JPH03249907A - Spiral type deaerating element and method for using this element - Google Patents

Spiral type deaerating element and method for using this element

Info

Publication number
JPH03249907A
JPH03249907A JP4875790A JP4875790A JPH03249907A JP H03249907 A JPH03249907 A JP H03249907A JP 4875790 A JP4875790 A JP 4875790A JP 4875790 A JP4875790 A JP 4875790A JP H03249907 A JPH03249907 A JP H03249907A
Authority
JP
Japan
Prior art keywords
membrane
spiral
water
gas
central tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4875790A
Other languages
Japanese (ja)
Other versions
JPH0714445B2 (en
Inventor
Hiroyuki Yamamura
山村 弘之
Hiroyuki Ikada
洋行 筏
Masao Toyoda
豊田 征男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2048757A priority Critical patent/JPH0714445B2/en
Priority to EP19910102847 priority patent/EP0448973B1/en
Priority to US07/660,443 priority patent/US5154832A/en
Priority to DE1991615532 priority patent/DE69115532T2/en
Priority to KR1019910003214A priority patent/KR0161292B1/en
Publication of JPH03249907A publication Critical patent/JPH03249907A/en
Publication of JPH0714445B2 publication Critical patent/JPH0714445B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make improvement in the deaeration performance of the dissolved gas in water in the above element by providing a partition in a central pipe and providing a partition wall for specifying the flow direction of permeated fluid at the specific point of a transmissible side flow passage. CONSTITUTION:A single set or plural sets of the units, one set of which consists of an envelop-shaped hydrophobic gas transmissible membrane 5, a transmissible side flow passage material 6 and a supply liquid flow passage material 4, are wound around the hollow central pipe 1 having holes on the surface. The partition 8 is provided in the central pipe 1 and the partition wall 9 for specifying the flow direction of the permeated fluid is provided at the specific point of the transmissible side flow passage. Consequently, the improvement in the deaeration performance of the dissolved gas in the water of the spiral type deaeration membrane element is made. This element is particularly highly effective for removing the dissolved oxygen and carbon dioxide in water.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、水中の溶存気体を除去するための疎水性ガス
透過膜を用いたスパイラル型脱気エレメントおよびその
使用方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a spiral degassing element using a hydrophobic gas permeable membrane for removing dissolved gas in water and a method of using the same.

[従来の技術] 一般に水中には酸素、窒素、二酸化炭素などの気体が溶
存しており、平衡状態に達している場合などは時間がた
っても無くなることがないのが普通であるか、水処理に
おいて、これらの溶存気体が悪影響を及ぼす場合も少な
くはない。例えば、水の循環ラインにおいては水中の溶
存酸素が配管の接液内面の腐蝕を促進する場合があり、
また超純水の製造ラインにおいては溶存二酸化炭素が超
純水水質を低下させる原因になり、場合に応じて薬品添
加や真空方式などによる脱気処理が行なわれている。し
かし、従来法である薬品処理による脱気は、薬品コスト
の問題、残存成分の問題などがあり、真空脱気にしても
装置および運転コスト面での制約があり、広い意味での
実用化に適した方法とは言い難かった。
[Prior art] Generally, gases such as oxygen, nitrogen, and carbon dioxide are dissolved in water, and when an equilibrium state is reached, it is normal that they do not disappear over time, or water treatment In many cases, these dissolved gases have an adverse effect. For example, in water circulation lines, dissolved oxygen in the water may accelerate corrosion of the inner surface of the piping in contact with liquid.
Furthermore, in ultrapure water production lines, dissolved carbon dioxide causes deterioration of the quality of ultrapure water, and depending on the situation, degassing treatment is performed by adding chemicals or using a vacuum method. However, the conventional method of deaeration using chemical treatment has problems such as chemical costs and residual components, and even vacuum deaeration has limitations in terms of equipment and operating costs, making it difficult to put it into practical use in a broad sense. It was hard to say that it was a suitable method.

これらの方法の他に、最近ガス透過機能を有する疎水性
膜を用いて水中の溶存気体を除去するという脱気方法が
実用化されている。この方法は、シリコーンなどを素材
とする、ガス透過機能を有し、かつ水を通さない性質を
持った膜の表面または裏面に被処理液を流し、反対面を
減圧状態にすることにより、被処理液中の溶存気体のみ
を膜透過除去し、脱気するというものである。この方法
は、それまでの薬品添加法に見られた薬品残存物のよう
な問題も無く、真空脱気法等と比較しても装置が簡単と
なり運転コストも小さくなるという長所が認められてい
る。
In addition to these methods, a deaeration method has recently been put into practical use in which dissolved gases in water are removed using a hydrophobic membrane having a gas permeation function. In this method, the liquid to be treated is poured onto the front or back side of a membrane made of silicone or the like that has gas permeability and water impermeability, and the opposite side is brought into a reduced pressure state. Only the dissolved gas in the treatment liquid is removed through the membrane and degassed. This method does not have the problems of chemical residue that were seen with previous chemical addition methods, and compared to vacuum degassing methods, it has been recognized as having the advantage of simpler equipment and lower operating costs. .

[発明が解決しようとする課題] 疎水性のガス透過膜を用いての脱気装置では、膜は通常
スパイラルモジュールという形式にユニット化され用い
られている。従来用いられている一般的なスパイラルモ
ジュールは、図6に示すように、表面に複数の孔を有す
る中空状の中心管1の周囲に封筒状の疎水性ガス透過膜
5、透過側流路材6、供給液流路材4を一組とするユニ
ットの単組または複組を巻き付けてなる構造をなしてお
り、封筒状の疎水性ガス透過膜5の外側に被処理原液7
が供給され、片端を盲にした中心管の開放端部1−を減
圧源に接続して封筒状の疎水性ガス透過膜の内部の透過
側領域を減圧し、疎水性ガス透過膜の表裏間に圧力差を
与えることにより、被処理原液中の溶存気体が膜の表面
から裏面に透過し、透過側流路内部から中心管方向へ移
動し、被処理原液中の溶存気体の除去が行なわれる。
[Problems to be Solved by the Invention] In a deaerator using a hydrophobic gas-permeable membrane, the membrane is usually unitized into a spiral module. As shown in FIG. 6, a conventionally used general spiral module includes a hollow central tube 1 having a plurality of holes on its surface, an envelope-shaped hydrophobic gas permeable membrane 5, and a channel material on the permeate side. 6. It has a structure in which a single set or multiple sets of units including the supply liquid channel material 4 are wrapped around each other, and the raw liquid to be treated 7 is wrapped around the envelope-shaped hydrophobic gas permeable membrane 5.
is supplied, and the open end 1- of the central tube with one end blind is connected to a pressure reduction source to reduce the pressure in the permeation side region inside the envelope-shaped hydrophobic gas permeable membrane, and to reduce the pressure between the front and back sides of the hydrophobic gas permeable membrane. By applying a pressure difference to the undiluted solution, the dissolved gas in the undiluted solution to be treated permeates from the surface to the back side of the membrane, moves from inside the permeation side channel toward the central tube, and removes the dissolved gas in the undiluted solution to be treated. .

しかしながら、膜による脱気能力は、膜の固有のガス透
過能力もさることながら、膜表裏間のガス分圧の差に大
きく支配されるため、エレメント1本の脱気能力を向上
させるためには、膜の透過側の真空度を高めることによ
り透過側のガス分圧を小さくするか、膜表面すなわち脱
気膜エレメントへ供給する被処理原液の供給圧力を高め
ることが必要となっている。しかし、真空度、供給圧力
ともに、実用性を考慮すると限度があり、今−歩の脱気
性能の向上は困難となっている。
However, the degassing ability of a membrane is largely controlled by the difference in gas partial pressure between the front and back surfaces of the membrane, as well as the membrane's inherent gas permeability. Therefore, in order to improve the degassing ability of a single element, It is necessary to reduce the gas partial pressure on the permeate side by increasing the degree of vacuum on the permeate side of the membrane, or to increase the supply pressure of the stock solution to be treated to be supplied to the membrane surface, that is, the degassing membrane element. However, both the degree of vacuum and the supply pressure have limits in view of practicality, making it difficult to improve the degassing performance at present.

[課題を解決するための手段] 本発明の課題は、表面に孔を有する中空状の中心管の周
囲に封筒状の疎水性ガス透過膜、透過側流路材、供給液
流路材を一組とするユニットの単組または複組を巻き付
けてなる、水中の溶存気体を除去するためのスパイラル
型脱気エレメントにおいて、中心管内部に仕切りを設け
、がっ、透過側流路の特定箇所に透過流体の流れ方向を
特定させるための仕切り壁を設けることを特徴とするス
パイラル型脱気エレメントとすることにより基本的に達
成される。
[Means for Solving the Problems] An object of the present invention is to provide an envelope-shaped hydrophobic gas permeable membrane, a permeation side channel material, and a feed liquid channel material around a hollow central tube having holes on the surface. In a spiral type deaeration element for removing dissolved gas in water, which is made by winding a single or multiple sets of units, a partition is provided inside the central pipe, and This is basically achieved by using a spiral type degassing element characterized by providing a partition wall for specifying the flow direction of the permeate fluid.

本発明のスパイラル型脱気エレメントの構造の基本的な
例は図1および図2に示すとおり、従来のスパイラルエ
レメントと異なり、中心管内部に仕切り8が設けられ、
かつ、封筒状疎水性ガス透過膜5の裏面すなわち透過側
流路材6側の透過側流路の特定箇所に透過流体の流れ方
向を特定させるための仕切り壁9が設けられている二従
来のスパイラルエレメントは、図2に示す仕切り8およ
び仕切り壁9がなく、透過側流路内の透過ガスは徐々に
中心管1の方向に移動するが、透過側流路には膜面を通
して以外の流体の流入は無く、均一に一定の真空度に減
圧され、脱気対象ガスの分圧も一定に保たれている。脱
気性能を向上させるにはこの透過側の脱気対象ガスの分
圧をできるだけ小さくすることが望まれるが、本発明で
は図2に示すとおり、中心管片端から、透過側流路内に
キャリアガスを流すことが可能であり、このキャリアガ
スにより膜裏面の脱気対象ガスを追い出し、該ガスの分
圧を限りなくゼロに近づけることができる結果、脱気性
能を大幅に向上させることが可能となる。すなわち、例
えば水中に含まれている酸素や炭酸ガスを脱気したい場
合は、本発明のエレメントを用いてキャリアガスとして
窒素を流すことにより膜の透過側の酸素および炭酸ガス
の分圧はほとんどゼロにすることができ、従来の脱気エ
レメントを用いた場合と比べて脱気能力は大きく向上す
る。なお、透過流路仕切り壁および中心管内部の仕切り
の無い従来のスパイラルエレメントにキャリアガスを流
しても、キャリアガスのほとんどは透過側流路の方には
流れずに中心管他端より排出されるだけであり、脱気性
能の向上はほとんど見られない。
A basic example of the structure of the spiral degassing element of the present invention is shown in FIGS. 1 and 2, and unlike conventional spiral elements, a partition 8 is provided inside the center tube,
In addition, a partition wall 9 for specifying the flow direction of the permeated fluid is provided at a specific location of the permeate side flow path on the back surface of the envelope-shaped hydrophobic gas permeable membrane 5, that is, on the side of the permeate side flow path material 6. The spiral element does not have the partition 8 and the partition wall 9 shown in FIG. 2, and the permeate gas in the permeate side flow path gradually moves toward the center tube 1, but the permeate gas in the permeate side flow path does not contain any fluid other than through the membrane surface. There is no inflow of gas, the pressure is uniformly reduced to a constant degree of vacuum, and the partial pressure of the gas to be degassed is also maintained constant. In order to improve the degassing performance, it is desirable to reduce the partial pressure of the gas to be degassed on the permeate side as much as possible, but in the present invention, as shown in Fig. 2, carriers are introduced from one end of the central tube into the flow path on the permeate side. It is possible to flow gas, and this carrier gas can drive out the gas to be degassed from the back side of the membrane, making it possible to bring the partial pressure of the gas as close to zero as possible, making it possible to significantly improve degassing performance. becomes. In other words, if you want to degas oxygen and carbon dioxide contained in water, for example, by using the element of the present invention and flowing nitrogen as a carrier gas, the partial pressure of oxygen and carbon dioxide on the permeate side of the membrane can be reduced to almost zero. The degassing capacity is greatly improved compared to the case of using a conventional degassing element. In addition, even if carrier gas is passed through a conventional spiral element without a partition wall of the permeation channel or a partition inside the center tube, most of the carrier gas will not flow toward the permeation side channel but will be discharged from the other end of the center tube. However, almost no improvement in degassing performance was observed.

本発明のスパイラル型脱気エレメントに用いる疎水性ガ
ス透過膜としては特に限定しないが、平膜形状のガス分
離機能を有する高分子膜であればよく、好ましくはシリ
コーン系、ふっ素糸、ボレオレフィン系などが良い。封
筒状を成す膜の外側に位置する供給液流路材としては特
に限定しないが、好ましくは圧力損失の小さいプラスチ
ックネット状スペーサーか好ましく、厚さは0. 3〜
2゜0■程度、材質としてはポリエチレン、ナイロン、
ポリプロピレンなどが適している。封筒状膜の内部に位
置する透過側流路材としても特に種類形状を限定しない
が、縦溝を有するポリエステル織物、ポリプロピレン製
ネット等が好ましい。
The hydrophobic gas-permeable membrane used in the spiral degassing element of the present invention is not particularly limited, but may be any flat membrane-shaped polymer membrane having a gas separation function, preferably silicone-based, fluorine thread, or boreolefin-based membranes. etc. are good. The feed liquid channel material located outside the envelope-shaped membrane is not particularly limited, but is preferably a plastic net-like spacer with a small pressure loss, and the thickness is 0. 3~
Approximately 2゜0■, materials include polyethylene, nylon,
Polypropylene is suitable. Although the type and shape of the permeation-side channel material located inside the envelope-like membrane is not particularly limited, polyester fabrics having longitudinal grooves, polypropylene nets, and the like are preferable.

本発明を構成する透過側流路の仕切り壁については、基
本的にエレメント製作か可能であり、透過側のガス流れ
をある程度遮断できるものであれば良く、材料、形状に
ついて特に限定はしないが、好ましくは、該当箇所に接
着剤を塗り硬化させることにより形成させた仕切り壁や
、シリコーンゴム、発泡プラスチックシート、ニトリル
ゴムその他の弾性高分子材料からなるシート状物を配置
または接着した構造の仕切り壁が良い。また、仕切り壁
の長さ、幅、配置場所、数等については特定せず、図3
−(a)、  (b)に示すように、目的とする用途に
より選定することができる。また、中心管内部に設ける
仕切りについても、キャリアガスの通過をある程度遮断
できうる物であれば良く、材質としては硬質塩ビ、AB
S、ナイロン、ゴム等、適宜選定することができ、接着
されているかどうかは問わない。
Regarding the partition wall of the permeation side flow path that constitutes the present invention, it is basically possible to manufacture an element, and any material that can block the gas flow on the permeation side to some extent is sufficient, and there are no particular limitations on the material or shape. Preferably, a partition wall formed by applying an adhesive to the relevant area and curing it, or a partition wall having a structure in which a sheet-like material made of silicone rubber, foamed plastic sheet, nitrile rubber, or other elastic polymer material is arranged or adhered. is good. In addition, the length, width, location, number, etc. of partition walls are not specified, and Figure 3
- As shown in (a) and (b), it can be selected depending on the intended use. In addition, the partition provided inside the center tube may be made of any material that can block the passage of carrier gas to some extent, and the material may be hard PVC, AB
S, nylon, rubber, etc. can be selected as appropriate, and it does not matter whether they are bonded or not.

透過側流路の仕切り壁については、キャリアガスが膜裏
面全体に均一に流れるように、リーフエンド部分の一部
を仕切りせずに開けておく場合が多いが、キャリアガス
が流れやすいように、図4に示すように横方向に溝を有
する流路材11などを部分的に張り付けることも差支え
ない。
Regarding the partition wall of the permeate side channel, a part of the leaf end is often left open without partitioning so that the carrier gas flows uniformly over the entire back surface of the membrane. As shown in FIG. 4, it is also possible to partially attach a channel material 11 having grooves in the lateral direction.

本発明の脱気エレメントの運転においては、エレメント
1本の比較においても従来のスパイラル型脱気エレメン
トよりも大きな脱気能力が得られるが、複数本連結する
ことにより更に脱気能力は向上する。通常、エレメント
は1本から6本ごとに同一のエレメント容器に収納され
、また、スペースの関係や更にエレメント数を増加させ
たい場合などはエレメントを1本または複数本収納した
エレメント内臓容器を複数本直列または並列に連結する
ことができる。本発明のエレメントを用いた場合は、エ
レメント内臓容器を連結し、各容器に窒素を並列または
直列に供給することができるが、直列に供給することが
好ましい。窒素の供給は、各容器ごとに窒素ガスを複数
の供給源より並列に供給することか理想的であり、−木
目の容器に供給した窒素ガスの排出ガスを2本目の容器
に、2本目の排出窒素を3本目にというように直列に供
給する場合は、順次窒素の純度が低下し、脱気効率が低
下することか考えられる。しかし、本発明者らは、鋭意
検討した結果、多少の窒素純度低下に伴い脱気効率が低
下しても、窒素量を調整することでほぼ解決でき、かつ
、窒素の並列供給の場合に比べ、脱気運転コストを大き
く低減することができ、直列方式の窒素供給方式が好ま
しいことを見出だした。窒素の供給順序は図5に示す通
り、被処理水供給の順序に基づき供給しても良く、また
、装置の形状等を考慮し、被処理水の供給順序と無関係
な順序で各容器に供給しても良い。窒素の流量は、目標
とする溶存ガス濃度により適宜決定することができるが
、好ましくは被処理水体積流量の5%から10%程度の
窒素流量(体積流量)が適当である。
In the operation of the deaeration element of the present invention, a greater deaeration capacity can be obtained compared to a conventional spiral type deaeration element even when a single element is used, but the deaeration capacity is further improved by connecting a plurality of elements. Normally, every 1 to 6 elements are stored in the same element container, but if space is a constraint or you want to increase the number of elements, multiple element containers containing one or more elements may be stored. Can be connected in series or in parallel. When using the element of the present invention, the containers incorporating the elements can be connected and nitrogen can be supplied to each container in parallel or in series, but it is preferable to supply nitrogen in series. Ideally, nitrogen should be supplied in parallel from multiple sources to each container. When exhaust nitrogen is supplied in series, such as to a third pipe, the purity of the nitrogen gradually decreases, and the degassing efficiency may decrease. However, as a result of intensive study, the present inventors found that even if the degassing efficiency decreases due to a slight decrease in nitrogen purity, it can be almost solved by adjusting the amount of nitrogen, and compared to the case of parallel supply of nitrogen. It has been found that the serial nitrogen supply system is preferable because it can greatly reduce the cost of deaeration operation. As shown in Figure 5, nitrogen may be supplied based on the order in which the water to be treated is supplied, or it may be supplied to each container in an order unrelated to the order in which the water to be treated is supplied, taking into consideration the shape of the equipment, etc. You may do so. The flow rate of nitrogen can be appropriately determined depending on the target dissolved gas concentration, but preferably a nitrogen flow rate (volume flow rate) of about 5% to 10% of the volumetric flow rate of the water to be treated is appropriate.

なお、エレメント容器内に複数本のエレメントを収納す
る場合、各エレメント内臓容器内において、各エレメン
トに窒素を並列または直列に供給することかできるが、
上記と同様に直列に供給することが好ましい。
In addition, when storing multiple elements in an element container, nitrogen can be supplied to each element in parallel or in series in each element-containing container.
It is preferable to supply them in series as above.

[実施例1] ポリエステルタフタ/ポリスルホンからなる支持材上に
シリコーン薄膜を形成させた疎水性ガス透過膜を、縦溝
を有するポリエステル織物からなる透過側流路材とポリ
プロピレン製ネットからなる供給液流路材とともに硬質
塩ビ製多孔質中心管の回りに巻回し、透過側流路中央部
に図3− (a)に示す接着剤による仕切り壁のある膜
面積8ボ、膜封筒数4組のスパイラル型脱気エレメント
を製作した。このエレメントの中心管内部の中央部に硬
質塩ビ製の盲栓を接着固定した後、これを専用の容器に
いれ、キャリアガスとして窒素を流しながら水道水の脱
気性能を測定した。水道水流量1000 L/h、真空
度85Torr、窒素流量1000cc/分、温度25
℃の運転条件において、当初8、Oppmであった被処
理原液(水道水)の溶存酸素濃度は、1.9ppmにま
で低下した。
[Example 1] A hydrophobic gas permeable membrane in which a silicone thin film was formed on a support material made of polyester taffeta/polysulfone was connected to a feed liquid stream made of a permeate channel material made of a polyester fabric having longitudinal grooves and a polypropylene net. A spiral spiral with a membrane area of 8 tubes and 4 sets of membrane envelopes is wound together with the channel material around a porous center tube made of hard PVC, and has a partition wall made of adhesive as shown in Figure 3-(a) in the center of the flow path on the permeate side. A type degassing element was manufactured. After a blind stopper made of hard PVC was adhesively fixed to the center of the central tube of this element, it was placed in a special container, and the degassing performance of tap water was measured while flowing nitrogen as a carrier gas. Tap water flow rate 1000 L/h, vacuum degree 85 Torr, nitrogen flow rate 1000 cc/min, temperature 25
Under operating conditions of .degree. C., the dissolved oxygen concentration of the raw solution to be treated (tap water), which was initially 8.0 ppm, decreased to 1.9 ppm.

次に、この脱気エレメントに一度脱気した脱気処理水(
溶存酸素濃度 1.9ppm)を通水し、上記と同じ運
転条件において脱気性能を測定したところ、溶存酸素濃
度は、0.5ppmまで低下した。
Next, the degassed water that has been degassed (
When water was passed through the tank with a dissolved oxygen concentration of 1.9 ppm and the degassing performance was measured under the same operating conditions as above, the dissolved oxygen concentration decreased to 0.5 ppm.

[比較例1] 透過側流路中央部に接着剤による仕切り壁を設けていな
いほかは、実施例1と全く同様の部材、ガス透過膜を用
いてスパイラル型脱気エレメントを製作した。これを中
心管中央部に仕切りをすること無く、専用の容器に入れ
てキャリアガスを流さずに水道水の脱気性能を測定した
。水道水流量1000 L/h、真空度35Torr、
温度25℃の運転条件において、当初8.0pprnで
あった被処理原液の溶存酸素濃度は、2.7ppmにま
で低下した。また、この運転条件のままで、キャリアガ
スとして窒素を1000cc/分で流したところ、被処
理水の溶存酸素濃度は、2.6pprnにまで低下した
[Comparative Example 1] A spiral degassing element was manufactured using the same members and gas permeable membrane as in Example 1, except that a partition wall made of adhesive was not provided at the center of the flow path on the permeate side. This was placed in a special container without a partition in the center of the center tube, and the degassing performance of tap water was measured without flowing carrier gas. Tap water flow rate 1000 L/h, vacuum degree 35 Torr,
Under operating conditions at a temperature of 25° C., the dissolved oxygen concentration of the stock solution to be treated, which was initially 8.0 pprn, decreased to 2.7 ppm. Further, when nitrogen was flowed as a carrier gas at 1000 cc/min under these operating conditions, the dissolved oxygen concentration of the water to be treated decreased to 2.6 pprn.

次に、この脱気エレメントに実施例1の方法により一度
脱気した脱気処理水(溶存酸素濃度1.。
Next, the degassed water (dissolved oxygen concentration: 1.

9ppm)を通水し、上記と同じ運転条件(但し窒素は
流さず)において脱気性能を測定したところ、溶存酸素
濃度は、1.5ppmまで低下した。
When the degassing performance was measured under the same operating conditions as above (however, without nitrogen flow), the dissolved oxygen concentration decreased to 1.5 ppm.

[実施例2] 実施例1で用いたものと同じスパイラル型脱気エレメン
ト(透過側流路仕切り壁および中心管内部中央部仕切り
を有するもの)4本を製作し、これらを各々エレメント
1本人りの容器計4本に収納し、これを図5−(b)に
示すように被処理原液(水道水)および窒素配管を各々
直列に接続した脱気装置を製作した。キャリアガスとし
て窒素を流しながら脱気性能を測定した。水道水流量1
000 L/h、真空度85Torr、窒素流量150
0cc/分、温度25℃の運転条件において、当初8.
0ppmであった被処理原液の溶存酸素濃度は、0. 
21)I)mにまで低下した。
[Example 2] Four spiral-type degassing elements (having a permeate side flow path partition wall and a central partition inside the center tube) were manufactured, and each of these elements was used for one element. A deaerator was fabricated in which the raw solution to be treated (tap water) and the nitrogen pipes were connected in series, as shown in FIG. 5-(b). Degassing performance was measured while flowing nitrogen as a carrier gas. Tap water flow rate 1
000 L/h, vacuum degree 85 Torr, nitrogen flow rate 150
Under the operating conditions of 0 cc/min and a temperature of 25°C, initially 8.
The dissolved oxygen concentration of the raw solution to be treated, which was 0 ppm, was 0.
21) I) decreased to m.

[効果コ 本発明により、スパイラル型脱気膜エレメントの水中溶
存ガスの脱気性能の向上が達成される。
[Effects] According to the present invention, it is possible to improve the degassing performance of the spiral type degassing membrane element for gas dissolved in water.

特に水中の溶存酸素の除去および炭酸ガスの除去に効果
が大きい。
It is particularly effective in removing dissolved oxygen and carbon dioxide from water.

【図面の簡単な説明】[Brief explanation of drawings]

図1は本発明のスパイラル型脱気エレメントを巻きほぐ
した状態の一部断面斜視図であり、図2は同じく本発明
のスパイラル型脱気エレメントの中心管および透過側流
路材部分のみを取り出した一部断面斜視図である。図3
− (a)および図3(b)は、本発明のスパイラル型
脱気エレメントの透過側流路上の仕切り壁および中心管
内部の仕切りの配置例を示した一部断面斜視図である。 また、図4は本発明のスパイラル型脱気エレメントの透
過側流路材上の一部に他の流路材を張り合わせた例を示
した一部断面斜視図である。図5−(a)2図5−(b
)は本発明のスパイラル型脱気エレメントを内蔵したエ
レメント内臓容器を複数本連結させ、かつキャリアガス
を直列に流した脱気装置例の被処理原液およびキャリア
ガスのフロー図である。図6は従来のスパイラル型脱気
エレメントを巻きほぐした状態の一部断面斜視図である
。 図中、 1は、表面に孔を有する中空状の中心管1′は、中心管
開放端部 2は、接着剤封止部分 3は、膜透過溶存ガス 4は、供給液流路材 5は、疎水性ガス透過膜 6は、透過側流路材 7.7′は、供給原液(被処理原液) 8は、中心管内部の仕切り 9は、透過側流路仕切り壁 10は、キャリアガス入り口 10′は、キャリアガス出口 11は、第2の透過側流路材 12は、スパイラル型脱気エレメント内臓1−3は、 14は、 15は、 16は、 17は、 18は、 19は、 である。 容器 被処理原液ライン キャリアガス通気ライン 被処理原液入り口 被処理原液出口(脱気水出口) キャリアガス入り口 キャリアガス出口 透過側流路材の溝方向
FIG. 1 is a partially sectional perspective view of the spiral-type degassing element of the present invention in an unrolled state, and FIG. 2 is a partially sectional perspective view of the spiral-type degassing element of the present invention with only the center tube and permeation side channel material portion taken out. FIG. 3 is a partially sectional perspective view. Figure 3
- (a) and FIG. 3(b) are partially cross-sectional perspective views showing examples of the arrangement of the partition wall on the permeation side flow path and the partition inside the central tube of the spiral type degassing element of the present invention. Moreover, FIG. 4 is a partially sectional perspective view showing an example in which another channel material is laminated to a part of the permeation side channel material of the spiral type degassing element of the present invention. Figure 5-(a)2 Figure 5-(b)
) is a flowchart of an undiluted solution to be processed and a carrier gas in an example of a deaerator in which a plurality of element-containing containers each incorporating a spiral-type deaeration element of the present invention are connected and a carrier gas is flowed in series. FIG. 6 is a partially sectional perspective view of a conventional spiral degassing element in an unrolled state. In the figure, 1 is a hollow central tube 1' having holes on its surface, an open end portion 2 of the central tube, an adhesive sealing portion 3, a dissolved gas permeating through the membrane 4, and a feed liquid channel material 5. , the hydrophobic gas permeable membrane 6, the permeation side channel material 7, 7', the supplied stock solution (the stock solution to be treated), the partition 9 inside the central tube, the permeation side channel partition wall 10, the carrier gas inlet. 10' is the carrier gas outlet 11, the second permeation side channel material 12, the built-in spiral degassing element 1-3, 14, 15, 16, 17, 18, 19, It is. Container Processed stock solution line Carrier gas ventilation line Processed stock solution inlet Processed stock solution outlet (degassed water outlet) Carrier gas inlet Carrier gas outlet Groove direction of permeate side channel material

Claims (5)

【特許請求の範囲】[Claims] (1)、表面に孔を有する中空状の中心管の周囲に封筒
状の疎水性ガス透過膜、透過側流路材、供給液流路材を
一組とするユニットの単組または複組を巻き付けてなる
、水中の溶存気体を除去するためのスパイラル型脱気エ
レメントにおいて、中心管内部に仕切りを設け、かつ、
透過側流路の特定箇所に透過流体の流れ方向を特定させ
るための仕切り壁を設けることを特徴とするスパイラル
型脱気エレメント。
(1) A single or multiple unit consisting of an envelope-shaped hydrophobic gas permeable membrane, a channel material on the permeate side, and a channel material for the feed liquid is placed around a hollow central tube with holes on its surface. In a spiral deaeration element for removing dissolved gas in water, the element is wound around a central tube, and a partition is provided inside the central tube, and
A spiral type degassing element characterized by providing a partition wall at a specific point in a permeate side flow path for specifying the flow direction of the permeate fluid.
(2)透過側流路の仕切り壁が、弾性体高分子材料から
なることを特徴とする請求項1に記載のスパイラル型脱
気エレメント。
(2) The spiral type degassing element according to claim 1, wherein the partition wall of the permeation side flow path is made of an elastic polymer material.
(3)透過側流路の仕切り壁が、接着剤を硬化させるこ
とにより形成されることを特徴とする請求項1に記載の
スパイラル型脱気エレメント。
(3) The spiral type degassing element according to claim 1, wherein the partition wall of the permeation side flow path is formed by curing an adhesive.
(4)膜表面に被処理水を供給し、中心管片端から膜裏
面を経由し中心管他端にキャリアガスを流すことを特徴
とする請求項1項に記載のスパイラル型脱気エレメント
の使用方法。
(4) Use of the spiral type degassing element according to claim 1, characterized in that the water to be treated is supplied to the membrane surface, and the carrier gas is caused to flow from one end of the central tube to the other end of the central tube via the back surface of the membrane. Method.
(5)スパイラル型脱気エレメントを単数本または複数
本同一のエレメント容器内に収納されたエレメント内臓
容器が複数本より構成されてなる脱気装置において、1
か所のキャリアガス供給源から各エレメント内臓容器に
キャリアガスを直列に供給することを特徴とする請求項
1項に記載のスパイラル型脱気エレメントの使用方法。
(5) One or more spiral-type deaerator elements In a deaerator composed of a plurality of element-containing containers housed in the same element container, 1
2. The method of using a spiral type degassing element according to claim 1, wherein the carrier gas is supplied in series from multiple carrier gas supply sources to the container containing each element.
JP2048757A 1990-02-27 1990-02-27 Spiral type degassing element and method of using the same Expired - Fee Related JPH0714445B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2048757A JPH0714445B2 (en) 1990-02-27 1990-02-27 Spiral type degassing element and method of using the same
EP19910102847 EP0448973B1 (en) 1990-02-27 1991-02-26 Spiral wound gas permeable membrane module and apparatus and method for using the same
US07/660,443 US5154832A (en) 1990-02-27 1991-02-26 Spiral wound gas permeable membrane module and apparatus and method for using the same
DE1991615532 DE69115532T2 (en) 1990-02-27 1991-02-26 Gas permeable spiral wound membrane module, device and method for its use
KR1019910003214A KR0161292B1 (en) 1990-02-27 1991-02-27 Spiral wound gas permeable membrane module and apparatus and method for using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2048757A JPH0714445B2 (en) 1990-02-27 1990-02-27 Spiral type degassing element and method of using the same

Publications (2)

Publication Number Publication Date
JPH03249907A true JPH03249907A (en) 1991-11-07
JPH0714445B2 JPH0714445B2 (en) 1995-02-22

Family

ID=12812154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2048757A Expired - Fee Related JPH0714445B2 (en) 1990-02-27 1990-02-27 Spiral type degassing element and method of using the same

Country Status (1)

Country Link
JP (1) JPH0714445B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508061A (en) * 2003-10-10 2007-04-05 ボストン サイエンティフィック リミテッド Apparatus and method for removing gas from a liquid.
WO2013005826A1 (en) * 2011-07-07 2013-01-10 東レ株式会社 Separation membrane, separation membrane element, and method for producing separation membrane
WO2013047744A1 (en) * 2011-09-29 2013-04-04 東レ株式会社 Separation membrane and separation membrane element
WO2013047746A1 (en) * 2011-09-29 2013-04-04 東レ株式会社 Separation membrane, separation membrane element, and production method for separation membrane
WO2013191147A1 (en) * 2012-06-20 2013-12-27 富士フイルム株式会社 Acidic gas separation module and production method therefor, acidic gas separation layer, production method and facilitated transport membrane therefor, and acidic gas separation system
CN107998893A (en) * 2016-11-28 2018-05-08 佛山市美的清湖净水设备有限公司 Membrane element pipe fitting and frock, spiral roll formula water conservation membrane element and purifier thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009112925A (en) * 2007-11-05 2009-05-28 Japan Organo Co Ltd Spiral type deionized water production device
KR101867870B1 (en) * 2016-03-29 2018-06-18 주식회사 엠씨엠 Manufacturing method of spiral wound type filter cartridge

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175209U (en) * 1985-04-17 1986-10-31
JPS6224902U (en) * 1985-07-25 1987-02-16
JPH01115410A (en) * 1987-10-27 1989-05-08 Agency Of Ind Science & Technol Osmosis device between solutions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175209U (en) * 1985-04-17 1986-10-31
JPS6224902U (en) * 1985-07-25 1987-02-16
JPH01115410A (en) * 1987-10-27 1989-05-08 Agency Of Ind Science & Technol Osmosis device between solutions

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508061A (en) * 2003-10-10 2007-04-05 ボストン サイエンティフィック リミテッド Apparatus and method for removing gas from a liquid.
WO2013005826A1 (en) * 2011-07-07 2013-01-10 東レ株式会社 Separation membrane, separation membrane element, and method for producing separation membrane
US9616390B2 (en) 2011-07-07 2017-04-11 Toray Industries, Inc. Separation membrane, separation membrane element, and method for producing separation membrane
WO2013047744A1 (en) * 2011-09-29 2013-04-04 東レ株式会社 Separation membrane and separation membrane element
WO2013047746A1 (en) * 2011-09-29 2013-04-04 東レ株式会社 Separation membrane, separation membrane element, and production method for separation membrane
CN103842055A (en) * 2011-09-29 2014-06-04 东丽株式会社 Separation membrane, separation membrane element, and production method for separation membrane
JPWO2013047744A1 (en) * 2011-09-29 2015-03-26 東レ株式会社 Separation membrane and separation membrane element
JPWO2013047746A1 (en) * 2011-09-29 2015-03-26 東レ株式会社 Separation membrane, separation membrane element and method for producing separation membrane
WO2013191147A1 (en) * 2012-06-20 2013-12-27 富士フイルム株式会社 Acidic gas separation module and production method therefor, acidic gas separation layer, production method and facilitated transport membrane therefor, and acidic gas separation system
JP2014065025A (en) * 2012-06-20 2014-04-17 Fujifilm Corp Acidic gas separation module, and acidic gas separation system
CN107998893A (en) * 2016-11-28 2018-05-08 佛山市美的清湖净水设备有限公司 Membrane element pipe fitting and frock, spiral roll formula water conservation membrane element and purifier thereof

Also Published As

Publication number Publication date
JPH0714445B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
KR0161292B1 (en) Spiral wound gas permeable membrane module and apparatus and method for using the same
US4750918A (en) Selective-permeation gas-separation process and apparatus
US5096584A (en) Spiral-wound membrane separation device with feed and permeate/sweep fluid flow control
US7128837B2 (en) Hollow fiber membrane module
US7279215B2 (en) Membrane modules and integrated membrane cassettes
US20060081524A1 (en) Membrane contactor and method of making the same
JP2725312B2 (en) Porous hollow fiber membrane type gas-liquid contactor
JPH03249907A (en) Spiral type deaerating element and method for using this element
WO2002004100A1 (en) Multi-stage filtration and softening module and reduced scaling operation
JP2000000437A (en) Spiral reverse-osmosis membrane element and separator using the element
JP2000042378A (en) Fluid separation element
JP2725311B2 (en) Hollow fiber membrane type gas-liquid contactor
JPH04176303A (en) Method for removing gas dissolved in liquid
JPH05208120A (en) Spiral separation membrane element
JPH11114381A (en) Spiral type membrane element
JP2001300271A (en) Fluid separation element
JP2000271457A (en) Operation of spiral type membrane element and spiral type membrane module and spiral type membrane module
JPH0347888B2 (en)
JPH04156903A (en) Degasification membrane device
JPH09150041A (en) Externally perfusion-type gas/liquid contact module
JPH02229590A (en) Water treatment
JPH11188245A (en) Spiral membrane element
WO2021193785A1 (en) Separation membrane element and separation membrane module
JPH11137974A (en) Spiral membrane element
JPH10180053A (en) Spiral type membrane element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees