JPH04155937A - Monitoring of overpower of laser beam - Google Patents
Monitoring of overpower of laser beamInfo
- Publication number
- JPH04155937A JPH04155937A JP2281363A JP28136390A JPH04155937A JP H04155937 A JPH04155937 A JP H04155937A JP 2281363 A JP2281363 A JP 2281363A JP 28136390 A JP28136390 A JP 28136390A JP H04155937 A JPH04155937 A JP H04155937A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- laser beam
- film layer
- fuse
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012544 monitoring process Methods 0.000 title claims description 9
- 239000010409 thin film Substances 0.000 claims description 33
- 239000000758 substrate Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 13
- 239000004065 semiconductor Substances 0.000 claims description 9
- 238000009792 diffusion process Methods 0.000 claims description 8
- 230000005611 electricity Effects 0.000 claims 1
- 239000002184 metal Substances 0.000 claims 1
- 238000012360 testing method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Landscapes
- Lasers (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Laser Beam Processing (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の概要〕
フユーズなどの薄膜の切断を行なうレーザ光の強さを決
定するためのオーバーパワーモニタ方法に関し、
レーザパワーの範囲決定が簡単迅速にでき、自動化も容
易なパワーモニタ方法を提供することを目的とし、
レーザ光で切断を行なう第1の薄膜層の下に、絶縁層を
挟んで第2の薄膜層を設け、該第2の薄膜層の電気抵抗
を測定してその変化により、前記第1の薄膜層を切断す
るレーザ光の強さの上限を検知するよう構成する。[Detailed Description of the Invention] [Summary of the Invention] Regarding an overpower monitoring method for determining the intensity of laser light for cutting thin films such as fuses, the laser power range can be easily and quickly determined, and automation is also easy. In order to provide a power monitoring method, a second thin film layer is provided below the first thin film layer to be cut with a laser beam, with an insulating layer in between, and the electrical resistance of the second thin film layer is The upper limit of the intensity of the laser beam that cuts the first thin film layer is detected based on the change in the measurement value.
本発明は、フユーズなどの薄膜の切断を行なうレーザ光
の強さを決定するためのオーバーパヮーモニタ方法に関
する。The present invention relates to an overpower monitoring method for determining the intensity of laser light for cutting thin films such as fuses.
近年のメモリICではレーザフユーズの切断を行なうこ
とで冗長回路との切替えを行ない、歩留の大幅な向上を
図っている。また精密な抵抗値を必要とするICでは、
レーザ光により抵抗トリミングを行なっている。In recent memory ICs, switching to redundant circuits is achieved by cutting laser fuses, thereby significantly improving yield. Also, for ICs that require precise resistance values,
Resistance trimming is performed using laser light.
かかるレーザ光では、そのエネルギが少ないと切断不良
となり、また大きすぎると、下の基板に達する大穴がお
いて、基板を汚染する、リーク電流を生じる、などの問
題が生じるので、レーザ光のエネルギは適切な範囲にし
なければならない。With such a laser beam, if the energy is too low, it will result in poor cutting, and if it is too large, there will be problems such as large holes reaching the underlying substrate, contaminating the substrate, and leakage current. must be within an appropriate range.
レーザフユーズは最初は接続状態にしておき、必要に応
じてレーザ光により切断して断状態にする。第5図で説
明すると(a)は最初の状態で10はレーザフユーズ、
その周囲の12は絶縁層(SiO□)、14は半導体基
板、16は該基板に形成された拡散層である。(b)は
フユーズlOをレーザ光(ジャイアントパルス)投射で
切断した状態を示す。このレーザ光のエネルギは適切で
あったので適当な穴18がおいてフユーズが切れ、(一
部未切断部が残存することなく完全に切れ)、また大穴
があくこともない。(C)はエネルギが過大であった例
で、フユーズ10は完全に切断しているが、基板14に
達する大穴18aがおいてしまっている。このような状
態では溶失したフユーズlOの物質が基板14を汚染す
る、フユーズと基板との間または拡散層16と基板との
間(pn接合)にリーク電流を生じるなどの問題がある
。The laser fuse is initially kept in a connected state and, if necessary, is cut by a laser beam to be in a disconnected state. To explain with Figure 5, (a) is the initial state, 10 is the laser fuse,
Surrounding it, 12 is an insulating layer (SiO□), 14 is a semiconductor substrate, and 16 is a diffusion layer formed on the substrate. (b) shows a state in which the fuse 1O is cut by laser beam (giant pulse) projection. Since the energy of this laser beam was appropriate, the fuse was cut with an appropriate hole 18 (completely cut with no uncut portion remaining), and there was no large hole. (C) is an example in which the energy was excessive, and although the fuse 10 was completely cut, a large hole 18a reaching the board 14 was left. In such a state, there are problems such as the melted fuse lO material contaminates the substrate 14 and a leakage current is generated between the fuse and the substrate or between the diffusion layer 16 and the substrate (pn junction).
フユーズlOは第6図(a)に示すように、端子部にな
る広幅部分と、中間の狭い幅の部分からなり、切断はこ
の狭い幅の部分にジャイアントパルスPを投射して行な
う。数値例を挙げると、ジャイアントパルスPの径は6
μm、フユーズの狭い幅の部分の幅は2μmである。As shown in FIG. 6(a), the fuse 1O consists of a wide part that becomes a terminal part and a narrow part in the middle, and cutting is performed by projecting a giant pulse P onto this narrow part. To give a numerical example, the diameter of giant pulse P is 6
.mu.m, and the width of the narrow part of the fuse is 2 .mu.m.
レーザ光のパワーを最適値にするのに従来は該パワーを
適当なステップで変化させ、各ステップのパワーでフユ
ーズを切断し、フユーズが切断不良から切断長に変わる
パワーを最小値、大穴があくパワーを最大値として、こ
れらの間の適当な値を採用するという方法をとるが、フ
ユーズ切断、大穴発生は通常の顕微鏡や走査型電子顕微
鏡(SEM)を用いて目視で行なうので、相当に厄介な
作業である。例えば大穴は、その部分で断面をとって調
べる場合に、穴の中央(直径部分)で切断する(チップ
をへき関する)のは容易でない。Conventionally, to optimize the power of the laser beam, the power is changed in appropriate steps, the fuse is cut with the power of each step, and the power that changes the fuse from a defective cut to a cut length is set to the minimum value, and a large hole is created. The method is to set the power to the maximum value and adopt an appropriate value between these values, but cutting fuses and generating large holes is done visually using an ordinary microscope or scanning electron microscope (SEM), which is quite complicated. It's a lot of work. For example, when examining a large hole by taking a cross section at that part, it is not easy to cut (separate the chip) at the center (diameter part) of the hole.
このように従来のレーザパワー決定法では、処理が厄介
であるだけでなく、目視によるので個人差が入り、正確
で安定したパワー決定ができない。As described above, in the conventional laser power determination method, not only is the process cumbersome, but since it is based on visual inspection, there are individual differences, and accurate and stable power determination cannot be performed.
またパワー決定の自動化が不可能である。Also, it is impossible to automate power determination.
最小パワーの方は、レーザ照射後のフユーズの抵抗値を
測定することで容易に分る。即ち切れていればωに近い
抵抗値になり、切れていなければ短絡状態(実際はある
抵抗値)であるから、これで最小パワー決定ができ、自
動化も容易である。The minimum power can be easily determined by measuring the resistance value of the fuse after laser irradiation. That is, if it is broken, the resistance value is close to ω, and if it is not broken, it is a short circuit (actually a certain resistance value), so the minimum power can be determined using this and automation is easy.
しかし最大パワーの方は、フユーズ層とその下部の絶縁
膜、半導体基板などの形状を目視する以外に方法がない
。表面凹凸の測定装置では1μm以下の測定は不可能で
あり、大穴と言ってもその深さは1μm以下であるから
、表面凹凸測定装置では正確な測定はできない。またS
EMでは断面をとる必要があり、これは大幅な時間(例
えば1日)と手間がかかり、自動化は不可能である。However, the only way to determine the maximum power is to visually observe the shape of the fuse layer, the insulating film underneath it, the semiconductor substrate, etc. It is impossible for a surface unevenness measuring device to measure 1 μm or less, and even if it is a large hole, the depth is 1 μm or less, so a surface unevenness measuring device cannot measure it accurately. Also S
In EM, it is necessary to take a cross section, which takes a considerable amount of time (for example, one day) and effort, and cannot be automated.
本発明はかかる点を改善し、レーザパワーの範囲決定が
簡単迅速にでき、自動化も容易なパワーモニタ方法を提
供することを目的とするものである。SUMMARY OF THE INVENTION An object of the present invention is to improve such a problem and provide a power monitoring method that can easily and quickly determine the range of laser power and can be easily automated.
第1図に示すように本発明では第1の薄膜層(前記のフ
ユーズ)10の下部に、絶縁層を挟んで第2の薄膜層2
0を設ける。薄膜層20は第1図では半導体基板14に
形成した拡散層であるが、これは第4図に示すように、
半導体基板14上に絶縁層を介して形成した導体層また
抵抗層でもよい。22a、22bは第2の薄膜層20の
両端に接続したリード線である。フユーズ10も、実際
に使用されるものにはリード線または端子部を取付ける
が、ここで使用するフユーズはテスト用(レーザパワー
決定用)であるからリード線も端子部も不要である。As shown in FIG. 1, in the present invention, a second thin film layer 2 is placed below a first thin film layer (the above-mentioned fuse) 10 with an insulating layer in between.
Set 0. The thin film layer 20 is a diffusion layer formed on the semiconductor substrate 14 in FIG. 1, but as shown in FIG.
A conductive layer or a resistive layer formed on the semiconductor substrate 14 via an insulating layer may be used. 22a and 22b are lead wires connected to both ends of the second thin film layer 20. The fuse 10 that is actually used is attached with a lead wire or a terminal portion, but since the fuse used here is for testing (for determining laser power), neither the lead wire nor the terminal portion is necessary.
このようなテスト用フユーズの組を複数個チップに形成
し、レーザ光(ジャイアントパルス)を、やはり適当な
ステップで強さを変えながら投射してフユーズ切断を行
なう。そしてリード線22a。A plurality of such test fuse sets are formed on a chip, and the fuses are cut by projecting a laser beam (giant pulse) while changing the intensity at appropriate steps. and lead wire 22a.
22bを介して第2の薄膜層20の電気抵抗を測定する
。The electrical resistance of the second thin film layer 20 is measured via 22b.
第2の薄膜層20に変化が生じたら、それはレーザ光が
過大で、大穴があいたことである。従ってレーザ光の強
さの上限はこのステップの1つ前のステップのレーザ光
強さであり、フユーズ切断に使用するレーザ光の強さは
この上限以下とする。If a change occurs in the second thin film layer 20, it means that the laser beam was too strong and a large hole was formed. Therefore, the upper limit of the laser beam intensity is the laser beam intensity of the step immediately before this step, and the intensity of the laser beam used for cutting the fuse is set to be below this upper limit.
レーザ光の強さの下限は、フユーズ10を溶断するレー
ザ光強さの中の最小値であり、これは実際に使用するフ
ユーズ10のオン/オフで検知できる。テストチップに
端子付きのフユーズも用意しておけば、このフユーズで
下限決定もでき、採用するレーザ光強さはこの上、下限
の中間値とすることもできる。The lower limit of the laser beam intensity is the minimum value of the laser beam intensity that blows the fuse 10, and this can be detected by turning on/off the fuse 10 actually used. If a fuse with a terminal is also prepared on the test chip, the lower limit can be determined using this fuse, and the laser light intensity to be adopted can also be set to an intermediate value between the lower limit.
第2の薄膜層20の抵抗はシート抵抗で5Ω〜200Ω
、全体で500Ω〜2にΩとする。拡散層はレーザ光で
削られた時にその部分の断面積が変化する割合を大きく
するため、幅1μm以下の棒状にすることが望ましい。The resistance of the second thin film layer 20 is 5Ω to 200Ω in sheet resistance.
, the total resistance is 500Ω to 2Ω. In order to increase the rate at which the cross-sectional area of a portion of the diffusion layer changes when it is ablated by a laser beam, it is desirable to form the diffusion layer into a bar shape with a width of 1 μm or less.
こうすることにより、ごく表面だけが削られた場合でも
抵抗値変化の割合が大きく、検出が容易になる。By doing this, even if only a very small surface is scraped, the rate of change in resistance value is large and detection becomes easy.
第1図のように第2の薄膜層20を基板14に形成した
拡散層とする場合は、この抵抗値が変ることは基板か損
失したことであり、これはあってはならないことである
からレーザ光の強さはこれより弱いものにする。しかし
、第2の薄膜層が損傷しないと抵抗値変化の測定はでき
ないから、薄膜(フユーズ)切断に使用するレーザ光の
強さは、抵抗値変化が測定できたときの強さより充分下
げた値に設定する。When the second thin film layer 20 is a diffusion layer formed on the substrate 14 as shown in FIG. 1, a change in this resistance value indicates a loss of the substrate, which should not occur. The intensity of the laser beam should be weaker than this. However, since resistance changes cannot be measured unless the second thin film layer is damaged, the intensity of the laser beam used to cut the thin film (fuse) must be set to a value sufficiently lower than the intensity at which resistance changes can be measured. Set to .
抵抗値変化の具体的な測定要領を第2図、第3図に示す
。第2図(a)では、薄膜層2o付きのフユーズ10を
2組用意する。そしてこれらの−方Aにレーザ光を照射
し、他方Bにはレーザ光を投射しない。A、Bは同寸法
、同工程で作るので抵抗値は同じであることが期待でき
、Aの抵抗値がBの抵抗値より大になれば、Aはレーザ
照射で損傷を受けたと判定できる。A specific procedure for measuring changes in resistance value is shown in FIGS. 2 and 3. In FIG. 2(a), two sets of fuses 10 with thin film layers 2o are prepared. Then, a laser beam is irradiated onto the negative side A, and no laser beam is irradiated onto the other side B. Since A and B are made in the same size and in the same process, they can be expected to have the same resistance value, and if the resistance value of A becomes greater than the resistance value of B, it can be determined that A has been damaged by laser irradiation.
なお、抵抗測定をレーザ照射前と照射後の2回行なえば
、1素子でも抵抗変化の検出・は可能であるが、現実的
には抵抗測定は1回で済ませたく、第2図はこの点で有
効である。この第2図(a)で24(添字a、b、・・
・・・・は相互を区別するもので、適宜省略)は抵抗測
定用の端子(パッド)で、薄膜層20の両端とはアルミ
ニウム配線で接続される。Note that it is possible to detect resistance changes even with a single element by measuring resistance twice, before and after laser irradiation, but realistically, it is desirable to measure resistance only once, and Figure 2 shows this point. is valid. In this figure 2 (a), 24 (subscripts a, b,...
. . . are used to distinguish them from each other and are omitted as appropriate) are terminals (pads) for resistance measurement, which are connected to both ends of the thin film layer 20 by aluminum wiring.
第2図(b)は薄膜層付きフユーズを4個設け、ブリッ
ジに組んだ例である。Aのみレーザ照射、またはAとD
を同じ強さのレーザ光で照射すると、高感度で抵抗値変
化、レーザ光強さの上限を検出することができる。FIG. 2(b) shows an example in which four fuses with thin film layers are provided and assembled into a bridge. Laser irradiation only for A, or A and D
When irradiated with laser light of the same intensity, it is possible to detect resistance value changes and the upper limit of laser light intensity with high sensitivity.
第3図はT e g (Test engineer
group)で試作したもので、抵抗値変化を大きくす
るため、薄膜層付きヒユーズを20本設け、10本ずつ
直列として端子24bと24a、端子24bと24c間
に接続し、一方の群Aをレーザ照射用、他方群Bをレー
ザ非照射用とした。これは第2図(a)の形で使用する
。Figure 3 shows T e g (Test engineer
In order to increase the change in resistance value, 20 fuses with thin film layers were installed, and 10 fuses were connected in series between terminals 24b and 24a and between terminals 24b and 24c, and one group A was connected to the laser. The other group B was used for laser irradiation, and the other group B was used for non-laser irradiation. This is used in the form shown in Figure 2(a).
第4図は薄膜層20をアルミや多結晶シリコンなどの導
電体または抵抗体2OAで製作した例である。テスト用
またはダミーのフユーズlOと薄膜層20との間の絶縁
層の厚みは、実際に使用されるフユーズと半導体基板と
の間の絶縁層の厚みに等しくするが、薄膜層20と半導
体基板14との間の絶縁層の厚みは適当でよい。FIG. 4 shows an example in which the thin film layer 20 is made of a conductor such as aluminum or polycrystalline silicon or a resistor 2OA. The thickness of the insulating layer between the test or dummy fuse lO and the thin film layer 20 is made equal to the thickness of the insulating layer between the fuse and the semiconductor substrate that is actually used. The thickness of the insulating layer between the two may be arbitrary.
薄膜層20は第1図のように基板に形成した拡散層とす
ると、実際のフユーズの下層(半導体基板)と一致し、
過大パワーの熱の伝導の様子及びエネルギ吸収の様子が
実際とよく一致し、正確なモニタになる。なお過大パワ
ーを照射すると基板に達する大穴があくが、第4図では
これは回避される。If the thin film layer 20 is a diffusion layer formed on a substrate as shown in FIG. 1, it will correspond to the lower layer (semiconductor substrate) of the actual fuse,
The behavior of excessive power heat conduction and energy absorption closely match reality, making it an accurate monitor. Note that irradiation with excessive power will create a large hole that reaches the substrate, but this is avoided in FIG. 4.
レーザパワーの数値例を挙げると下限は0.4μJ、上
限は0.6μJ、従ってフユーズ切断に使用するレーザ
光の強さは中間をとって0.5μJである。To give a numerical example of the laser power, the lower limit is 0.4 μJ and the upper limit is 0.6 μJ. Therefore, the intensity of the laser beam used for cutting the fuse is 0.5 μJ, which is the intermediate value.
以上説明したように本発明ではフユーズの下方に設けた
薄膜層の抵抗値測定でレーザパワーの上限を測定でき、
フユーズの抵抗値測定で検知できる同下限測定と合わせ
ると、レーザパワー範囲の自動測定でき、人手を介さず
にフユーズ溶断のレーザパワーの最適値を決定すること
ができる。この結果、常に適正レーザパワーで切断が行
なえ、切断不良がなくなると共に省力化、自動化が行な
える。As explained above, in the present invention, the upper limit of the laser power can be measured by measuring the resistance value of the thin film layer provided below the fuse.
When combined with the same lower limit measurement that can be detected by measuring the fuse resistance value, it is possible to automatically measure the laser power range and determine the optimal value of the laser power for fuse blowing without human intervention. As a result, cutting can always be performed with appropriate laser power, eliminating cutting defects and making it possible to save labor and achieve automation.
第1図は本発明の原理図
第2図〜第4図は本発明の実施例1〜3の説明図、
第5図はフユーズ切断の説明図、
第6図はフユーズとレーザ光の説明図である。
第1図で10は第1の薄膜層、20は第2の薄膜層、1
4は半導体基板、12は絶縁層である。Figure 1 is the principle of the present invention. Figures 2 to 4 are explanatory diagrams of Examples 1 to 3 of the present invention. Figure 5 is an explanatory diagram of fuse cutting. Figure 6 is an explanatory diagram of the fuse and laser beam. It is. In FIG. 1, 10 is the first thin film layer, 20 is the second thin film layer, 1
4 is a semiconductor substrate, and 12 is an insulating layer.
Claims (1)
に、絶縁層を挟んで第2の薄膜層(20)を設け、 該第2の薄膜層の電気抵抗を測定してその変化により、
前記第1の薄膜層を切断するレーザ光の強さの上限を検
知することを特徴とするレーザ光のオーバーパワーモニ
タ方法。 2、第2の薄膜層は、半導体基板の表面部に形成した拡
散層であることを特徴とする請求項1記載のレーザ光の
オーバーパワーモニタ方法。 3、第2の薄膜層は、半導体基板上に絶縁層を介して形
成された金属または抵抗体層であることを特徴とする請
求項1記載のレーザ光のオーバーパワーモニタ方法。 4、第2の薄膜層の電気抵抗は、レーザ光の照射を受け
たものと受けないものの各電気抵抗の差として検出する
ことを特徴とする請求項1〜3のいずれかに記載のレー
ザ光のオーバーパワーモニタ方法。[Claims] 1. A second thin film layer (20) is provided below the first thin film layer (10) to be cut with a laser beam, with an insulating layer in between, and the electricity of the second thin film layer is By measuring the resistance and its change,
A method for monitoring overpower of a laser beam, comprising detecting an upper limit of the intensity of the laser beam that cuts the first thin film layer. 2. The laser beam overpower monitoring method according to claim 1, wherein the second thin film layer is a diffusion layer formed on the surface of the semiconductor substrate. 3. The laser light overpower monitoring method according to claim 1, wherein the second thin film layer is a metal or resistor layer formed on the semiconductor substrate with an insulating layer interposed therebetween. 4. The laser beam according to any one of claims 1 to 3, wherein the electrical resistance of the second thin film layer is detected as the difference between the electrical resistances of those irradiated with the laser light and those that are not irradiated with the laser light. Overpower monitoring method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2281363A JPH04155937A (en) | 1990-10-19 | 1990-10-19 | Monitoring of overpower of laser beam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2281363A JPH04155937A (en) | 1990-10-19 | 1990-10-19 | Monitoring of overpower of laser beam |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04155937A true JPH04155937A (en) | 1992-05-28 |
Family
ID=17638074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2281363A Pending JPH04155937A (en) | 1990-10-19 | 1990-10-19 | Monitoring of overpower of laser beam |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04155937A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6218658B1 (en) | 1998-03-19 | 2001-04-17 | Nec Corporation | Optical fuse |
US7721417B2 (en) | 2005-07-21 | 2010-05-25 | Denso Corporation | Manufacturing method for semiconductor device having a thin film resistor |
JP2020157335A (en) * | 2019-03-26 | 2020-10-01 | 株式会社ディスコ | Inspection base board and inspection method |
-
1990
- 1990-10-19 JP JP2281363A patent/JPH04155937A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6218658B1 (en) | 1998-03-19 | 2001-04-17 | Nec Corporation | Optical fuse |
US7721417B2 (en) | 2005-07-21 | 2010-05-25 | Denso Corporation | Manufacturing method for semiconductor device having a thin film resistor |
US7800479B2 (en) | 2005-07-21 | 2010-09-21 | Denso Corporation | Semiconductor device having a trim cut and method of evaluating laser trimming thereof |
JP2020157335A (en) * | 2019-03-26 | 2020-10-01 | 株式会社ディスコ | Inspection base board and inspection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5751015A (en) | Semiconductor reliability test chip | |
JP3689154B2 (en) | Electronic circuit manufacturing method, semiconductor material wafer, and integrated circuit | |
US5162742A (en) | Method for locating electrical shorts in electronic substrates | |
US5897193A (en) | Semiconductor wafer | |
JPH04155937A (en) | Monitoring of overpower of laser beam | |
JP2004363196A (en) | Inspection method of solar cell module | |
US6300771B1 (en) | Electrical inspection device for detecting a latent defect | |
CN108037379A (en) | A kind of method of abnormal component fast positioning in electronic product | |
US7800479B2 (en) | Semiconductor device having a trim cut and method of evaluating laser trimming thereof | |
JP2000124280A (en) | Semiconductor devices applicable to wafer burn-in | |
JPH10178079A (en) | Teg for evaluating lifetime | |
JP3038936B2 (en) | Matrix type wiring board | |
JPH11133075A (en) | Device and method for measuring electrical characteristics | |
JP4810741B2 (en) | Self-scanning light emitting device | |
JPH05299900A (en) | Circuit board, hybrid integrated circuit using this circuit board, and method for detecting fault in circuit board | |
US20080122446A1 (en) | Test pattern | |
JPS60102707A (en) | Screening method of thin-film molded shape | |
JP3496970B2 (en) | Semiconductor device | |
JPH02297993A (en) | Manufacture of film circuit device | |
JP2006278762A (en) | Inspection method and inspection apparatus for multilayered substrate | |
JP2001007175A (en) | Method and device for evaluating electromigration of metal wiring | |
JPH07202375A (en) | Manufacture of thick-film circuit board | |
JPH02187047A (en) | Film carrier | |
JPH0376241A (en) | Semiconductor device | |
JPS63262572A (en) | Method for screening inspection of foil of printed circuit board |