Δn) using the following formula.
I asked for Δn=R/d where R: Retardation d: Film thickness (2) 2θ=
The peak value of the (110) plane near 23° was read and the ratio (X I ) was taken. The X-ray output was 30kV and 15mA. (3) Evaluation of thermal transfer material One side of a 6μ PET film was treated with silicone resin to prevent sticking, and the other side was coated with thermal transfer colored ink with a melting point of 65°C using a hot melt coater to use as a thermal transfer recording material. , typewriter EP-20 manufactured by Brother Industries, Ltd. and line printer P6 manufactured by Fuji Xerox Co., Ltd. were used for evaluation. Those with good evaluation results were rated ○, and those with poor evaluation results were rated ×. Δ is in between. (4) F 5 − value A sample film with a width of 1/2 inch and a length of 50 mm between chucks was measured at 20°C and 65%RH using a Tensilon (UTN−) manufactured by Toyo Baldwin Co., Ltd.
The load at 5% elongation was divided by the initial cross-sectional area and expressed in kg/ mm2 . Examples 1 and 2 (Manufacture of polyester) 100 parts of dimethyl terephthalate, 70 parts of ethylene glycol, and 0.11 parts of calcium acetate hydrate were placed in a reactor, heated to raise the temperature, and methanol was distilled off to perform a transesterification reaction. It took about 4 hours to reach 230°C, and the transesterification reaction was substantially completed. Triethyl phosphite is then added to this reaction mixture.
A solution obtained by uniformly dissolving 0.062 part of triethyl phosphate and 0.27 part of triethyl phosphate in ethylene glycol was added, and then 0.04 part of antimony trioxide was added, and the temperature was raised to 236°C over 10 minutes. From this point, the pressure in the system was gradually reduced, and 80 minutes after adding antimony trioxide, the temperature in the system was 265℃ and the pressure was 30mmHg, and after that, the temperature and pressure were gradually increased and the pressure was reduced to 285℃ and 1mmHg or less. . After 4 hours, the inside of the system was returned to normal pressure, and the polymer was discharged and made into chips to obtain polyester A. On the other hand, polyester B was obtained by kneading 10 wt % of alumina having an average particle size of 0.7 μm into the polyester A using an extruder and forming it into chips. These polyesters A and B were adjusted so that [η] was 0.63. (Method for producing polyester film) The above chips were mixed in a ratio of A:B = 9:1, dried in a conventional manner, extruded into a sheet at 285°C using an extruder, and rapidly cooled to form an amorphous sheet. The amorphous sheet was stretched 3.4 times at 105℃ to obtain Δn.
After setting it to 0.040, it was further stretched 1.25 times and 1.35 times at 105°C. The longitudinally stretched film thus obtained was then stretched in the transverse direction by a factor of 3.9 at 145°C using a tenter, and heat-set at 205°C to obtain a film of 6μ (Examples 1 and 2). The physical properties of the film are shown in Table 1. When this film was evaluated as a thermal transfer material, it showed good reproducibility with a thermal head and gave clear images. Comparative Examples 1 and 2 Using an amorphous sheet produced in the same manner as in the above example, the amorphous film was stretched 3.7 times in the longitudinal direction at 85°C, then stretched 3.9 times in the transverse direction at 100°C, and then stretched at 205°C.
A film of 6 μm (Comparative Example 1) was obtained by heat setting. The physical properties of the film are shown in Table 1. When this film was evaluated as a thermal transfer material, the reproducibility of the thermal head was poor, the lines were thin and broken, and some characters were missing, giving an unclear image. Therefore, in order to find out the amount of alumina that would give a good evaluation as a thermal transfer material, we investigated changing the blending ratio of polyester A and polyester B, and found that in this stretching method, the amount of alumina in the film is extremely large at 6 wt%. I realized that it was necessary. Example 3 Transverse stretching was carried out in the same manner as in Example 1, and the film was further stretched 1.15 times in the longitudinal direction, and then heat-set at 205°C. Comparative Example 3 Using an amorphous film prepared in the same manner as in Example 1, the amorphous film was stretched 3.95 times in the longitudinal direction at 85°C, then stretched 3.9 times in the transverse direction at 100°C, and then stretched at 205°C.
It was heat fixed.

【表】 発明の効果 以上記載のとおり、本発明は前記特許請求の範
囲に記載の構成、すなわちポリエステルフイルム
のX線回折測定値、XI=X110/X100の値を0.09以
上とすることにより、ポリエステルフイルム自体
の有する機械的特性を保持し、感熱転写のすぐれ
たフイルムが得られ、本発明フイルムは感熱転写
記録媒体用ポリエステルフイルムとして有用なも
のである。
[Table] Effects of the Invention As described above, the present invention has the structure described in the claims, that is, the X-ray diffraction measurement value of the polyester film, the value of X I = X 110 /X 100 is 0.09 or more. As a result, it is possible to obtain a film that retains the mechanical properties of the polyester film itself and has excellent heat-sensitive transfer properties, and the film of the present invention is useful as a polyester film for heat-sensitive transfer recording media.

Claims (1)

【特許請求の範囲】 1 X線回折で測定した〔100〕面のピーク値
X100と〔110〕面のピーク値X110の比XI=X110
X100の値が0.09以上の基材フイルム中に基材の熱
伝導率より高い熱伝導率を有する熱良導体の微粒
子を含有せしめたことを特徴とする感熱転写記録
媒体用ポリエステルフイルム。
[Claims] 1. Peak value of [100] plane measured by X-ray diffraction
Ratio of X 100 to peak value X 110 of [110] plane X I = X 110 /
1. A polyester film for thermal transfer recording media, characterized in that a base film having an X 100 value of 0.09 or more contains fine particles of a good thermal conductor having a thermal conductivity higher than that of the base material.
JP60007413A 1985-01-21 1985-01-21 Polyester film for thermal transfer recording medium Granted JPS61167529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60007413A JPS61167529A (en) 1985-01-21 1985-01-21 Polyester film for thermal transfer recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60007413A JPS61167529A (en) 1985-01-21 1985-01-21 Polyester film for thermal transfer recording medium

Publications (2)

Publication Number Publication Date
JPS61167529A JPS61167529A (en) 1986-07-29
JPH0415728B2 true JPH0415728B2 (en) 1992-03-18

Family

ID=11665176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60007413A Granted JPS61167529A (en) 1985-01-21 1985-01-21 Polyester film for thermal transfer recording medium

Country Status (1)

Country Link
JP (1) JPS61167529A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4896558B2 (en) * 2006-03-30 2012-03-14 帝人デュポンフィルム株式会社 Polyester film for solar cell back surface protective film and solar cell back surface protective film using the same

Also Published As

Publication number Publication date
JPS61167529A (en) 1986-07-29

Similar Documents

Publication Publication Date Title
JP3274032B2 (en) Copolymerized polyethylene naphthalate film
KR100196770B1 (en) Polyester film
US4865898A (en) Polyester film for magnetic recording media
JP3962226B2 (en) Thermoplastic polyester resin composition and film comprising the same
JP2023184602A (en) Biaxially oriented polyester film
JP2000355631A (en) Polyester film and its production
JPH0743904A (en) Polyester film for image forming transfer material
JPH03213398A (en) Thermal transfer medium
JP2931850B2 (en) Biaxially oriented copolyester film for capacitor dielectric applications or thermal conductive ribbon applications
JPH0415728B2 (en)
JP3799211B2 (en)   Method for producing polyester composition for film
JPH0661918B2 (en) Laminated polyester film
JPH054218B2 (en)
JPH02158391A (en) Polyester film for thermal stencil printing base paper
JP3876509B2 (en) Polyester film and method for producing the same
JP2013147616A (en) Method for producing polyester composition, polyester composition using the method, and polyester film
JP2739773B2 (en) Bilayer biaxially oriented copolyester film
JPH0239998A (en) Polyethylene naphthalate film for thermal transfer
JP2000351840A (en) Polyester composition and polyester film
JP3352872B2 (en) Polyethylene naphthalate film
JPH03250043A (en) Production of polyester composition
JP3790419B2 (en) Polyester resin composition, film using the same, and method for producing polyester resin composition
EP0523596A1 (en) Polyester film for high-density magnetic tape
JP3117986B2 (en) Image receiving sheet for thermal transfer
JPH10298313A (en) Polyester film and its production