JPH04157149A - Surface treatment for vacuum equipment made of stainless steel - Google Patents
Surface treatment for vacuum equipment made of stainless steelInfo
- Publication number
- JPH04157149A JPH04157149A JP28188790A JP28188790A JPH04157149A JP H04157149 A JPH04157149 A JP H04157149A JP 28188790 A JP28188790 A JP 28188790A JP 28188790 A JP28188790 A JP 28188790A JP H04157149 A JPH04157149 A JP H04157149A
- Authority
- JP
- Japan
- Prior art keywords
- vacuum equipment
- vacuum
- stainless steel
- equipment
- surface treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 9
- 239000010935 stainless steel Substances 0.000 title claims abstract description 9
- 238000004381 surface treatment Methods 0.000 title claims description 10
- 238000004140 cleaning Methods 0.000 claims abstract description 17
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims abstract description 6
- 230000001590 oxidative effect Effects 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 12
- 238000011282 treatment Methods 0.000 claims description 7
- 230000003647 oxidation Effects 0.000 claims description 2
- 238000007254 oxidation reaction Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 abstract description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 4
- 239000001257 hydrogen Substances 0.000 abstract description 4
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 4
- 238000011109 contamination Methods 0.000 abstract description 3
- 238000001179 sorption measurement Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000005469 synchrotron radiation Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Landscapes
- ing And Chemical Polishing (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、加速器、放射光施設(SRまたはSOR)、
自由電子レーザ、などの配管(ビーム軌道)部に適用さ
れる表面処理方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to accelerators, synchrotron radiation facilities (SR or SOR),
The present invention relates to a surface treatment method applied to piping (beam trajectory) parts of free electron lasers, etc.
従来の真空機器の表面処理としては、■脱脂、■酸洗、
■電解研磨、■ベーキング(真空下で加熱処理)、■放
電洗浄などがあるが、近年、放電洗浄処理が注目を浴び
てきている。なお、放電洗浄は、低圧下で放電を長時間
おこして、真空機器をイオン照射し、不純物の除去や吸
蔵ガスのたたき出し等を行う清浄化方法である。Conventional surface treatments for vacuum equipment include ■degreasing, ■pickling,
There are methods such as ■electrolytic polishing, ■baking (heat treatment under vacuum), and ■discharge cleaning, but in recent years, discharge cleaning has been attracting attention. Note that discharge cleaning is a cleaning method in which a vacuum device is irradiated with ions by causing discharge under low pressure for a long time to remove impurities, knock out occluded gas, and the like.
放電洗浄は真空機器表面を清浄にするが、別の意味では
活性な面を露出する処理方法であるため、処理後大気に
さらすと、大気中のガスが吸着したり、化学結合したり
して、処理効果が失なわれるため、工場でのあらかじめ
の処理としては不適当であった。Discharge cleaning cleans the surface of vacuum equipment, but in another sense, it is a treatment method that exposes the active surface, so if it is exposed to the atmosphere after treatment, gases in the atmosphere may be adsorbed or chemically bonded. , it was unsuitable as a pre-treatment in a factory because the treatment effect was lost.
特にステンレス材の場合の表面処理方法は確立していな
かった。In particular, there was no established surface treatment method for stainless steel materials.
従って、工場での製作段階であらかじめ放電洗浄を行な
った後も、その効果が持続できる表面処理方法の開発が
望まれている。これにより、現地での立上げ時間の大幅
な短縮が可能となる。Therefore, it is desired to develop a surface treatment method that can maintain the effect even after discharge cleaning is performed in advance at the manufacturing stage in a factory. This makes it possible to significantly shorten on-site startup time.
放電洗浄直後の表面を(大気にさらすことなく)、ち密
な酸化皮膜で保護する。そのための条件として、大気圧
の純酸素による加熱手段を採用する。Protect the surface immediately after discharge cleaning (without exposing it to the atmosphere) with a dense oxide film. As a condition for this, heating means using pure oxygen at atmospheric pressure is adopted.
[作用]
大気圧の純酸素下で加熱して出来たち密な酸化皮膜は、
化学的に安定であるため、大気中のガスの吸着や化学結
合による表面汚染を抑える作用がある。[Function] A dense oxide film formed by heating under pure oxygen at atmospheric pressure,
Because it is chemically stable, it has the effect of suppressing surface contamination due to adsorption of atmospheric gases and chemical bonds.
またこの皮膜は、ステンレスの母材に比較して、水素の
拡散係数が顕著に小さいため、超音真空領域などでは、
真空排気時に問題となる水素の真空機器からの放出を低
減する。In addition, this film has a significantly lower hydrogen diffusion coefficient than the stainless steel base material, so it cannot be used in ultrasonic vacuum regions.
Reduces the release of hydrogen from vacuum equipment, which is a problem during vacuum evacuation.
(実施例]
本発明を長尺の真空配管に適用した実施例を第1図につ
いて説明する。(Example) An example in which the present invention is applied to a long vacuum pipe will be described with reference to FIG.
ステンレス製管を工場に於いて所定の寸法・形状に加工
した後、両端に盲板02等をつけて真空配管01とし、
これを真空ポンプ03で真空排気する。After processing the stainless steel pipe into the specified size and shape at the factory, blind plates 02 etc. are attached to both ends to make the vacuum pipe 01,
This is evacuated using a vacuum pump 03.
その後、所定のガス(例えばアルゴン(Ar)ガス+1
0%酸素(0□))を所定の圧力加えたのち、真空配管
01内部にあらかしめ(真空排気前に)設置した放電電
極04と真空配管01との間でグロー放電を行ない、表
面の不純物を除去したのち、真空排気し、その後純酸素
を大気圧まで導入してヒータ06で200℃〜400℃
に加熱する。これによりち密酸化層05を表面に形成す
る。その後大気開放し、出荷して現地組立を行なう。After that, a predetermined gas (for example, argon (Ar) gas +1
After applying 0% oxygen (0□) to a predetermined pressure, glow discharge is performed between the discharge electrode 04, which was installed inside the vacuum pipe 01 (before evacuation), and the vacuum pipe 01, and impurities on the surface are removed. After removing the gas, it is evacuated, then pure oxygen is introduced to atmospheric pressure, and heated to 200°C to 400°C with heater 06.
Heat to. This forms a dense oxide layer 05 on the surface. After that, it is opened to the atmosphere, shipped, and assembled on-site.
次に、第2図により、真空排気の各段階での支配要因に
ついて説明する。Next, the governing factors at each stage of evacuation will be explained with reference to FIG.
まず、大気圧の状態から排気をはしめると、容器内のガ
スの排出に要する速度が支配要因となる。First, when evacuation is stopped from a state of atmospheric pressure, the speed required for evacuation of the gas inside the container becomes a controlling factor.
その後、今度は真空壁面に付着しているガスが表面から
脱離して出てくる速度が支配要因となる。After that, the controlling factor is the rate at which the gas adhering to the vacuum wall is desorbed from the surface and comes out.
表面のガスが少なくなってくると、今度は真空材料の内
部にいるガスが拡散によって出てくる速度が支配要因と
なり、最後には真空壁を通って大気側のガスが透過して
くる速度が支配要因となる。When the amount of gas on the surface decreases, the rate at which the gas inside the vacuum material comes out by diffusion becomes the controlling factor, and finally the rate at which the gas from the atmosphere passes through the vacuum wall increases. Become a controlling factor.
上記の表面処理方法により、表面脱離、拡散の各過程で
の排気時間が短縮される。The above surface treatment method shortens the exhaust time in each process of surface desorption and diffusion.
(発明の効果〕
本発明は、ステンレス製真空機器を放を洗浄後、大気に
さらすことなく表面をち密な酸化処理する表面処理方法
において、あらかしめ機器内部に設置した放電電極によ
る放電洗浄後、大気圧の純酸素を導入し、200〜40
0℃に加熱して表面を酸化することにより、次の効果を
有する。(Effects of the Invention) The present invention provides a surface treatment method in which the surface of stainless steel vacuum equipment is thoroughly oxidized without being exposed to the atmosphere after air cleaning, after discharge cleaning using a discharge electrode installed inside the warming equipment. Introducing pure oxygen at atmospheric pressure,
Oxidizing the surface by heating to 0°C has the following effects.
■ 放電洗浄で真空機器表面の清浄化をした後、酸化さ
せることにより、ち密な皮膜を作ることができる。■ A dense film can be created by cleaning the surface of vacuum equipment with discharge cleaning and then oxidizing it.
■ このち密な皮膜により、放電洗浄した表面を大気曝
露時に汚染から防ぐことができる。■ This dense film protects the discharge cleaned surface from contamination when exposed to the atmosphere.
■ 上記0項の処理を工場での製作時に施工することに
より、放電洗浄で得た清浄表面をち密な酸化皮膜で保護
した状態で、輸送、組立ができる。これにより、現地で
の組立時に早く真空排気ができ、また到達真空度も良い
。(2) By carrying out the treatment in item 0 above at the time of manufacturing at the factory, the product can be transported and assembled with the clean surface obtained by discharge cleaning protected by a dense oxide film. This allows for quick evacuation during on-site assembly, and the ultimate vacuum level is also good.
■ 上記0項で得られた皮膜は、表面へのガス吸着量が
少ないため、早く真空排気ができる。また、到達真空度
についても、超高真空領域で問題となる水素ガスの放出
を抑制できるので、極高真空域にまで到達できる。(2) The film obtained in item 0 above has a small amount of gas adsorbed on the surface, so it can be evacuated quickly. Furthermore, as for the ultimate vacuum level, it is possible to suppress the release of hydrogen gas, which is a problem in the ultra-high vacuum area, so it is possible to reach the ultra-high vacuum area.
■ 例えば、高エネルギー粒子による皮膜損傷が生して
も、内部には放電洗浄で清浄化した面があるので、真空
度が悪くなる心配がない。■ For example, even if the film is damaged by high-energy particles, there is no need to worry about the vacuum level worsening because there is a surface inside that has been cleaned by discharge cleaning.
■ また、この皮膜は酸化処理により、修復可能なため
、長期に使用できる。例えば、メンテナンスでやむをえ
ず、大気曝露が必要な際には、あらかじめこの処理を施
せば、ち密度膜が再生して、表面保護ができる。■ Also, this film can be repaired by oxidation treatment, so it can be used for a long time. For example, if exposure to the atmosphere is unavoidable due to maintenance, this treatment can be applied in advance to regenerate the density film and protect the surface.
第1図は本発明の実施例に係る表面処理方法の処理チャ
ートを示し、第2図は真空排気特性の支配要因を示す線
図である。
01・・・真空配管、02・・・盲板。
03・・・真空ポンプ、04・・・放電電極。FIG. 1 shows a processing chart of a surface treatment method according to an embodiment of the present invention, and FIG. 2 is a diagram showing controlling factors of evacuation characteristics. 01...Vacuum piping, 02...Blind plate. 03...Vacuum pump, 04...Discharge electrode.
Claims (1)
となく表面をち密な酸化処理する表面処理方法に於いて
、あらかじめ機器内部に設置した放電電極による放電洗
浄後、大気圧の純酸素を導入し、200〜400℃に加
熱して表面を酸化することを特徴とするステンレス製真
空機器の表面処理方法。After discharge cleaning stainless steel vacuum equipment, in a surface treatment method that performs a dense oxidation treatment on the surface without exposing it to the atmosphere, after discharge cleaning using a discharge electrode installed inside the equipment, pure oxygen at atmospheric pressure is introduced, A method for surface treatment of stainless steel vacuum equipment, characterized by oxidizing the surface by heating to 200 to 400°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28188790A JP2862362B2 (en) | 1990-10-22 | 1990-10-22 | Surface treatment method for stainless steel vacuum equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28188790A JP2862362B2 (en) | 1990-10-22 | 1990-10-22 | Surface treatment method for stainless steel vacuum equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04157149A true JPH04157149A (en) | 1992-05-29 |
JP2862362B2 JP2862362B2 (en) | 1999-03-03 |
Family
ID=17645355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28188790A Expired - Fee Related JP2862362B2 (en) | 1990-10-22 | 1990-10-22 | Surface treatment method for stainless steel vacuum equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2862362B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003013181A (en) * | 2001-06-27 | 2003-01-15 | Nippon Steel Corp | Austenitic stainless steel for vacuum equipment and manufacturing method therefor |
-
1990
- 1990-10-22 JP JP28188790A patent/JP2862362B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003013181A (en) * | 2001-06-27 | 2003-01-15 | Nippon Steel Corp | Austenitic stainless steel for vacuum equipment and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2862362B2 (en) | 1999-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2018084285A1 (en) | Substrate bonding method, substrate bonding system, and control method for hydrophilic treatment apparatus | |
JP6749090B2 (en) | Processing method in processing apparatus using halogen-based gas | |
JPH04107281A (en) | Method and device for etching fe-containing material | |
JPH04157149A (en) | Surface treatment for vacuum equipment made of stainless steel | |
JPH10233389A (en) | Semiconductor treatment apparatus and its cleaning method as well as manufacture of semiconductor device | |
JP3058909B2 (en) | Cleaning method | |
JP2019156659A (en) | MANUFACTURING METHOD OF SiC INGOT MANUFACTURING SUBSTRATE, AND SiC INGOT MANUFACTURING SUBSTRATE | |
JPH02143418A (en) | Thin-film forming apparatus | |
TWI445082B (en) | Plasma processing method | |
WO2003004722A1 (en) | Method for cleaning reaction container and film deposition system | |
JPH04242933A (en) | Formation of oxide film | |
JPH01225127A (en) | Method of purifying substrate and heater for substrate | |
JP3212442B2 (en) | How to reduce the amount of hydrogen adsorbed on diamond surface | |
JP6165518B2 (en) | Plasma processing method and vacuum processing apparatus | |
JPH0512033B2 (en) | ||
JPS6067664A (en) | Dust removal of vapor deposition apparatus | |
JPS6191930A (en) | Cleaning method of semiconductor substrate | |
JP2544129B2 (en) | Plasma processing device | |
JPH0444319A (en) | Dry etching | |
JP3388654B2 (en) | Vacuum processing method and equipment | |
JPH0786170A (en) | Single wafer hot wall processing system and cleaning method therefor | |
JPH04111982A (en) | Diffusion joining method | |
JPH11336662A (en) | Vacuum vessel and method for evacuating therefrom | |
JPS6179230A (en) | Method for processing semiconductor substrate | |
JPS6175528A (en) | Si surface processing by irradiation of multiple laser beam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |