JPH041564A - Potentiostat for analyzer - Google Patents

Potentiostat for analyzer

Info

Publication number
JPH041564A
JPH041564A JP2101040A JP10104090A JPH041564A JP H041564 A JPH041564 A JP H041564A JP 2101040 A JP2101040 A JP 2101040A JP 10104090 A JP10104090 A JP 10104090A JP H041564 A JPH041564 A JP H041564A
Authority
JP
Japan
Prior art keywords
operational amplifier
power
counter electrode
power source
service interruption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2101040A
Other languages
Japanese (ja)
Other versions
JP2586176B2 (en
Inventor
Taizo Shinohara
篠原 泰三
Yusuke Nakamura
裕介 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2101040A priority Critical patent/JP2586176B2/en
Publication of JPH041564A publication Critical patent/JPH041564A/en
Application granted granted Critical
Publication of JP2586176B2 publication Critical patent/JP2586176B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To obtain a stable current value right after returning on of a power source by providing a service interruption detecting circuit which emits the signal to open a switch for an operational amplifier before the operation of the operational amplifier stops at the time of a service interruption. CONSTITUTION:The service interruption detecting circuit 8 detects the drop of the power source voltage by about 10% from an ordinary voltage as a service interruption and opens the switch 8 between a counter electrode 3 of a measur ing cell 1 and the operational amplifier 5 when such drop arises. On the other havl the operational amplifier 5 operates normally even if the power source voltage drops by about 65% from the ordinary voltage. The circuit between the counter electrode 3 and the operational amplifier 5 can, therefore, be opened while the operational amplifier 5 operates normally even if the breakage or service interruption of the power source 10 arises. The application of a reverse potential between the counter electrode 3 and working electrode 2 of the measur ing cell 1 is thereby prevented. The electrically stable state of the working electrode is protected in such a manner and the restarting of the measurement in the time as slight as 1 to 2 minutes is possible at the time of resetting after the breaking of the power source.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気化学的な方法により分析を行なう分析計用
ポテンショスタットに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a potentiostat for an analyzer that performs analysis by an electrochemical method.

〔従来の技術〕[Conventional technology]

電気化学的な手段を用いて分析を行なう方法の一つに、
例えばフロークーロメトリ−法による燐酸濃度測定法が
知られている。第3図はこの方法の手順を説明するため
の模式図である。第3図において燐酸を含んだ試料液1
1とモリブデン酸液12とをそれぞれの容器からポンプ
13.14で取り出して混合し、生じた燐モリブデン錯
体を含む試料液を、ここには図示してない作用電極、対
極、参照電極の三電極を持つ測定セル15中を通過させ
る。
One of the methods of analysis using electrochemical means is
For example, a method for measuring phosphoric acid concentration using flow coulometry is known. FIG. 3 is a schematic diagram for explaining the procedure of this method. In Figure 3, sample solution 1 containing phosphoric acid
1 and molybdate solution 12 are taken out from their respective containers by pumps 13 and 14 and mixed, and the resulting sample solution containing the phosphorus-molybdenum complex is transferred to three electrodes (not shown here): a working electrode, a counter electrode, and a reference electrode. The sample is passed through a measuring cell 15 having a

測定セル15ではこれに接続したポテンショスタット1
6の作用によって、測定セル15中の参照電極に対して
作用電極を一定の電位に保ち、試料液は測定セル15を
通過中に作用電極の表面で燐モリブデン錯体が還元され
る。このとき、還元によって生じた電流と燐酸濃度が比
例することを利用して燐酸濃度を測定するものである。
In the measuring cell 15, the potentiostat 1 connected to it
6 keeps the working electrode at a constant potential with respect to the reference electrode in the measuring cell 15, and the phosphorus-molybdenum complex is reduced on the surface of the working electrode while the sample liquid is passing through the measuring cell 15. At this time, the phosphoric acid concentration is measured by utilizing the fact that the current generated by reduction is proportional to the phosphoric acid concentration.

この測定時に検出される電流−時間線図を第4図に示す
。第4図において、燐酸を含まない試料液を測定したと
きの電流値がバックグランドになり、燐酸を含む試料液
を測定したときの還元電流値からバンクグランドの電流
値を差し引いた値が燐#1Ifi度に比例して増加した
還元電流の値である。
FIG. 4 shows a current-time diagram detected during this measurement. In Figure 4, the current value when measuring a sample liquid that does not contain phosphoric acid is the background, and the value obtained by subtracting the bank ground current value from the reduction current value when measuring a sample liquid containing phosphoric acid is the phosphorus # This is the value of reduction current that increases in proportion to 1 Ifi degree.

第5図は以上の測定に用いられる測定セルとボテンシ町
スタットの要部の電気回路図を示したものであり、全体
の電源は図示を省略しである。第5図において、測定セ
ル1は作用電極2.対極3゜参照電極4を有し、測定セ
ル土に接続されるポテンショスタンド側は演算増幅器5
.電位設定電源6、電流読み取り用の電流−電圧変換器
7からなる回路を持ち、参照電極4に対して作用電極2
の電位が電位設定電源6で設定した電位と等しくなるよ
うに演算増幅器5が働く、その際、燐モリブデン錯体の
還元によって生ずる電流は、測定セル上の対極3と作用
電極2間に流れ、その値は電流−電圧変換器7から電圧
値として読み取ることができる。
FIG. 5 shows an electrical circuit diagram of the main parts of the measuring cell and the Botenshi Town Stat used for the above measurements, and the power source for the whole is not shown. In FIG. 5, a measuring cell 1 has a working electrode 2. It has a 3° counter electrode and a reference electrode 4, and an operational amplifier 5 is connected to the potentiostand side connected to the measurement cell.
.. It has a circuit consisting of a potential setting power source 6 and a current-voltage converter 7 for current reading, and has a working electrode 2 with respect to a reference electrode 4.
The operational amplifier 5 operates so that the potential of The value can be read from the current-voltage converter 7 as a voltage value.

(発明が解決しようとする課題〕 しかし上記の測定中に、停電などによりボテンンヨスタ
ットの電源が切れたとき、再度電源を入れても電流値が
停電前のレベルに復帰し安定するまで長時間かかり、直
ちに次の測定を行なうことができないという問題がある
。その様子を第6図の電流−時間線図に示す。第6図の
ように、停電後直ちに電源を再投入しても安定なバンク
グランドが得られるまでに4〜8時間を要する。また、
上記の測定原理を装置に組み込んだ全燐の自動分析計の
場合には、正常時より高い電流値を燐濃度の信号として
処理するために、停電後の数回の測定について異常値が
発生するなどの不都合が生ずるや 本発明は上述の点に鑑みてなされたのであり、その目的
は電気化学的な反応による分析法で測定中の停電などの
際に、1t1i1![再投入俊速やかに安定な電流値が
得られるボテンシッスタットの回路構成を提供すること
にある。
(Problem to be solved by the invention) However, during the above measurement, if the power to the Botenyostat is turned off due to a power outage, etc., even if the power is turned on again, the current value will return to the level before the power outage and it will take a long time to stabilize. This problem is shown in the current-time diagram in Figure 6.As shown in Figure 6, even if the power is turned on again immediately after a power outage, it is not stable. It takes 4 to 8 hours to obtain bank ground.Also,
In the case of an automatic total phosphorus analyzer that incorporates the above measurement principle into the device, abnormal values may occur several times after a power outage because current values higher than normal are processed as phosphorus concentration signals. The present invention has been made in view of the above-mentioned problems, and its purpose is to prevent problems such as 1t1i1! [An object of the present invention is to provide a circuit configuration of a botensistat that can quickly obtain a stable current value when re-energized.

〔課題を解決するための手段〕[Means to solve the problem]

上記の!!題を解決するために本発明の分析計用ポテン
ショスタットは、測定セルの対極と演算増幅器を結ぶ回
路に設けた開閉器、停電時に演算増幅器の動作が停止す
る前にその開閉器を開く信号を出表停電検出回路を備え
たものである。
above! ! In order to solve this problem, the analyzer potentiostat of the present invention uses a switch provided in the circuit connecting the counter electrode of the measuring cell and the operational amplifier, and a signal to open the switch before the operation of the operational amplifier stops in the event of a power outage. It is equipped with a power outage detection circuit.

〔作用〕[Effect]

上記のように回路を構成した本発明の分析計用ポテンシ
ョスタットは、停電検出回路の電源電圧が通常の電圧よ
り僅かに低下すると停電として検知し、測定セルの対極
と演算増幅器との間の開閉器8を開き、一方、演算増幅
器5は電源電圧が通常の電圧よりかなり低下しても正常
に動作するので、停電時には演算増幅器が正常に動作し
ている間に対極と演算増幅器の回路を開くことができる
The analyzer potentiostat of the present invention, which has a circuit configured as described above, detects a power outage when the power supply voltage of the power outage detection circuit drops slightly below the normal voltage, and opens and closes the connection between the counter electrode of the measuring cell and the operational amplifier. On the other hand, since the operational amplifier 5 operates normally even if the power supply voltage is considerably lower than the normal voltage, in the event of a power outage, the circuit between the counter electrode and the operational amplifier is opened while the operational amplifier is operating normally. be able to.

したがって、停電時に測定セルの対極と作用電極との間
に逆の電位がかかることがないから、測定中の停電後の
電源再投入に対して、電源再投入後1〜2分で電源を切
る以前の出力レベルに復帰することができる。
Therefore, an opposite potential is not applied between the counter electrode and the working electrode of the measurement cell during a power outage, so when the power is turned on again after a power outage during measurement, the power is turned off 1 to 2 minutes after the power is turned on again. The previous output level can be restored.

〔実施例〕〔Example〕

以下、実施例に基づき本発明を説明する。 The present invention will be explained below based on Examples.

はじめに問題の原因を調べるために本発明者らが行なっ
た実験結果について述べる。まず第5図の回路における
測定セル」−8の対極3と作用電極2の間に1.エレク
トロメータを接続して両電極間の通常の電位と、電源を
切ったときの電位を測定した結果を第7図の線図に示す
、第7図のように通常は対極3の方が正電位であるのに
対し、電源を切ったとき瞬間的に対極3は負電位となる
。この場合は前述のように再度電源を入れても、電流値
が安定するまでに非常に時間がかかった0次に第5図の
回路で、測定セル上の対極3とポテンショスタンド側と
の接続を外した後、ボテンシッスタットの電源を切った
とき、対極3と作用電極2間の電位の様子を第8図の線
図に示す、この場合は第8図のように対極3の電位は負
電位にはならず、続いて電源6を入れてから測定セル上
の対極3とポテンショスタンド側を接続すると、このと
きの電流値は電源を切る前の安定な状態に速やかに復帰
した。
First, the results of experiments conducted by the present inventors to investigate the cause of the problem will be described. First, in the circuit of FIG. 5, 1. The diagram in Figure 7 shows the results of connecting an electrometer and measuring the normal potential between both electrodes and the potential when the power is turned off. As shown in Figure 7, the counter electrode 3 is usually more positive. However, when the power is turned off, the counter electrode 3 instantly becomes a negative potential. In this case, as mentioned above, it took a very long time for the current value to stabilize even after the power was turned on again. The diagram in Figure 8 shows the state of the potential between the counter electrode 3 and the working electrode 2 when the power to the Botensisstat is turned off after removing the .In this case, the potential of the counter electrode 3 is The potential did not become negative, and when the power supply 6 was subsequently turned on and the counter electrode 3 on the measurement cell was connected to the potentiostand side, the current value at this time quickly returned to the stable state before the power was turned off.

このような結果から本発明者らは、停電後の復帰時に測
定される電流が安定するのに多大の時間を要する原因と
して、測定セル土に測定時と逆の電位がかかると、それ
まで作用電極2の表面に形成されていた電気二重層など
の関与する電気的な安定状態が壊され、再度電気二重層
に充電され安定した状態が形成されるまでに多くの時間
を必要とするものとの結論を得た。
Based on these results, the present inventors found that the reason why it takes a long time for the measured current to stabilize when the power is restored after a power outage is that if a potential opposite to that at the time of measurement is applied to the measurement cell soil, it will not work until then. The electrically stable state involving the electric double layer formed on the surface of the electrode 2 is destroyed, and it takes a long time for the electric double layer to be charged again and a stable state to be formed. The conclusion was obtained.

以上の認識に基づき、本発明者らはボテンシ曹スタット
の電源切断時または停電時に、測定セル土に逆の電位を
かけないために、第5図の回路を第1図のように改良し
たのである。第1図は本発明のポテンショスタットに関
する回路構成図であり、第5図と共通部分を同一符号で
表わしであるが、第1図が第5図と異なる所は、測定セ
ル上の対極3と演算増幅器5との間に取り付けた開閉器
8、この開閉器8を繰作する停電検出回路9を備えたこ
とである。10は電源を表わす。
Based on the above recognition, the present inventors improved the circuit shown in Figure 5 as shown in Figure 1 in order to prevent the reverse potential from being applied to the measuring cell soil when the power to the Botenshi Sota Stat is turned off or during a power outage. be. FIG. 1 is a circuit configuration diagram regarding the potentiostat of the present invention, and the same parts as in FIG. 5 are indicated by the same symbols, but the difference between FIG. 1 and FIG. A switch 8 installed between the operational amplifier 5 and a power failure detection circuit 9 operating the switch 8 are provided. 10 represents a power source.

停電検出回路9は、電源電圧が通常の電圧より10%程
度低下すると停電として検知し、測定セル上の対極3と
演算増幅器5との間の開閉器8を開く、一方、演算増幅
器5は電源電圧が通常の電圧より65%程度低下しても
正常に動作する。したがって、電源IOの切断や停電な
どが起きても、演算増幅器5が正常に動作している間に
対極3と演算増幅器5の回路を開くことができ、前述の
実験結果で説明したように、測定セル上の対極3と作用
電極2との間に逆の電位がかかることはなくなる。
The power failure detection circuit 9 detects a power failure when the power supply voltage drops by about 10% from the normal voltage, and opens the switch 8 between the counter electrode 3 on the measurement cell and the operational amplifier 5. It operates normally even if the voltage is about 65% lower than the normal voltage. Therefore, even if the power supply IO is disconnected or a power outage occurs, the circuit between the counter electrode 3 and the operational amplifier 5 can be opened while the operational amplifier 5 is operating normally, and as explained in the above experimental results, Opposite potentials are no longer applied between the counter electrode 3 and the working electrode 2 on the measuring cell.

この動作をさらに確実に行なわせるようにするには、演
算増幅器5の電源にコンデンサを用いた充電回路を組み
込み、停電時にはコンデンサの働きにより演算増幅器5
の動作時間を伸ばすことも可能である。
In order to perform this operation more reliably, a charging circuit using a capacitor is built into the power supply of the operational amplifier 5, and when a power outage occurs, the operational amplifier 5
It is also possible to extend the operating time.

第2図は第1図の本発明による回路構成を持つポテンシ
ョスタットを用いた燐酸濃度測定中に、−旦電源を切っ
た後直ちに電源を再投入してときレベルに復帰し安定な
状態を保つことを示している。
Figure 2 shows that during phosphoric acid concentration measurement using the potentiostat having the circuit configuration according to the present invention shown in Figure 1, when the power is turned off and then immediately turned on again, it returns to the level and maintains a stable state. It is shown that.

〔発明の効果〕〔Effect of the invention〕

電気化学的な反応を用いて測定を行なう分析法では、測
定中にポテンショスタットの電源が切れたとき、再度正
しい測定ができるまで4〜8時間という長い時間がかか
り、自動分析計の場合などは測定誤差を生ずる原因にも
なっていたが、本発明では実施例で述べたように、停電
などの電源切断時には、演算増幅器が正常に作動してい
る間に、停電検出回路からの信号により、測定セルの対
極と演算増幅器の間に設けた開閉器を開(ようにしたた
め、測定セルに通常測定時とは逆の電位がかかるのを防
ぎ、作用電極の電気的な安定状態を保護するとともに、
電源切断後の復帰については僅かに1〜2分で測定を再
開することができるようになり、また、自動分析計の場
合も測定誤差が生ずるのを解消することができた。
In analytical methods that use electrochemical reactions to perform measurements, if the power to the potentiostat is turned off during measurement, it takes a long time of 4 to 8 hours until correct measurements can be made again. However, in the present invention, as described in the embodiment, when the power is cut off due to a power outage, the signal from the power outage detection circuit is detected while the operational amplifier is operating normally. The switch installed between the counter electrode of the measurement cell and the operational amplifier is opened, which prevents the measurement cell from being exposed to a potential opposite to that during normal measurement, and protects the electrical stability of the working electrode. ,
Measurements can now be resumed in just 1 to 2 minutes after the power is turned off, and measurement errors caused by automatic analyzers can also be eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のポテンショスタットの回路構成図、第
2図は本発明のポテンショスタットを用いた測定中にお
ける電源再投入のときの電流−時間線図、第3図は従来
の分析方法における測定手順を説明するための模式図、
第4図は第3図の方法における電流−時間線図、第5図
は従来の測定に用いられる測定セルのポテンショスタッ
トの要部電気回路図、第6図は従来のボテンシぢスタン
ドの停電再投入時における電流−時間線図、第7図は対
極と作用電極間の電位を示す線図、第8図はポテンショ
スタット側との接続を外して電源を切ったときの対極と
作用電極間の電位を示す線図。 土、15:測定セル、2:作用電極、3:対極、4:参
照電極、5:演算増幅器、6:電位設定電源、7:電流
読み取り用の電流−電圧変換器、8:開閉器、9:停電
検出回路、10:を源、11;燐酸含有試料液、工2:
モリブデン酸液、13.11ポンプ、16:ポテンショ
スタット。 代理人弁理士 山 口  巖  −二−5i”kン 第31!1 電塘明「鳴直51〕部殻 ↓ 時[閂ff1(hと) 第2胆 Ef!1層(hr) 第4図 @源期訪 第7図 V靭断後直5L頂段人 第8図
Figure 1 is a circuit configuration diagram of the potentiostat of the present invention, Figure 2 is a current-time diagram when the power is turned on again during measurement using the potentiostat of the present invention, and Figure 3 is a diagram of the conventional analysis method. Schematic diagram to explain the measurement procedure,
Fig. 4 is a current-time diagram for the method shown in Fig. 3, Fig. 5 is an electrical circuit diagram of the main part of the potentiostat of the measuring cell used in conventional measurements, and Fig. 6 is a diagram of the conventional potentiometer stand for power failure recovery. The current-time diagram when the power is turned on, Figure 7 is a diagram showing the potential between the counter electrode and the working electrode, and Figure 8 is the diagram showing the potential between the counter electrode and the working electrode when the potentiostat is disconnected and the power is turned off. Diagram showing potential. soil, 15: measurement cell, 2: working electrode, 3: counter electrode, 4: reference electrode, 5: operational amplifier, 6: potential setting power supply, 7: current-voltage converter for current reading, 8: switch, 9 : Power outage detection circuit, 10: Source, 11; Phosphoric acid-containing sample solution, Engineering 2:
Molybdate liquid, 13.11 pump, 16: potentiostat. Agent Patent Attorney Iwao Yamaguchi -2-5i”k No. 31! 1 Akira Dentang “Meinao 51” Part ↓ Hours [bar ff1 (h and) 2nd layer Ef!1 layer (hr) Figure 4 @Genki Visit Fig. 7 V Immediately after ligament rupture 5L Top Danman Fig. 8

Claims (1)

【特許請求の範囲】[Claims] 1)電気化学的な方法により分析を行なう分析計用ポテ
ンショスタットであって、測定セルの対極と演算増幅器
を結ぶ回路に設けた開閉器、停電時に演算増幅器の動作
が停止する前に前記開閉器を開く信号を出す停電検出回
路を備えたことを特徴とする分析計用ポテンショスタッ
ト。
1) A potentiostat for an analyzer that performs analysis using an electrochemical method, which is a switch installed in a circuit that connects the counter electrode of a measurement cell and an operational amplifier, and the switch is installed before the operation of the operational amplifier stops in the event of a power outage. A potentiostat for an analyzer, characterized by being equipped with a power failure detection circuit that outputs a signal to open the analyzer.
JP2101040A 1990-04-17 1990-04-17 Potentiometer for analyzer Expired - Lifetime JP2586176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2101040A JP2586176B2 (en) 1990-04-17 1990-04-17 Potentiometer for analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2101040A JP2586176B2 (en) 1990-04-17 1990-04-17 Potentiometer for analyzer

Publications (2)

Publication Number Publication Date
JPH041564A true JPH041564A (en) 1992-01-07
JP2586176B2 JP2586176B2 (en) 1997-02-26

Family

ID=14290041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2101040A Expired - Lifetime JP2586176B2 (en) 1990-04-17 1990-04-17 Potentiometer for analyzer

Country Status (1)

Country Link
JP (1) JP2586176B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196873A (en) * 2007-02-09 2008-08-28 Hokuto Denko Kk Phosphorus measuring method and apparatus thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196873A (en) * 2007-02-09 2008-08-28 Hokuto Denko Kk Phosphorus measuring method and apparatus thereof

Also Published As

Publication number Publication date
JP2586176B2 (en) 1997-02-26

Similar Documents

Publication Publication Date Title
US4822456A (en) Ion measuring apparatus and monitoring system
EP0467902B1 (en) Fault detection in electrochemical gas sensing equipment
US7323091B1 (en) Multimode electrochemical sensing array
JPS62242849A (en) Method and apparatus for testing performance of electrode for electrode measuring system
JPS6325300B2 (en)
US5022980A (en) System for determining concentration of an electrolyte
US5733436A (en) Method for determining the state of an electrochemical gas sensor
JP7350290B2 (en) Gas concentration detection method, gas concentration detection device, and gas generation system
KR850001435B1 (en) Detector of ion density
EP1460417A1 (en) Method of operating a probe for measuring a gas concentration
JPH041564A (en) Potentiostat for analyzer
US5876578A (en) Gas sensor
US4230554A (en) Apparatus for measuring ions in solution
CN112639455B (en) Electrolyte measuring device
US20040251144A1 (en) Monitoring of gas sensors
CN102160472B (en) Modulating polarization voltage of amperometric sensors
WO2020066518A1 (en) Measurement device
US2071697A (en) Volumetric analysis apparatus
JP6882213B2 (en) Method for determining the connection state of the electrolyte measuring device and the electrode portion of the electrolyte measuring device
US9052282B2 (en) Water analysis measurement arrangement
CN109406606A (en) Utilize the method and universal testing piece of measuring equipment measure analysis object concentration
JPH0635952B2 (en) Residual chlorine meter with combined chlorine monitor function
JP3842875B2 (en) Polarographic gas sensor
SU1173290A1 (en) Method of electrochemical analysis and apparatus for accomplishment of same
JPS63117277A (en) Diagnosis of fuel cell