JPH04156929A - Gas/liquid mixer - Google Patents

Gas/liquid mixer

Info

Publication number
JPH04156929A
JPH04156929A JP28066590A JP28066590A JPH04156929A JP H04156929 A JPH04156929 A JP H04156929A JP 28066590 A JP28066590 A JP 28066590A JP 28066590 A JP28066590 A JP 28066590A JP H04156929 A JPH04156929 A JP H04156929A
Authority
JP
Japan
Prior art keywords
gas
membrane
water
permeable membrane
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28066590A
Other languages
Japanese (ja)
Inventor
Kazuhiko Nishimura
和彦 西村
Kazuo Imai
和雄 今井
Hiroyuki Yamamura
山村 弘之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP28066590A priority Critical patent/JPH04156929A/en
Priority to US07/660,443 priority patent/US5154832A/en
Priority to DE1991615532 priority patent/DE69115532T2/en
Priority to EP19910102847 priority patent/EP0448973B1/en
Priority to KR1019910003214A priority patent/KR0161292B1/en
Publication of JPH04156929A publication Critical patent/JPH04156929A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain gas/liquid mixing with a small-sized and light weight device by flowing supplying water into one side of a membrane of an element of the hydrophobic gas permeable membrane and flowing an objective gas for mixing into opposite side of this membrane, and mixing into the supplied water after permeated the membrane. CONSTITUTION:By flowing supplying water 1 into one side of the membrane of the element of the hydrophobic gas permeable membrane 4 and flowing the opposing gas (e.g. oxygen, carbon dioxide) into the opposite side of this membrane, and gas is allowed to permeate into the membrane and mixed into supplying water. Consequently, gas/liquid mixing by a small-sized and light weight device is attained. Also, a mixed concentration of gas/liquid is simply and easily adjusted and additionally complete gas/liquid mixing eve in the case of a condition of using low pressure water is easily attained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、配管内の供給水中に任意の気体を注入、均一
混合させるための気液混合装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a gas-liquid mixing device for injecting any gas into supplied water in a pipe and uniformly mixing the gas.

[従来の技術] 一般に水中には酸素、窒素、二酸化炭素、などの気体が
溶存しており、その溶存量も温度や水質などの条件によ
って異なっている。これらの気体の溶存量は数ppm〜
数十ppmと微量であり、通常の工業用水や飲料水とし
て使用する場合は、特に不都合も無いのが普通である。
[Prior Art] Generally, gases such as oxygen, nitrogen, and carbon dioxide are dissolved in water, and the dissolved amount also varies depending on conditions such as temperature and water quality. The dissolved amount of these gases is several ppm~
The amount is as small as several tens of ppm, and when used as ordinary industrial water or drinking water, there is usually no particular inconvenience.

しかし、例えば、プロセス水の排水などでは、水中の酸
素含有量が小さくなり、新たにばっ気処理などにより酸
素を吹き込み溶存酸素濃度を上げる試みがなされている
。また、生物処理関係の分野では、積極的に酸素を添加
することも必要な場合がある。その他、食品工業での清
涼飲料水製造プロセスなどにおいては、供給水中に、新
たに炭酸ガスなどの混合を目的とするガスを大量に混合
させてやる必要があり、各種の方法により工業的に実施
されてきた。一般に酸素や二酸化炭素などのガスを液中
に注気混合する手段としては、流水配管中への直接注入
法や、静止型ミキサーなどを用いて混合させる手段が一
般的であった。
However, for example, when draining process water, the oxygen content in the water becomes small, and attempts are being made to increase the dissolved oxygen concentration by blowing oxygen into the water through aeration treatment. Furthermore, in fields related to biological treatment, it may be necessary to actively add oxygen. In addition, in processes such as the production of soft drinks in the food industry, it is necessary to add a large amount of gas such as carbon dioxide to the supplied water, which can be carried out industrially using various methods. It has been. In general, methods for injecting and mixing gases such as oxygen and carbon dioxide into liquids have generally included direct injection into flowing water piping, mixing using a static mixer, and the like.

[発明が解決しようとする課題] 処理水中に炭酸ガスを混合させる手段として一般的であ
る、流水配管中への直接注入法や、静止型ミキサーなど
を用いて混合させる手段についても、用途によって解決
すべき課題が存在している。
[Problems to be solved by the invention] Common methods for mixing carbon dioxide gas in treated water, such as direct injection into flowing water pipes and methods for mixing using a static mixer, etc., can be solved depending on the application. There are issues that need to be addressed.

流水配管中へガスを直接混合する場合は、逆止弁などを
介して単に流水圧力よりも高い圧力でカスを吹き込むだ
けであるため、液ガスの均一混合のためには滞留タンク
の設置や配管長さの延長など十分な滞留時間の確保か必
要であった。一般にスタティックミキサーなどと呼ばれ
ている静止型ミキサーを用いた気液混合の手段はよく用
いられている方法であるが、効率のよい気液混合を行う
ためには静止型ミキサーの入り口と出口間に所定の差圧
をつける必要かあるために液体圧力がある程度以上必要
であること、また、飽和状態のガス混合液が欲しい場合
でも、注入量が少なすぎたり多すぎたりする場合があり
、調整が難しいという問題点や改善課題があり、改善が
望まれている。
When directly mixing gas into flowing water piping, the waste is simply blown in at a pressure higher than the flowing water pressure through a check valve, etc., so it is necessary to install a retention tank and piping in order to uniformly mix the liquid gas. It was necessary to ensure sufficient residence time by increasing the length. Gas-liquid mixing using a stationary mixer, generally called a static mixer, is a commonly used method, but in order to achieve efficient gas-liquid mixing, it is necessary to The liquid pressure must be above a certain level because it is necessary to apply a predetermined differential pressure to There are problems and issues that need to be improved, and improvements are desired.

[課題を解決するための手段] 本発明の課題は、疎水性ガス透過膜エレメントの膜の片
面に供給水を流し、核層の反対面に混合を目的とするカ
スを流すことにより、カスを膜透過させて供給水中に混
合させることを特徴とする気液混合装置とすることで基
本的に達成される。
[Means for Solving the Problems] An object of the present invention is to flow the feed water onto one side of the membrane of a hydrophobic gas permeable membrane element, and to flow the scum for mixing onto the opposite side of the core layer, thereby removing the scum. This is basically achieved by using a gas-liquid mixing device that is characterized by passing through a membrane and mixing it into the supplied water.

本発明の気液混合装置の基本的な構成は、図1に示すと
おりである。供給水1は送液ポンプ2または供給水自身
の持っている圧力で疎水性カス透過膜エトメント4へ送
られる。疎水性ガス透過膜エレメントの詳細構造は後述
のとおりであるか、この疎水性ガス透過膜エレメントは
膜表面側の空間と裏面側の空間が接着剤等の壁なとて区
別されており、膜の表面または裏面に供給された供給水
が反対側に流れ込むことはない。一つのエレメントに内
臓されている疎水性カス透過膜の膜面積は大きく、膜の
表面側または裏面側に供給水を流しながら膜の反対面に
ガスを流すことで、ガスは気液平衡に応して疎水性ガス
透過膜面を通過し、供給液中に混合される。この様に、
疎水性ガス透過膜エレメント4に供給水および混合ガス
5を流すことで、気液混合水3が得られる。この時、膜
エレメント出の気液混合水の一部をバイパスライン7等
で疎水性ガス透過膜エレメントの上流部に環流させるこ
とにより、該膜エレメントの上流の供給液中の目的ガス
の溶存量を高めたりしてガスの注気効率を上昇させるこ
とも可能である。また、ガスの液中への溶存量を調整す
るために、熱交換器などで温度調整をすることもできる
。疎水性ガス透過膜エレメントの本数はとくに限定しな
い。
The basic configuration of the gas-liquid mixing device of the present invention is as shown in FIG. The feed water 1 is sent to the hydrophobic scum-permeable membrane element 4 using the liquid feed pump 2 or the pressure of the feed water itself. The detailed structure of the hydrophobic gas permeable membrane element is as described below.The hydrophobic gas permeable membrane element has a space on the front side of the membrane and a space on the back side that are separated by walls such as adhesive. Supply water supplied to the front or back side will not flow to the opposite side. The membrane area of the hydrophobic gas-permeable membrane built into one element is large, and by flowing supply water to the front or back side of the membrane and flowing gas to the opposite side of the membrane, the gas responds to vapor-liquid equilibrium. The gas passes through the hydrophobic gas permeable membrane surface and is mixed into the feed liquid. Like this,
Gas-liquid mixed water 3 is obtained by flowing supply water and mixed gas 5 through hydrophobic gas permeable membrane element 4 . At this time, by circulating a part of the gas-liquid mixed water coming out of the membrane element to the upstream part of the hydrophobic gas permeable membrane element through the bypass line 7 etc., the amount of target gas dissolved in the feed liquid upstream of the membrane element is It is also possible to increase the gas injection efficiency by increasing the. Further, in order to adjust the amount of gas dissolved in the liquid, the temperature can be adjusted using a heat exchanger or the like. The number of hydrophobic gas permeable membrane elements is not particularly limited.

本発明に記載の疎水性ガス透過膜エレメントとしては、
その種類構造を特に限定しないが、好ましくは図2.3
.4に記載する構造が望ましい。また、本数については
1本でも良く、複数本を連結させて使用しても良い。エ
レメントを複数本連結して使用すると注気効率は一般に
向上するが、連結の方法は特に限定しない。
The hydrophobic gas permeable membrane element according to the present invention includes:
The type structure is not particularly limited, but preferably Fig. 2.3
.. The structure described in 4 is desirable. Further, the number of the wires may be one, or a plurality of wires may be connected and used. Although the air injection efficiency is generally improved when a plurality of elements are connected together, the method of connection is not particularly limited.

図2は、−船釣なスパイラル型エレメントと呼ばれる構
造の疎水性ガス透過膜エレメントの展開図である。これ
は表面に複数の孔を有する中空状の中心管15の周囲に
封筒状の疎水性ガス透過膜19、透過側流路材20、供
給側流路材18を一組とする構造を成している。このエ
レメントを目的ガスの混合注気用途に使用する時は、封
筒状の疎水性カス透過膜19の外側に供給水21が供給
され、片端を盲にした中心管の開放端部を目的カス供給
源に接続して封筒状の疎水性ガス透過膜の内部領域を目
的ガスで満たし、疎水性ガス透過膜の表裏間の圧力差に
よるガス透過により被処理原液中にガスが注気混合され
る。また、中心管の盲端については、運転の初期に、予
め存在している空気を追い出すためのベントとして一時
的に開放することもでき、また運転時にもガスを漏らし
ながら運転しても良い。
FIG. 2 is a developed view of a hydrophobic gas permeable membrane element having a structure called a spiral type element. This has a structure in which an envelope-shaped hydrophobic gas permeable membrane 19, a channel material 20 on the permeation side, and a channel material 18 on the supply side are set around a hollow central tube 15 having a plurality of holes on the surface. ing. When this element is used for mixing and injecting a target gas, the supply water 21 is supplied to the outside of the envelope-shaped hydrophobic waste-permeable membrane 19, and the open end of the central tube with one end blind is used to supply the target waste. The internal region of the envelope-shaped hydrophobic gas permeable membrane is filled with the target gas by connecting to the source, and the gas is injected and mixed into the raw solution to be treated by gas permeation due to the pressure difference between the front and back sides of the hydrophobic gas permeable membrane. Further, the blind end of the central tube can be temporarily opened as a vent to expel pre-existing air at the beginning of operation, or the operation may be performed while leaking gas.

図3は、特殊形状のスパイラル型疎水性ガス透過膜エレ
メントである。これは図2に示すスパイラル型エレメン
トと若干構造が異なり、両端が解放された中心管15′
内部に仕切り26が設けられ、かつ、封筒状疎水性ガス
透過膜19の裏面すなわち透過側流路材20の透過側流
路の特定箇所に透過側流体(ガス)の流れ方向を特定さ
せるための仕切り壁25が設けられている。図3のエレ
メントは、封筒上の疎水性ガス透過膜19の外側に被処
理原液が供給され、片端を盲にした中心管の開放端部を
目的ガス供給源に接続して封筒状の疎水性ガス透過膜の
内部領域を目的ガスで満たし、疎水性ガス透過膜の表裏
間の圧力差によるガス拡散透過により被処理原液中に目
的とするガスが注気混合される。また、中心管の盲端に
ついては、運転の初期に、予め存在している空気を追い
出すためのベントとして一時的に開放することもでき、
また運転時にもガスを漏らしながら運転しても良い。図
3のエレメントは図2のエレメントと比較して、ガスの
流れが一方向に決められるので、初期の残存空気を追い
出す効率が良い。
FIG. 3 shows a specially shaped spiral-type hydrophobic gas permeable membrane element. This has a slightly different structure from the spiral type element shown in Figure 2, with a central tube 15' open at both ends.
A partition 26 is provided inside, and a partition 26 is provided on the back surface of the envelope-shaped hydrophobic gas permeable membrane 19, that is, a specific location of the permeate side channel of the permeate side channel material 20, for specifying the flow direction of the permeate side fluid (gas). A partition wall 25 is provided. In the element shown in FIG. 3, the raw solution to be treated is supplied to the outside of the hydrophobic gas permeable membrane 19 on the envelope, and the open end of the central tube with one end blind is connected to the target gas supply source. The internal region of the gas permeable membrane is filled with a target gas, and the target gas is injected into the stock solution to be treated and mixed by gas diffusion permeation due to the pressure difference between the front and back sides of the hydrophobic gas permeable membrane. In addition, the blind end of the center tube can be temporarily opened as a vent to expel pre-existing air at the beginning of operation.
Furthermore, the device may be operated while leaking gas. Compared to the element shown in FIG. 2, the element shown in FIG. 3 allows the gas flow to flow in one direction, so that it is more efficient in expelling residual air initially.

図4は中空糸膜エレメントと呼ばれる構造の疎水性ガス
透過膜エレメントである。これは、多数の中空糸状の疎
水性ガス透過膜31の両端を接着剤で固めた後切断して
得られる中空糸膜接着部28を両端に有し、容器30に
収納した構造である。
FIG. 4 shows a hydrophobic gas permeable membrane element having a structure called a hollow fiber membrane element. This has a structure in which both ends of a large number of hollow fiber-shaped hydrophobic gas permeable membranes 31 are hardened with an adhesive and then cut to have hollow fiber membrane adhesion parts 28 at both ends, which are housed in a container 30.

ガスの注気においては、供給水を中空糸膜の内部に流し
たまま容器ノズル32より目的とするガスを注気するこ
とでガス混合水が得られる。この時は中空糸膜の内部側
が液相部であり中空糸膜の外部側か気相部になるが、こ
れと反対に中空糸膜の外部側に液体を流し、中空糸膜の
内部を気相部としてガスを流しても良い。
In gas injection, gas-mixed water is obtained by injecting the target gas from the container nozzle 32 while supply water is flowing inside the hollow fiber membrane. At this time, the inside of the hollow fiber membrane is the liquid phase, and the outside of the hollow fiber membrane is the gas phase, but on the other hand, by flowing the liquid to the outside of the hollow fiber membrane, the inside of the hollow fiber membrane becomes the gas phase. Gas may be passed as a phase part.

本発明に記載の疎水性ガス透過膜エレメントに用いる疎
水性ガス透過膜としては特に限定しないが、平膜または
中空糸膜形状のガス透過機能を有する高分子膜であれば
よく、好ましくはシリコーン系、弗素系、ポレオレフィ
ン系などが良い。また、好ましくは、ガス除去およびガ
ス注気の効率が良く、大容量の原液の処理に適当である
ことを考慮し、シリコーン系平膜形式のガス透過膜が望
ましく、エレメントとしては、スパイラル型エレメント
が適当である。
The hydrophobic gas permeable membrane used in the hydrophobic gas permeable membrane element according to the present invention is not particularly limited, but may be any polymer membrane having a gas permeation function in the form of a flat membrane or hollow fiber membrane, preferably a silicone-based membrane. , fluorine-based, polyolefin-based, etc. are preferable. Also, preferably, a silicone flat membrane type gas permeable membrane is preferable, considering that it has good gas removal and gas injection efficiency and is suitable for processing large volumes of raw solutions, and the element is a spiral type element. is appropriate.

本発明に記載の注気を目的とするガスについてもとくに
限定しないが、酸素、二酸化炭素が最も好ましい。
The gas for the purpose of aeration described in the present invention is not particularly limited, but oxygen and carbon dioxide are most preferred.

本発明に記載のガス透過膜を用いた気液混合方法は、従
来の直接注入法や静止型混合器による気液混合方法と異
なり、気液間の平衡関係を利用して気液混合を行うもの
であるため、飽和状態以上のガスを混入することが無く
、常に混合後も液体中に溶解不足の気泡が見られること
が無い。また、該膜エレメントの入り口と出口間の圧力
損失もほとんど無いので、供給水の水圧が低くても、問
題なく均一混合が可能となる。また、供給液圧力、ガス
圧力、ガス流量、液温度、などの条件を調節することに
より、ガス混合水中のガス濃度を任意に、かつ簡単な操
作でコントロールすることが可能となる。
The gas-liquid mixing method using the gas-permeable membrane described in the present invention is different from the conventional direct injection method or the gas-liquid mixing method using a static mixer, in that the gas-liquid mixing method utilizes the equilibrium relationship between gas and liquid. Because it is a liquid, there is no possibility of mixing gas in excess of the saturated state, and no insufficiently dissolved air bubbles are always found in the liquid even after mixing. Further, since there is almost no pressure loss between the inlet and outlet of the membrane element, uniform mixing is possible without any problem even if the water pressure of the supplied water is low. Further, by adjusting conditions such as supply liquid pressure, gas pressure, gas flow rate, and liquid temperature, it becomes possible to control the gas concentration in the gas mixed water arbitrarily and with simple operations.

[実施例1] ポリエステルタフタ/ポリスルホンからなる支持材上に
シリコーン薄膜を形成させた疎水性ガス透過膜を、ポリ
プロピレン平折りネット状織物がらなり、図3に示すよ
うに接着剤による仕切り壁のある透過側流路材と、ポリ
プロピレン製ネットからなる供給側流路材とともに、中
央部に盲栓を有する硬質塩ビ製多孔質中心管の回りに巻
回し、膜面積8trr、膜封筒数5組のスパイラル型疎
水性ガス透過膜エレメントを2木製作し、図1に示すガ
ス混合水製造装置を製作した。
[Example 1] A hydrophobic gas permeable membrane in which a silicone thin film was formed on a support material made of polyester taffeta/polysulfone was made of a polypropylene flat-folded net-like fabric and had partition walls made of adhesive as shown in Fig. 3. The permeation side channel material and the supply side channel material made of polypropylene net are wound around a hard PVC porous central tube with a blind plug in the center, and the membrane area is 8 trr and the number of membrane envelopes is 5 sets in a spiral. Two types of hydrophobic gas permeable membrane elements were manufactured, and the gas mixed water production apparatus shown in FIG. 1 was manufactured.

この装置に温度2℃の超純水を流量0.757on/h
で供給し、上記疎水性ガス透過膜エレメント2本からな
る疎水性ガス透過膜ユニットに流し、膜の裏面から注気
ガスとして炭酸ガスを1.5 kg/cm2の圧力で供
給した。この状態で、装置出口の溶存炭酸ガス濃度を測
定したところ、炭酸ガス濃度は0.40wj%であった
。ただし、バイパスライン7の入りロバルブは閉とし、
気液混合水は疎水ガス透過膜エレメントの上流部分には
環流させていない。
Ultrapure water at a temperature of 2°C is supplied to this device at a flow rate of 0.757 on/h.
The membrane was supplied with a gas permeable gas and flowed through a hydrophobic gas permeable membrane unit consisting of two hydrophobic gas permeable membrane elements, and carbon dioxide gas was supplied as an inlet gas from the back side of the membrane at a pressure of 1.5 kg/cm2. In this state, the dissolved carbon dioxide concentration at the outlet of the apparatus was measured, and the carbon dioxide concentration was 0.40 wj%. However, the entry valve of bypass line 7 shall be closed.
The gas-liquid mixed water is not circulated to the upstream portion of the hydrophobic gas-permeable membrane element.

[実施例2] 実施例1に記載したものと同一の疎水性ガス透過膜エレ
メント2本を製作し、これを用いてrI!J1に示すガ
ス混合水製造装置を製作した。
[Example 2] Two hydrophobic gas permeable membrane elements identical to those described in Example 1 were manufactured and used to conduct rI! A gas mixed water production device shown in J1 was manufactured.

この装置に溶存酸素濃度1.2ppm、温度25℃、東
し5U−610ROエレメントでSS成分を除去した実
験排水を1.01on/hの流量で供給した。
Experimental wastewater with a dissolved oxygen concentration of 1.2 ppm, a temperature of 25° C., and from which SS components were removed using a 5U-610RO element was supplied to this device at a flow rate of 1.01 on/h.

混合ガスとして酸素ボンベより純酸素を2.0kg/c
m2.Gの圧力で供給し、気液混合処理を行った。
2.0kg/c of pure oxygen from an oxygen cylinder as a mixed gas
m2. The gas was supplied at a pressure of G and a gas-liquid mixing process was performed.

この結果、処理後の溶存酸素濃度は、8.2ppmとな
り、注気の効果が確認できた。
As a result, the dissolved oxygen concentration after treatment was 8.2 ppm, confirming the effect of aeration.

[効果コ 本発明により、小型軽量な装置による気液混合が可能と
なる。また、気液の混合濃度を簡単に調整することが容
易である上、処理水圧力の低い条件についても十分な気
液混合が容易に可能となる。
[Effects] The present invention enables gas-liquid mixing using a small and lightweight device. In addition, it is easy to easily adjust the gas-liquid mixture concentration, and sufficient gas-liquid mixing is easily possible even under conditions where the treated water pressure is low.

【図面の簡単な説明】[Brief explanation of drawings]

図1は本発明の気液混合装置の基本的なフローの一例を
示す説明図である。図2は、本発明の気液混合装置に使
用することができる疎水性ガス透過膜エレメントの構造
を説明するために巻きほぐしたところを示す一部断面外
観図である。図3は、本発明の気液混合装置に使用する
ことができる別の疎水性ガス透過膜エレメントの構造を
説明するために巻きほぐしたところを示す一部断面外観
図である。図4は、本発明の気液混合装置に使用するこ
とができる別の疎水性ガス透過膜エレメントの構造を示
す断面図である。 図中の記号は以下の通りである。 1−:供給水 2 ポンプ 3 気液混合水(処理水) 4:疎水性カス透過膜エレメント 5:混合を目的とするカス供給口 6:ベント 7:バイパスライン 8:フィルター 15.15−:中心管 16:接着シール部分 17°ガス流路 18、供給側流路材 19:疎水性ガス透過膜 20:透過側流路材 21、供給水入り口 22:処理水(注気水)出口 23、処理水(注気水)出口 24、中心パイプ開放端 25:ガス側流路材仕切り 26:中心パイプ仕切り壁 27:供給水 28:中空糸膜接着部 29:中空糸膜開穴部 30、容器 31:中空糸膜 32:容器ノズル 33:処理水出口
FIG. 1 is an explanatory diagram showing an example of the basic flow of the gas-liquid mixing device of the present invention. FIG. 2 is a partial cross-sectional external view of a hydrophobic gas permeable membrane element unrolled to explain the structure of the hydrophobic gas permeable membrane element that can be used in the gas-liquid mixing device of the present invention. FIG. 3 is a partial cross-sectional external view of another hydrophobic gas permeable membrane element unrolled to explain the structure of another hydrophobic gas permeable membrane element that can be used in the gas-liquid mixing device of the present invention. FIG. 4 is a sectional view showing the structure of another hydrophobic gas permeable membrane element that can be used in the gas-liquid mixing device of the present invention. The symbols in the figure are as follows. 1-: Supply water 2 Pump 3 Gas-liquid mixed water (treated water) 4: Hydrophobic waste permeable membrane element 5: Waste supply port for mixing purpose 6: Vent 7: Bypass line 8: Filter 15. 15-: Center Pipe 16: Adhesive seal portion 17° Gas passage 18, Supply side passage material 19: Hydrophobic gas permeable membrane 20: Permeation side passage material 21, Supply water inlet 22: Treated water (injection water) outlet 23, Processing Water (injection water) outlet 24, center pipe open end 25: gas side channel material partition 26: center pipe partition wall 27: supply water 28: hollow fiber membrane adhesion section 29: hollow fiber membrane hole section 30, container 31 : Hollow fiber membrane 32 : Container nozzle 33 : Treated water outlet

Claims (3)

【特許請求の範囲】[Claims] (1)疎水性ガス透過膜エレメントの膜の片面に供給水
を流し、該膜の反対面に混合を目的とするガスを流すこ
とにより、ガスを膜透過させて供給水中に混合させるこ
とを特徴とする気液混合装置。
(1) Feed water is flowed on one side of the membrane of the hydrophobic gas permeable membrane element, and a gas to be mixed is flowed on the opposite side of the membrane, thereby allowing the gas to permeate through the membrane and be mixed in the feed water. A gas-liquid mixing device.
(2)疎水性ガス透過膜エレメントがスパイラル型エレ
メントであることを特徴とする請求項1に記載の気液混
合装置。
(2) The gas-liquid mixing device according to claim 1, wherein the hydrophobic gas permeable membrane element is a spiral type element.
(3)混合を目的とするガスが酸素、または二酸化炭素
であることを特徴とする請求項1に記載の気液混合装置
(3) The gas-liquid mixing device according to claim 1, wherein the gas to be mixed is oxygen or carbon dioxide.
JP28066590A 1990-02-27 1990-10-18 Gas/liquid mixer Pending JPH04156929A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP28066590A JPH04156929A (en) 1990-10-18 1990-10-18 Gas/liquid mixer
US07/660,443 US5154832A (en) 1990-02-27 1991-02-26 Spiral wound gas permeable membrane module and apparatus and method for using the same
DE1991615532 DE69115532T2 (en) 1990-02-27 1991-02-26 Gas permeable spiral wound membrane module, device and method for its use
EP19910102847 EP0448973B1 (en) 1990-02-27 1991-02-26 Spiral wound gas permeable membrane module and apparatus and method for using the same
KR1019910003214A KR0161292B1 (en) 1990-02-27 1991-02-27 Spiral wound gas permeable membrane module and apparatus and method for using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28066590A JPH04156929A (en) 1990-10-18 1990-10-18 Gas/liquid mixer

Publications (1)

Publication Number Publication Date
JPH04156929A true JPH04156929A (en) 1992-05-29

Family

ID=17628230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28066590A Pending JPH04156929A (en) 1990-02-27 1990-10-18 Gas/liquid mixer

Country Status (1)

Country Link
JP (1) JPH04156929A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07779A (en) * 1993-02-04 1995-01-06 Mitsubishi Rayon Co Ltd Method and device for dissolving gaseous carbon dioxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07779A (en) * 1993-02-04 1995-01-06 Mitsubishi Rayon Co Ltd Method and device for dissolving gaseous carbon dioxide

Similar Documents

Publication Publication Date Title
US6402818B1 (en) Degassing a liquid with a membrane contactor
US7279215B2 (en) Membrane modules and integrated membrane cassettes
US5254143A (en) Diaphragm for gas-liquid contact, gas-liquid contact apparatus and process for producing liquid containing gas dissolved therein
US4883594A (en) Flooded biological film reactor for water treatment, with gas charging via a membrane
KR0161292B1 (en) Spiral wound gas permeable membrane module and apparatus and method for using the same
US7537200B2 (en) Controlled atmosphere gas infusion
JP2008221070A (en) Gas-liquid contacting device and gas-liquid contacting method
KR101006869B1 (en) Apparatus for producing carbonated water having optimized abstracting system of carbonated water using membrane
Vladisavljević Use of polysulfone hollow fibers for bubbleless membrane oxygenation/deoxygenation of water
EP0470377A2 (en) Diaphragm for gas-liquid contact, gas-liquid contact apparatus and process for producing liquid containing gas dissolved therein
JP2725312B2 (en) Porous hollow fiber membrane type gas-liquid contactor
JPH0889771A (en) Gas dissolver and gas dissolving method
JPH04156929A (en) Gas/liquid mixer
JP2021133349A (en) Waste water treatment apparatus and waste water treatment method
JPH03249907A (en) Spiral type deaerating element and method for using this element
JP2722108B2 (en) Sewage treatment equipment with hollow fiber membrane bundle
JPH10309445A (en) Spiral type film module
JPH07779A (en) Method and device for dissolving gaseous carbon dioxide
JPH02229590A (en) Water treatment
JPH11197469A (en) Spiral membrane module
JPH04156927A (en) Production of gas-mixed water
JPH0568996A (en) Generation of dissolved gas and sewage treatment apparatus using dissolved gas
JPH10277370A (en) Spiral type membrane module
JP2691445B2 (en) Setting method of hollow fiber membrane for sewage treatment
JPH1177044A (en) Wastewater treatment apparatus