JPH04157159A - Method and device for synthesis of cubic boron nitride - Google Patents

Method and device for synthesis of cubic boron nitride

Info

Publication number
JPH04157159A
JPH04157159A JP28307190A JP28307190A JPH04157159A JP H04157159 A JPH04157159 A JP H04157159A JP 28307190 A JP28307190 A JP 28307190A JP 28307190 A JP28307190 A JP 28307190A JP H04157159 A JPH04157159 A JP H04157159A
Authority
JP
Japan
Prior art keywords
gas
plasma
substrate
high frequency
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28307190A
Other languages
Japanese (ja)
Inventor
Toshiaki Oimizu
利明 生水
Hajime Takimoto
肇 滝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP28307190A priority Critical patent/JPH04157159A/en
Publication of JPH04157159A publication Critical patent/JPH04157159A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To synthesize c-BN at low temp. and at a low cost by decomposing and exciting the geseous starting material with light from microwave plasma as the light source and with high frequency plasma and then forming c-BN on a substrate heated by high frequency heating. CONSTITUTION:A chamber 2 is evacuated with an evacuating device 11, into which H2 gas is introduced from a gas supplying device 1 for plasma light source. The gas is excited into a plasma state by microwaves from a microwave waveguide 3. By using this plasma, the geseous starting material comprising a gas containing B atom (B2H6, etc.,) and a gas containing N atom (NH3, etc.,) introduced from a source gas supplying device 7 to the chamber 2 is decomposed and excited, and passed through a high frequency plasma generating coil 9 of >=300W to form a cubic borom nitride (c-BN) film on a substrate 6 heated by high frequency of >=300W. Thus, c-BN can be synthesized at a low temp. by using a cheap UV light source.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、切削工具等の工具材料やヒートシンク等の電
子材料となる立方晶窒化硼素の合成方法および装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for synthesizing cubic boron nitride, which can be used as tool materials such as cutting tools and electronic materials such as heat sinks.

[従来の技術] 立方晶窒化硼素(c−B N )は、ダイヤモンドに次
ぐ硬さと熱伝導率を有し、鉄族合金に対して極めて化学
的に安定であり、切削工具、金型等の耐久性向上への応
用あるいは半導体素子1発光素子等への応用など、幅広
い用途が考えられる。一般に、c−BNの製造には、プ
ラズマを用いた各種製造方法が知られている。
[Prior art] Cubic boron nitride (c-BN) has hardness and thermal conductivity second only to diamond, is extremely chemically stable to iron group alloys, and is used for cutting tools, molds, etc. A wide range of applications can be considered, such as applications to improve durability or applications to semiconductor devices, light emitting devices, etc. Generally, various manufacturing methods using plasma are known for manufacturing c-BN.

従来、CVD法を用いた立方晶窒化硼素(c−BNIの
合成方法としては、特開昭62−205277号公報に
開示されるように、マイクロ波CVD法により、硼素原
子含有ガス、窒素原子含有ガスおよび水素ガスの混合ガ
スをマイクロ波無極放電中を通過させ、熱分解反応によ
り、300〜1300℃に加熱されている基板の表面に
c−BNを析出させる方法が知られている。
Conventionally, as a method for synthesizing cubic boron nitride (c-BNI) using the CVD method, as disclosed in JP-A-62-205277, boron atom-containing gas and nitrogen atom-containing gas are synthesized by microwave CVD method. A method is known in which c-BN is deposited on the surface of a substrate heated to 300 to 1300° C. by a thermal decomposition reaction by passing a mixed gas of gas and hydrogen gas through a microwave non-polar discharge.

また、特開昭63−134662号公報には、硼素原子
含有ガスおよび窒素原子含有ガスをエキシマレーザCV
D法にて分解、励起状態とした後、高周波プラズマ中を
通過させ、300〜2000℃に加熱した基板の表面に
導入し、c−BNを析出させる方法が開示されている。
Furthermore, Japanese Patent Application Laid-Open No. 63-134662 discloses that a boron atom-containing gas and a nitrogen atom-containing gas are heated using an excimer laser CV.
A method is disclosed in which c-BN is precipitated by being decomposed and brought into an excited state by method D, then passed through high-frequency plasma, and introduced onto the surface of a substrate heated to 300 to 2000°C.

[発明が解決しようとする課題] しかし、特開昭62−205277号公報の従来の合成
方法においては、基板表面を300〜1300℃と高温
状態にする必要があり、工具等の被膜に用いる場合、材
料に制限が生じてしまい、一般に加工性の良い金属では
使用できない場合もあり、また反応に用いるガスの条件
にも制約が多く、成膜状態の再現性が良くなかった。
[Problems to be Solved by the Invention] However, in the conventional synthesis method disclosed in JP-A No. 62-205277, it is necessary to heat the substrate surface to a high temperature of 300 to 1300°C. However, there are restrictions on the materials, and metals that generally have good workability may not be used, and there are also many restrictions on the gas conditions used for the reaction, resulting in poor reproducibility of the film formation state.

一方、特開昭63−134662号公報の従来法では、
上記従来法と同様に、基板が非常に高温にさらされると
いう問題に加え、反応ガスの分解、励起源として高価な
エキシマレーザを用いなければならないという問題があ
った。また特に、エキシマレーザは、励起ガスとして危
険性の高いガスを使用しているので、排ガス設備等にも
多大な投資を必要とするという問題もあった。
On the other hand, in the conventional method disclosed in JP-A-63-134662,
Similar to the conventional method described above, in addition to the problem that the substrate is exposed to extremely high temperatures, there is also the problem that an expensive excimer laser must be used as an excitation source for decomposing the reaction gas. In particular, since excimer lasers use highly dangerous gases as excitation gases, there is a problem in that they require a large amount of investment in exhaust gas equipment and the like.

本発明は、かかる従来の問題点に鑑みてなされたもので
、CVD法において、c−BN形成に有利で、しかも安
価な紫外光源を使用し、低温で成膜可能なc−BNの合
成方法および装置を提供することを目的とする。
The present invention has been made in view of such conventional problems, and is a method for synthesizing c-BN that is advantageous for forming c-BN in the CVD method and can be formed into a film at a low temperature using an inexpensive ultraviolet light source. and equipment.

[課題を解決するための手段] 上記目的を達成するために、本発明は、c−BNを合成
するにあたり、硼素原子含有ガスおよび窒素原子含有ガ
スを原料ガスとして用い、真空チャンバ内に希ガス、N
2ガスまたはN2ガスの少なくとも1種をプラズマ光源
用ガスとして導入し、このガスをマイクロ波で励起させ
たプラズマを光源として原料ガスを分解励起させるとと
もに、原料ガスを300W以上の高周波プラズマ中を通
過させ、300W以上の高周波を加えた基板上にc−B
N膜を形成することとした。
[Means for Solving the Problems] In order to achieve the above object, the present invention uses a boron atom-containing gas and a nitrogen atom-containing gas as source gases when synthesizing c-BN, and injects a rare gas into a vacuum chamber. , N
2 gas or N2 gas is introduced as a plasma light source gas, this gas is excited with microwaves, and the plasma is used as a light source to decompose and excite the raw material gas, and the raw material gas is passed through a high frequency plasma of 300 W or more. c-B on a board to which a high frequency of 300W or more was applied.
It was decided to form an N film.

また、本発明は、c−BNの合成装置において、マイク
ロ波プラズマ発生機構を備え、プラズマ光源と成膜室と
を同一チャンバ内に配置し、マイクロ波プラズマ発生機
構よりも基板側でかつ原料ガスの導入部と基板との間に
高周波プラズマ発生機構を備え、さらに基板外周にも高
周波発生機構を備えることとした。
In addition, the present invention provides a c-BN synthesis apparatus that is equipped with a microwave plasma generation mechanism, that a plasma light source and a film forming chamber are arranged in the same chamber, and that the source gas is located closer to the substrate than the microwave plasma generation mechanism. A high-frequency plasma generation mechanism is provided between the introduction part and the substrate, and a high-frequency plasma generation mechanism is also provided on the outer periphery of the substrate.

すなわち、本発明は、硼素原子含有ガスおよび窒素原子
ガスをマイクロ波プラズマを光源とした光および高周波
プラズマにより分解、励起させ、基板上にc−BN膜を
形成するもので、硼素原子含有ガス以外の希ガス、Hz
ガスまたはN2ガスをマイクロ波無極放電内を通過させ
、プラズマを発生させてそのプラズマ発光を光源とし、
別系統から導入した硼素原子含有ガスおよび窒素原子含
有ガスを分解、励起させ、さらに高周波プラズマ中を通
過させて分解、励起を促進し、高周波によるバイアスを
加えた基板上にc−BN膜を成膜する。
That is, the present invention forms a c-BN film on a substrate by decomposing and exciting a boron atom-containing gas and a nitrogen atom-containing gas using light from microwave plasma as a light source and high-frequency plasma. noble gas, Hz
Gas or N2 gas is passed through a microwave non-polar discharge to generate plasma and the plasma emission is used as a light source,
A boron atom-containing gas and a nitrogen atom-containing gas introduced from another system are decomposed and excited, and then passed through a high-frequency plasma to promote decomposition and excitation, forming a c-BN film on a substrate biased by the high frequency. To form a film.

[作 用] 光エネルギーのみでは、励起状態の硼素原子と窒素原子
とが互いに結合するエネルギーが不足してしまう。そこ
で、本発明では、高周波プラズマを用いて、さらに基板
に高周波バイアスを加えることでエネルギー準位を高め
、硼素原子と窒化原子とを結合させるに充分なエネルギ
ーを得ることとした。
[Effect] Light energy alone lacks the energy for the excited state boron atoms and nitrogen atoms to bond with each other. Therefore, in the present invention, it was decided to use high frequency plasma and further apply a high frequency bias to the substrate to increase the energy level and obtain enough energy to bond boron atoms and nitride atoms.

なお、本発明において、マイクロ波の出力は、0.5〜
1.2 kWが最も好ましい。出力が0.5kWより小
さいと励起エネルギーが不足し、1.2kWより大きい
とマイクロ波によるプラズマの分布が広がってしまい、
基板の温度上昇をもたらしてしまうからである。また、
高周波出力を300W以上としたのは、300Wより小
さいと励起エネルギーが不足してしまうからである。
In addition, in the present invention, the output of the microwave is 0.5 to
1.2 kW is most preferred. If the output is less than 0.5kW, the excitation energy will be insufficient, and if it is greater than 1.2kW, the distribution of plasma due to the microwave will spread,
This is because the temperature of the substrate increases. Also,
The reason why the high frequency output is set to 300 W or more is because if it is smaller than 300 W, the excitation energy will be insufficient.

本発明において、プラズマ光源用ガスとしては、希ガス
、H,ガスまたはN2ガスのうちの少なくとも1種が用
いられる。また、硼素原子含有ガスとしては、BzHa
、 Bus 、 BBra等が用いられ、窒素原子含有
ガスとしては、N、、 NH,等が用いられる。
In the present invention, at least one of rare gas, H gas, and N2 gas is used as the plasma light source gas. In addition, as the boron atom-containing gas, BzHa
, Bus, BBra, etc. are used, and as the nitrogen atom-containing gas, N, , NH, etc. are used.

一方、合成装置において、プラズマ中心と基板との距離
は、マイクロ波の出力を0.5〜1.2 kWとした場
合、500〜700mmが最も好ましい。 5001未
満であると基板温度が上昇してしまい、また700mm
を越えると基板上に到達する光が弱くなってしまうから
である。
On the other hand, in the synthesis apparatus, the distance between the plasma center and the substrate is most preferably 500 to 700 mm when the microwave output is 0.5 to 1.2 kW. If it is less than 5001, the substrate temperature will rise, and if it is less than 700 mm
This is because if the value exceeds 1, the light reaching the substrate becomes weak.

[実施例] (第1実施例) 図は、本実施例で用いた合成装置を示すもので、1で示
すのはチャンバ2の一端側に接続されたプラズマ光源用
ガス供給装置で、チャンバ2に設置されたマイクロ波導
波管3を通過する部分で光源用ガスはプラズマ化され、
励起光として利用される。4はマイクロ波発振装置であ
る。また、チャンバ2内の他端側内部には、サセプタ5
が設置されており、このサセプタ5上には基板6が載置
されている。サセプタ5は図示を省略したヒータにより
加熱可能である。
[Example] (First Example) The figure shows a synthesis apparatus used in this example. Reference numeral 1 indicates a plasma light source gas supply device connected to one end of the chamber 2. The light source gas is turned into plasma in the part where it passes through the microwave waveguide 3 installed in the
Used as excitation light. 4 is a microwave oscillation device. Further, inside the other end side of the chamber 2, a susceptor 5 is provided.
is installed, and a substrate 6 is placed on this susceptor 5. The susceptor 5 can be heated by a heater (not shown).

マイクロ波導波管3と基板6との間には、原料ガス供給
装置7からチャンバ2内に原料ガスを供給する原料ガス
導入口8が設けられている。また、この原料ガス導入口
8と基板6との間のチャンバ2外周には、高周波プラズ
マ発生用コイル9が巻装されている。10は高周波電源
である。この高周波電源10は、サセプタ5にも接続さ
れている。さらに、チャンバ2には、排気−置11が接
続されている。
A source gas inlet 8 is provided between the microwave waveguide 3 and the substrate 6 to supply source gas into the chamber 2 from the source gas supply device 7 . Further, a high-frequency plasma generation coil 9 is wound around the outer periphery of the chamber 2 between the raw material gas inlet 8 and the substrate 6. 10 is a high frequency power source. This high frequency power source 10 is also connected to the susceptor 5. Furthermore, an exhaust station 11 is connected to the chamber 2 .

かかる構成の合成装置により、c−BNの合成を行うに
は、排気装置11によりチャンバ2内を減圧にし、プラ
ズマ光源用ガスとしてN2ガスをフローさせた。マイク
ロ波出力は1kW、N2ガスの流量は20cc/min
とした。基板6の位置はマイクロ波プラズマの中心より
 500mmの位置に設定した。
In order to synthesize c-BN using the synthesizer having such a configuration, the pressure inside the chamber 2 was reduced by the exhaust device 11, and N2 gas was flowed as a plasma light source gas. Microwave output is 1kW, N2 gas flow rate is 20cc/min
And so. The position of the substrate 6 was set at a position 500 mm from the center of the microwave plasma.

Siウェハを基板6として、原料ガス供給装置7よりB
Cf2.およびN2ガスをそれぞれ0.2 Cc/mi
nおよび1Occ/minの流量としてチャンバ2内に
導入し、圧力をI Torrとし、高周波出力を400
Wとしてプラズマを発生させた。基板6に500wの高
周波を加え、200℃以下に加熱して、3時間の成膜を
行い、2μmの厚さのc−BN膜を形成した。
Using the Si wafer as the substrate 6, B is supplied from the raw material gas supply device 7.
Cf2. and N2 gas at 0.2 Cc/mi, respectively.
n and a flow rate of 1 Occ/min into the chamber 2, the pressure was I Torr, and the high frequency output was 400 Occ/min.
Plasma was generated using W. A high frequency wave of 500 W was applied to the substrate 6, and the substrate was heated to 200° C. or lower to form a film for 3 hours to form a c-BN film with a thickness of 2 μm.

この膜をFT−IR(フーリエ変換赤外線吸収スペクト
ル)で調べたところ、1050c+n−’に顕著な吸収
を示し、c−BN膜の形成を確認できた。
When this film was examined by FT-IR (Fourier transform infrared absorption spectrum), it showed remarkable absorption at 1050c+n-', confirming the formation of a c-BN film.

(第2実施例) 図に示す合成装置を用いて、Siウェハを基板6として
、原料ガス供給装置7よりBCl23およびNH,ガス
をそれぞれ0.2 cc/minおよび10cc/mi
nの流量としてチャンバ2内に導入し、圧力をI To
rrとし、高周波出力を400Wとしてプラズマを発生
させた。
(Second Example) Using the synthesis apparatus shown in the figure, using a Si wafer as the substrate 6, BCl23 and NH gas were supplied from the raw material gas supply device 7 at 0.2 cc/min and 10 cc/min, respectively.
n into the chamber 2 with a flow rate of I To
rr, and a high frequency output of 400W to generate plasma.

プラズマ光源用ガスとしては、Heガスをプラズマ光源
用ガス供給装置lよりフローさせた。マイクロ波出力は
1kW、Heガスの流量は20cc/minとした。基
板6の位置はマイクロ波プラズマの中心より500闘の
ところに設置し、基板6に400Wの高周波を加え、2
00℃以下に加熱して、3時間の成膜を行って、2μm
の厚さのc−BN膜を形成した。
As the plasma light source gas, He gas was flowed from the plasma light source gas supply device 1. The microwave output was 1 kW, and the He gas flow rate was 20 cc/min. The position of the substrate 6 is set at 500 mm from the center of the microwave plasma, and a high frequency of 400 W is applied to the substrate 6.
Heated to 00℃ or less and formed a film for 3 hours to form a film with a thickness of 2 μm.
A c-BN film with a thickness of .

この膜をFT−IR(フーリエ変換赤外線吸収スペクト
ル)で調べたことろ、105105O’に顕著な吸収を
示し、c−BN膜の形成を確認できた。
When this film was examined by FT-IR (Fourier transform infrared absorption spectrum), it showed remarkable absorption at 105105O', confirming the formation of a c-BN film.

(第3実施例) 図に示す合成装置を用いて、Siウェハを基板6として
、原料ガス供給装置7よりBCl23およびN2ガスを
それぞれ0.2 cc/minおよび10cc/min
の流量としてチャンバ2内に導入し、圧力をI Tor
rとし、高周波出力を400Wとしてプラズマを発生さ
せた。
(Third Example) Using the synthesis apparatus shown in the figure, using a Si wafer as the substrate 6, BCl23 and N2 gas were supplied from the raw material gas supply device 7 at 0.2 cc/min and 10 cc/min, respectively.
is introduced into the chamber 2 with a flow rate of I Tor
r, and the high frequency output was set to 400 W to generate plasma.

プラズマ光源用ガスとしては、Xeガスをプラズマ光源
用ガス供給装置1よりフローさせた。マイクロ波出力は
1kW、Xeガスの流量は20cc/minとした。基
板6の位置はマイクロ波プラズマの中心より 500 
mmのところに設置し、基板6に350wの高周波を加
え、200℃以下に加熱して、3時間の成膜を行って、
2μmの厚さのc−BN膜を形成した。
As the plasma light source gas, Xe gas was flowed from the plasma light source gas supply device 1. The microwave output was 1 kW, and the Xe gas flow rate was 20 cc/min. The position of the substrate 6 is 500 mm from the center of the microwave plasma.
350 W of high frequency was applied to the substrate 6, heated to 200° C. or less, and formed a film for 3 hours.
A c-BN film with a thickness of 2 μm was formed.

この膜をFT−IR(フーリエ変換赤外線吸収スペクト
ル)で調べたところ、105105O’に顕著な吸収を
示し、c−BN膜の形成を確認できた。
When this film was examined by FT-IR (Fourier transform infrared absorption spectrum), it showed remarkable absorption at 105105O', confirming the formation of a c-BN film.

(第4実施例) 図に示す合成装置を用いて、Siウェハを基板6として
、原料ガス供給装置7よりBCl23およびN2ガスを
それぞれ0.2 cc/minおよび10cc/min
の流量としてチャンバ2内に導入し、圧力をI Tor
rとし、高周波出力を500Wとしてプラズマを発生さ
せた。
(Fourth Example) Using the synthesis apparatus shown in the figure, using a Si wafer as the substrate 6, BCl23 and N2 gas were supplied from the source gas supply device 7 at 0.2 cc/min and 10 cc/min, respectively.
is introduced into the chamber 2 with a flow rate of I Tor
r, and the high frequency output was set to 500 W to generate plasma.

プラズマ光源用ガスとしては、Arガスをプラズマ光源
用ガス供給装置lよりフローさせた。マイクロ波出力は
1kW、Arガスの流量は20cc/minとした。基
板6の位置はマイクロ波プラズマの中心より 500 
mmのところに設置し、基板6に300Wの高周波を加
え、200℃以下に加熱して、3時間の成膜を行って、
2μmの厚さのc−BN膜を形成した。
As the plasma light source gas, Ar gas was flowed from the plasma light source gas supply device 1. The microwave output was 1 kW, and the Ar gas flow rate was 20 cc/min. The position of the substrate 6 is 500 mm from the center of the microwave plasma.
300 W of high frequency was applied to the substrate 6, heated to 200° C. or less, and formed a film for 3 hours.
A c-BN film with a thickness of 2 μm was formed.

この膜をFT−IR(フーリエ変換赤外線吸収スペクト
ル)で調べたところ、105105O’に顕著な吸収を
示し、c−BN膜の形成を確認できた。
When this film was examined by FT-IR (Fourier transform infrared absorption spectrum), it showed remarkable absorption at 105105O', confirming the formation of a c-BN film.

(第5実施例) 図に示す合成装置を用いて、Siウェハを基板6として
、原料ガス供給装置7よりB2H−およびNH3ガスを
それぞれ0.2 cc/minおよび10cc/min
の流量としてチャンバ2内に導入し、圧力をI Tor
rとし、高周波出力を600Wとしてプラズマを発生さ
せた。
(Fifth Example) Using the synthesis apparatus shown in the figure, using a Si wafer as the substrate 6, B2H- and NH3 gases were supplied from the raw material gas supply device 7 at 0.2 cc/min and 10 cc/min, respectively.
is introduced into the chamber 2 with a flow rate of I Tor
r, and the high frequency output was set to 600 W to generate plasma.

プラズマ光源用ガスとしては、N2ガスおよびArガス
をプラズマ光源用ガス供給装置1よりフローさせた。マ
イクロ波出力は1kW、HzガスおよびArガスの流量
はそれぞれ1Occ/minおよび20cc7minと
した。基板6の位置はマイクロ波プラズマの中心より5
00 mmのところに設置し、基板6に300Wの高周
波を加え、200℃に加熱して、3時間の成膜を行って
、2μmの厚さのc−BN膜を形成した。
As the plasma light source gas, N2 gas and Ar gas were flowed from the plasma light source gas supply device 1. The microwave output was 1 kW, and the flow rates of Hz gas and Ar gas were 1 Occ/min and 20 cc/min, respectively. The position of the substrate 6 is 5 points from the center of the microwave plasma.
00 mm, a high frequency of 300 W was applied to the substrate 6, the substrate 6 was heated to 200° C., and film formation was performed for 3 hours to form a c-BN film with a thickness of 2 μm.

この膜をFT−IR(フーリエ変換赤外線吸収スペクト
ル)で調べたところ、105105O’に顕著な吸収を
示し、c−BN膜の形成を確認できた。
When this film was examined by FT-IR (Fourier transform infrared absorption spectrum), it showed remarkable absorption at 105105O', confirming the formation of a c-BN film.

[発明の効果] 以上のように、本発明のc−BNの合成方法および装置
によれば、マイクロ波プラズマを光源とした光および高
周波プラズマにより原料ガスを分解、励起させ、高周波
を加えた基板上にc−BNを形成することとしたので、
低温で、しかも安価にしてc−BNを合成することがで
きる。
[Effects of the Invention] As described above, according to the c-BN synthesis method and apparatus of the present invention, a material gas is decomposed and excited by light using microwave plasma as a light source and high-frequency plasma, and a substrate to which high-frequency waves are applied is produced. Since we decided to form c-BN on top,
c-BN can be synthesized at low temperatures and at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明のc−BN合成装置の一実施例を示す概略構
成図である。 1・・・・・・プラズマ光源用ガス供給装置2・・・・
・・チャンバ 3・・・・・・マイクロ波導波管 4・・・・・・マイクロ波発振装置 6・・・・・・基板 7・・・・・・原料ガス供給装置 8・・・・・・原料ガス導入口 9・・・・・・高周波プラズマ発生用コイル10・・・
・・・高周波電源 特許出願人  オリンパス光学工業株式会社2・・・・
・・チャンバ 3・−・・・・マイクロ波導波管 4・・・・・・マイクロ波発振HR 6・・・・・・基板 7・・・・・・原料ガス供給装置 8・・・・−・原料ガス導入口 く
The figure is a schematic configuration diagram showing an embodiment of the c-BN synthesis apparatus of the present invention. 1... Gas supply device for plasma light source 2...
... Chamber 3 ... Microwave waveguide 4 ... Microwave oscillation device 6 ... Substrate 7 ... Raw material gas supply device 8 ... - Raw material gas inlet 9... High frequency plasma generation coil 10...
...High frequency power supply patent applicant Olympus Optical Industry Co., Ltd.2...
... Chamber 3 ... Microwave waveguide 4 ... Microwave oscillation HR 6 ... Substrate 7 ... Raw material gas supply device 8 ... -・Raw material gas inlet

Claims (2)

【特許請求の範囲】[Claims] (1)硼素原子含有ガスおよび窒素原子含有ガスを原料
ガスとして用い、真空チャンバ内に希ガス,H_2ガス
またはN_2ガスの少なくとも1種をプラズマ光源用ガ
スとして導入し、このガスをマイクロ波で励起させたプ
ラズマを光源として原料ガスを分解励起させるとともに
、原料ガスを300W以上の高周波プラズマ中を通過さ
せ、300W以上の高周波を加えた基板上に立方晶窒化
硼素膜を形成することを特徴とする立方晶窒化硼素の合
成方法。
(1) Using a boron atom-containing gas and a nitrogen atom-containing gas as source gases, at least one of rare gas, H_2 gas, or N_2 gas is introduced into the vacuum chamber as a plasma light source gas, and this gas is excited with microwaves. The material gas is decomposed and excited using the generated plasma as a light source, and the material gas is passed through a high frequency plasma of 300 W or more to form a cubic boron nitride film on a substrate to which a high frequency of 300 W or more is applied. Synthesis method of cubic boron nitride.
(2)マイクロ波プラズマ発生機構を備え、プラズマ光
源と成膜室とを同一チャンバ内に配置し、マイクロ波プ
ラズマ発生機構よりも基板側でかつ原料ガスの導入部と
基板との間に高周波プラズマ発生機構を備え、基板外周
に高周波発生機構を備えたことを特徴とする立方晶窒化
硼素の合成装置。
(2) Equipped with a microwave plasma generation mechanism, the plasma light source and the film forming chamber are placed in the same chamber, and high-frequency plasma is generated closer to the substrate than the microwave plasma generation mechanism and between the raw material gas introduction part and the substrate. A synthesis device for cubic boron nitride, characterized in that it is equipped with a generation mechanism and a high frequency generation mechanism is provided on the outer periphery of a substrate.
JP28307190A 1990-10-19 1990-10-19 Method and device for synthesis of cubic boron nitride Pending JPH04157159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28307190A JPH04157159A (en) 1990-10-19 1990-10-19 Method and device for synthesis of cubic boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28307190A JPH04157159A (en) 1990-10-19 1990-10-19 Method and device for synthesis of cubic boron nitride

Publications (1)

Publication Number Publication Date
JPH04157159A true JPH04157159A (en) 1992-05-29

Family

ID=17660832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28307190A Pending JPH04157159A (en) 1990-10-19 1990-10-19 Method and device for synthesis of cubic boron nitride

Country Status (1)

Country Link
JP (1) JPH04157159A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006042328B4 (en) * 2006-09-01 2012-07-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for forming thin layers on substrate surfaces

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006042328B4 (en) * 2006-09-01 2012-07-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for forming thin layers on substrate surfaces

Similar Documents

Publication Publication Date Title
US4816286A (en) Process for synthesis of diamond by CVD
EP0026604A1 (en) A method of vapour phase growth and apparatus therefor
JPS61127121A (en) Formation of thin film
KR100196444B1 (en) Method for removing photosensitive resin
Rebello et al. Diamond growth by laser‐driven reactions in a CO/H2 mixture
JPH04157159A (en) Method and device for synthesis of cubic boron nitride
JPH04107271A (en) Method and equipment for synthesizing cubic boron nitride
JPH04141588A (en) Method and apparatus for synthesizing cubic boron nitride
JPS6141763A (en) Thin film manufacturing apparatus
JPH03264670A (en) Method and device for synthesizing cubic boron nitride
JPS6054996A (en) Synthesis of diamond
JPH04154970A (en) Method for synthesizing cubic boron nitride
JPH0499871A (en) Synthetic method for cubic carbon nitride
JPS62243770A (en) Method for synthesizing high hardness boron nitride
JPH0543393A (en) Method for preparing carbon material
JPH06302525A (en) Vapor phase reactor
JP2569423B2 (en) Gas phase synthesis of boron nitride
JPH108257A (en) Production of carbon nitride and carbon nitride
JP2757221B2 (en) Method for synthesizing aluminum oxynitride
JPH04314865A (en) Method for synthesizing cubic boron nitride
JPH0697158A (en) Optical vapor-phase reaction method
JPS63117993A (en) Device for synthesizing diamond in vapor phase
JP3024712B2 (en) Al-on-based composite material and method for synthesizing the same
JPS6286165A (en) Formation of thin film
JPH03223463A (en) Synthetic method for cubic boron nitride