JPH0415599A - Separation of cesium in aqueous uranium solution - Google Patents

Separation of cesium in aqueous uranium solution

Info

Publication number
JPH0415599A
JPH0415599A JP2118640A JP11864090A JPH0415599A JP H0415599 A JPH0415599 A JP H0415599A JP 2118640 A JP2118640 A JP 2118640A JP 11864090 A JP11864090 A JP 11864090A JP H0415599 A JPH0415599 A JP H0415599A
Authority
JP
Japan
Prior art keywords
cesium
uranium
soln
adsorbent
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2118640A
Other languages
Japanese (ja)
Inventor
Toru Takashina
徹 高品
Yoshimasa Fujimoto
芳正 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2118640A priority Critical patent/JPH0415599A/en
Publication of JPH0415599A publication Critical patent/JPH0415599A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To improve operability, miniaturize a device and obviate the deterioration by radiations and to facilitate a solidification by adsorbing the cesium in an aq. uranium soln. on an adsorbent consisting of potassium phosphotungstate. CONSTITUTION:The aq. uranium soln. contg. radioactive cesium<137>Cs is stored at ordinary temp. in a sample tank 1. The aq. uranim soln. is sent to an adsorption column 3 by driving a supplying pump 2. The inside of the adsorption column 3 is adjusted to a prescribed temp. and the adsorbent consisting of the potassium phosphotungstate is brought into contact with the aq. uranium soln. to adsorb the cesium in the aq. uranium soln. to the adsorbent. The liquid flowing out of the bottom of the adsorption column 3 is sent by a discharge pump 4 to a treated liquid tank 5 where the liquid is treated. The operability is thus improved and the device is miniaturized. In addition, the deterioration by radiations is lessened and the solidification is easily executed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、核燃料再処理工程に適用するウラン水溶液中
のセシウムの分離方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for separating cesium in an aqueous uranium solution that is applied to a nuclear fuel reprocessing process.

(従来の技術) 従来、ウラン水溶液からセシウムを分離する際には 溶
媒抽出法及び有機イオン交換体による吸着分離法が使用
されている。
(Prior Art) Conventionally, when separating cesium from an aqueous uranium solution, a solvent extraction method and an adsorption separation method using an organic ion exchanger have been used.

(発明が解決しようとする課題) (1)前記従来の溶媒抽出法は2通常液液抽出溶媒とし
てリンを含む有機溶媒を使用しているが。
(Problems to be Solved by the Invention) (1) The conventional solvent extraction method described above uses an organic solvent containing phosphorus as the usual liquid-liquid extraction solvent.

抽出に伴い放射線により溶媒が劣化して、大量の廃溶媒
が発生する。この廃溶媒は2通常放射性廃棄物であって
、その処理技術には多くの課題がある。またこの溶媒抽
出法で高い分離度を得ようとすると、多段の抽出が必要
であり、装置が大型化。
During extraction, the solvent is degraded by radiation and a large amount of waste solvent is generated. This waste solvent is usually radioactive waste, and there are many problems in its treatment technology. In addition, in order to obtain a high degree of separation using this solvent extraction method, multi-stage extraction is required, which increases the size of the equipment.

複雑化して、高価になる。It's complicated and expensive.

(11)前記従来の有機イオン交換体による吸着分離法
は、その多くがイオン交換体として有機材料を使用して
いるけ。このため、有機溶媒と同様に放射綿による劣化
が大きくて、処理の難しい放射性廃棄有機イオン交換体
が発生する。また有機イオン交換体は、一般に交換容量
が大きいものの。
(11) Most of the conventional adsorption separation methods using organic ion exchangers use organic materials as the ion exchanger. For this reason, like organic solvents, radioactive waste organic ion exchangers are generated which are significantly degraded by radioactive ions and are difficult to dispose of. Although organic ion exchangers generally have a large exchange capacity.

交換する金属に対して選択性に乏しい。また有機イオン
交換体にゼオライト等の無機材料を使用する場合も稀に
はあるが、その吸着容量が小さいという問題があった。
Poor selectivity for the metal being exchanged. In rare cases, inorganic materials such as zeolites are used as organic ion exchangers, but there is a problem in that their adsorption capacity is small.

本発明は前記の問題点に鑑み提案するものであり、その
目的とする処は、操作性を向」二できる上に、装置をコ
ンパクトにできる。放射線による劣化を少なくできろ十
に、固体廃棄物とり、 7の固化体処理を容易に行うこ
とができる。さらにセシウムに対する吸着容量を大きく
できるウラン水溶液中のセシウムの分離方法を提供し7
ようとする点にある。
The present invention has been proposed in view of the above-mentioned problems, and its purpose is to improve operability and to make the device compact. Not only can deterioration caused by radiation be reduced, but solid waste can also be easily collected and treated as described in 7. Furthermore, we provide a method for separating cesium from an aqueous uranium solution that can increase the adsorption capacity for cesium.
The point is to try.

(課題を解決するための手段) 」二足の「j的を達成するために1本発明のウラン水溶
液中のセシウムの分離方法は、ウラン水溶液からセシウ
ムを:>) 聞1−4る乙こ当ノこり、リンクンゲステ
ン酸カリウ1、からlfる吸着剤と一ト記つラン水?容
液とを接触さ・口て、ウラン水溶液中のセシウJ、を上
記吸着剤に吸名さ−Uることを特徴としている。
(Means for Solving the Problems) In order to achieve the two objectives, the method for separating cesium in a uranium aqueous solution of the present invention is to remove cesium from a uranium aqueous solution. In this case, by contacting the adsorbent containing potassium uranium gestate 1 with the above-mentioned uranium water solution, the potassium ester in the uranium aqueous solution was absorbed into the above adsorbent. It is characterized by U.

(作用) 本発明のウラン水溶液中のセシウムの分離力法は前記の
ように構成されており、ウラン水溶液からセシウムを分
離するに当たり、リンタングステン酸カリウムからなる
吸着剤と上記ウラン水溶液とを接触させて、ウラン水溶
液中のセシウムを上記吸着剤に吸着させる。
(Function) The separation force method for cesium in a uranium aqueous solution of the present invention is configured as described above, and in separating cesium from a uranium aqueous solution, an adsorbent made of potassium phosphotungstate is brought into contact with the uranium aqueous solution. Then, the cesium in the uranium aqueous solution is adsorbed onto the adsorbent.

(実施例) 次Oこ本発明のりフニ・・水溶液中の1rシウ1、の分
離力法の実施に使用する分ν111装置の構成例を第1
図により説明Aると、(1)が放射性1!ソウl、(’
 ”7Cs)を5 X 10′mCi 7” i含JJ
ウノン′水?容ンイ女(ウラン流1.9−400tXつ
’/ 7 /” e ) ’: !b’ ?j’!すル
(」(試液iff、(2)が同供試くイダ槽(1) r
、、二+H粒し、eウ−]7ン水溶液の供給ポンプ、(
:+)か同排出ポンプ0))の11−1出側し二接ht
 シた内(X 50 【1lTrlの吸論1ン;−(−
1同吸清塔(3)内には、リンタンクスう侃酸カリウム
からなる吸着剤を高さ300 mm(吸着剤車量−約9
00g)で充填している。また(4)が同吸着塔(3)
に接続した1lll出ポンプ、(5)が同排出ポンプ(
4)の吐出側に接続した処理液槽である。
(Example) The following is a first example of the configuration of a minute v111 apparatus used to carry out the separation force method for the glue of the present invention...1r film in an aqueous solution.
Explaining A with a diagram, (1) is radioactive 1! Soul, ('
"7Cs) 5 X 10'mCi 7"
Unon' water? Yongyeon (Uranium flow 1.9-400 tons
,, 2+H grains, e-]7n aqueous solution supply pump, (
:+) or 11-1 outlet of the same discharge pump 0)) and double contact ht
Inside (X 50 [1lTrl suction 1n;-(-
1. In the absorption tower (3), an adsorbent made of phosphorus tank potassium oxalate is placed at a height of 300 mm (adsorbent volume - approx. 9
00g). Also, (4) is the same adsorption tower (3)
(5) is connected to the same discharge pump (
4) is a processing liquid tank connected to the discharge side.

次に+iil記第1図に示すウラン水溶液中のセソウJ
、の分離装置の作用を具体的に説明する。放射性セシウ
ム(137C3)を5 XIO’−2mC1/ Q含む
ウラン水溶液を供試液槽(1)に常温(5°C〜30°
C程度)で貯液し1次いで供給ポンプ(2)を駆動して
、供試液槽(1)内のウラン水溶液を吸着塔(3)へ−
時間当たり約2.0!の割合で送る一方、吸着塔(3)
内の温度を25±1°Cに調整して、リンタングステン
酸カリウムからなる吸着剤とウラン水溶液とを接触させ
て、ウラン水溶液中のセシウムを吸着剤に吸着させる。
Next, Sesou J in the uranium aqueous solution shown in Figure 1 of +iii.
The operation of the separation device will be explained in detail. A uranium aqueous solution containing 5
The uranium aqueous solution in the test liquid tank (1) is transferred to the adsorption tower (3) by storing the liquid at a tank (about C) and then driving the supply pump (2).
Approximately 2.0 per hour! While the adsorption tower (3)
The temperature inside the chamber was adjusted to 25±1°C, and the adsorbent made of potassium phosphotungstate was brought into contact with the uranium aqueous solution, so that the cesium in the uranium aqueous solution was adsorbed onto the adsorbent.

また吸着塔(3)の塔底から流出した液を排出ポンプ(
4)→処理液槽(5)へ送ってここで処理する。なお吸
着塔(3)内の吸着剤は液固接触効率を考慮すると、直
径1mm程度以下と小さい方が望ましいが1本実施例で
は、リンタングステン酸カリウムを約0.2mmの直径
の球状物に成形したマイルロヒーズ吸着剤を使用した。
In addition, the liquid flowing out from the bottom of the adsorption tower (3) is pumped to the discharge pump (
4) → Send it to the processing liquid tank (5) and process it here. In addition, considering the liquid-solid contact efficiency, it is preferable that the adsorbent in the adsorption tower (3) be as small as about 1 mm or less in diameter. Molded Milohees adsorbent was used.

第2図は、リンタングステン酸カリウム及びモルデナイ
ト型ゼオライI・によるセシウム除去作用の吸着破過曲
線を示している。同第2図からも明らかなようにリンタ
ングステン酸カリウムのセシウム吸着作用は、非常に優
れ、過去使用されたモルデナイト型ゼオライトに比較し
ても、約1.5侑の吸着能力を有している。なお第2図
の縦軸は吸着塔(3)から排出されたウラン水溶液中の
放射性セシウムによる放射能濃度、横軸は、吸着塔(3
)へウラン水溶液の供給が開始されてからの経過時間で
ある。
FIG. 2 shows the adsorption breakthrough curve of the cesium removal action of potassium phosphotungstate and mordenite-type zeolite I. As is clear from Figure 2, the cesium adsorption effect of potassium phosphotungstate is extremely excellent, and even compared to mordenite-type zeolite used in the past, it has an adsorption capacity of approximately 1.5 U. . The vertical axis in Figure 2 is the radioactivity concentration due to radioactive cesium in the uranium aqueous solution discharged from the adsorption tower (3), and the horizontal axis is the radioactivity concentration due to radioactive cesium in the uranium aqueous solution discharged from the adsorption tower (3).
) is the elapsed time since the supply of uranium aqueous solution was started.

(発明の効果) 本発明のウラン水溶液中のセシウムの分離方法は前記の
ようにカラン水溶液からセシウムを分離するに当たり、
リンタングステン酸カリウムからなる吸着剤と」二足ウ
ラン水溶液とを接触させてウラン水溶液中のセシウムを
」−記吸着剤に吸着させるので、操作性を向」−できる
上に、装置をコンパクトにできる。
(Effects of the Invention) The method for separating cesium in a uranium aqueous solution of the present invention includes the following steps in separating cesium from a Karan aqueous solution as described above.
By bringing an adsorbent made of potassium phosphotungstate into contact with a bipedal uranium aqueous solution, the cesium in the uranium aqueous solution is adsorbed onto the adsorbent, improving operability and making the device more compact. .

また吸着剤にリンタングステン酸カリウムからなる無機
材料を使用しており、放射線による劣化を少なくできる
上に、固体廃棄物としての同化体処理を容易に行うこと
ができる。
Furthermore, an inorganic material made of potassium phosphotungstate is used as an adsorbent, which not only reduces deterioration due to radiation but also allows for easy treatment of assimilates as solid waste.

また吸着剤にリンタングステン酸カリウムからなる無機
材料を使用しており、従来のゼオライ1−等の無機イオ
ン交換体に比べてセシウムに対する吸着容量を大きくで
きる効果がある。
Furthermore, an inorganic material made of potassium phosphotungstate is used as the adsorbent, which has the effect of increasing the adsorption capacity for cesium compared to conventional inorganic ion exchangers such as zeolite 1-.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わるウラン水溶液中のセシウムの分
離方法の実施に使用する分離装置の構成例を示す系統図
、第2図は本発明及び従来の吸21剤の吸着破過曲線を
示す説明図である。 (1)・・・供試?iや橘、(2)・・・供給ポンプ1
(3)・吸着塔、(4)・・・JJt出ポンプ、(5)
・・・処理?&十凸。
Figure 1 is a system diagram showing an example of the configuration of a separation device used to carry out the method for separating cesium in an aqueous uranium solution according to the present invention, and Figure 2 shows the adsorption breakthrough curves of the present invention and conventional 21 absorption agents. It is an explanatory diagram. (1)... test? i, Tachibana, (2)...supply pump 1
(3)・Adsorption tower, (4)...JJt pump, (5)
···process? & ten convex.

Claims (1)

【特許請求の範囲】[Claims]  ウラン水溶液からセシウムを分離するに当たり、リン
タングステン酸カリウムからなる吸着剤と上記ウラン水
溶液とを接触させて、ウラン水溶液中のセシウムを上記
吸着剤に吸着させることを特徴としたウラン水溶液中の
セシウムの分離方法。
In separating cesium from an aqueous uranium solution, an adsorbent made of potassium phosphotungstate is brought into contact with the aqueous uranium solution, and the cesium in the aqueous uranium solution is adsorbed onto the adsorbent. Separation method.
JP2118640A 1990-05-10 1990-05-10 Separation of cesium in aqueous uranium solution Pending JPH0415599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2118640A JPH0415599A (en) 1990-05-10 1990-05-10 Separation of cesium in aqueous uranium solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2118640A JPH0415599A (en) 1990-05-10 1990-05-10 Separation of cesium in aqueous uranium solution

Publications (1)

Publication Number Publication Date
JPH0415599A true JPH0415599A (en) 1992-01-20

Family

ID=14741550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2118640A Pending JPH0415599A (en) 1990-05-10 1990-05-10 Separation of cesium in aqueous uranium solution

Country Status (1)

Country Link
JP (1) JPH0415599A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251173A (en) * 1991-10-23 1993-09-28 Matsushita Electric Ind Co Ltd High-frequency heating apparatus
JP2010518250A (en) * 2007-02-15 2010-05-27 コミツサリア タ レネルジー アトミーク Foam containing powder particles for at least one of decontamination treatment, peeling treatment, and degreasing treatment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251173A (en) * 1991-10-23 1993-09-28 Matsushita Electric Ind Co Ltd High-frequency heating apparatus
JP2010518250A (en) * 2007-02-15 2010-05-27 コミツサリア タ レネルジー アトミーク Foam containing powder particles for at least one of decontamination treatment, peeling treatment, and degreasing treatment
KR101524655B1 (en) * 2007-02-15 2015-06-01 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 Decontamination, stripping, and/or degreasing foam containing solid particles

Similar Documents

Publication Publication Date Title
US6337055B1 (en) Inorganic sorbent for molybdenum-99 extraction from irradiated uranium solutions and its method of use
JPS60194399A (en) Method of treating initial pertechnetium acid salt aqueous solution
CN104291489A (en) Treatment method for process wastewater in preparation of high-temperature gas-cooled reactor element core
JP2017015542A (en) Tritium separation system and tritium separation method
JPH0415599A (en) Separation of cesium in aqueous uranium solution
JPH0415600A (en) Separation of plutonium in aqueous uranium solution
JPH07100371A (en) Adsorbent for removing rare earth element and adsorption separation method using the same
US3912625A (en) Method for removing and decolorizing aqueous waste effluents containing dissolved or dispersed organic matter
JPS57177324A (en) Air purifier
RU2099803C1 (en) Method and device for cleaning process and natural water from radionuclides
JPH04340497A (en) Separating method for cesium in water solution of uranium
JP2019173041A (en) Method for refining copper, chelating resin, copper chelating agent and copper refiner
US4654146A (en) Ion exchanger to separate heavy alkali metal ions
JP2569357B2 (en) Method for removing radioactive europium from radioactive gadolinium solution
JP2974087B2 (en) Adsorption and separation method of the target component in solution
RU2664127C1 (en) Method for recovering nitric acid from tritium-containing gas stream
JP2001212455A (en) Treating device for discharge water containing boron and treating method therefor
RU2111562C1 (en) Method for recovering oxalate mother liquors of transuranium elements
JPS59211577A (en) Regenerating method of electrolyte
JPH112694A (en) Method for disposing of waste of molten salt
JPH0777599A (en) Processing method of radioactive liquid
RU2091874C1 (en) Radioactive waste treatment
KR20040074514A (en) Method for reducing radioactive waste matter in the decontamination of radioactive contaminated soil
JP2002035609A5 (en)
JPS60260411A (en) Method and device for separating krypton from krypton/nitrogen-gas mixture through adsorption