JPH04155914A - X-ray exposure - Google Patents

X-ray exposure

Info

Publication number
JPH04155914A
JPH04155914A JP2281661A JP28166190A JPH04155914A JP H04155914 A JPH04155914 A JP H04155914A JP 2281661 A JP2281661 A JP 2281661A JP 28166190 A JP28166190 A JP 28166190A JP H04155914 A JPH04155914 A JP H04155914A
Authority
JP
Japan
Prior art keywords
resist
resist layer
mask
rays
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2281661A
Other languages
Japanese (ja)
Inventor
Yoshitaka Kitamura
北村 芳隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2281661A priority Critical patent/JPH04155914A/en
Publication of JPH04155914A publication Critical patent/JPH04155914A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/7045Hybrid exposures, i.e. multiple exposures of the same area using different types of exposure apparatus, e.g. combining projection, proximity, direct write, interferometric, UV, x-ray or particle beam

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To control the size of a pattern easily and to increase the survival rate of a film by a method wherein the high-energy light is applied to a resist layer in an oxygen atmosphere to form a hardly-soluble layer and then the X-rays are applied to the resist through a mask in an atmosphere having no oxygen. CONSTITUTION:Before X-ray exposure, high-energy light such as KrF excimer laser light is applied to a resist layer 13 which is deposited on a semiconductor substrate 2 in an oxygen atmosphere. Ozone is generated in this process and a hardly-soluble layer 15 is formed on the surface of the resist layer 13 due to the ozone. As the next step, with the semiconductor substrate positioned for exposure on an X-ray aligner, an atmosphere between the semiconductor and a mask is replaced with an atmosphere having no oxygen and gap and in-plane alightments are conducted between the mask and semiconductor substrate (the resist layer). Then, X-rays 7 are applied to on the resist layer 13 through the mask 4 for exposure. The resist layer 13 irradiated with X-rays partly includes a hardly-soluble layer 15 and is brought into such a condition that it may be dissolved by development. With the hardly-soluble layer 15 being left over on the surface of a part of the resist layer 13 which has not been irradiated with the X-rays, a resist pattern 18 of the non-exposed part remains, retaining its shape.

Description

【発明の詳細な説明】 [概要] 本発明は現像すると未露光部も溶解して膜厚が減少する
レジストを用いて行うX線露光方法に関し、 パターンサイズのコントロールを容易にし、残膜率を向
上することのできるX線露光方法を提供することを目的
とし、 基板上に塗布したレジストをX線で露光するX線露光方
法であって、酸素を含む雰囲気中で高エネルギ光をレジ
ストに照射する工程と、その後、酸素を含まなに雰囲気
でX線をマスクを通してレジストに照射する工程とを含
むように構成する。
[Detailed Description of the Invention] [Summary] The present invention relates to an X-ray exposure method using a resist whose film thickness is reduced by dissolving the unexposed areas when developed. This is an X-ray exposure method in which a resist coated on a substrate is exposed to X-rays, and the resist is irradiated with high-energy light in an oxygen-containing atmosphere. and then irradiating the resist with X-rays through a mask in an oxygen-containing atmosphere.

[産業上の利用分野] 本発明はX線露光方法に関し、特に現像すると未露光部
も溶解して膜厚が減少するレジストを用いて行うX線露
光方法に関する。
[Industrial Application Field] The present invention relates to an X-ray exposure method, and more particularly to an X-ray exposure method using a resist whose film thickness decreases by dissolving unexposed areas when developed.

近年、メモリ装置等の半導体装置の高密度化に伴い、パ
ターンの縮小が要求され、パターン巾はサブミクロン、
クォーターミクロンへと進んでいる。
In recent years, with the increasing density of semiconductor devices such as memory devices, there has been a demand for smaller patterns, and pattern widths have become submicron,
progressing to quarter microns.

このような細いパターンを実現するため、量産性の高い
X線リングラフィ技術の開発、特にSOR光を用いたX
線リングラフィ技術の開発が行われている。
In order to realize such thin patterns, we are developing X-ray phosphorography technology that is highly mass-producible, especially X-ray phosphorography technology using SOR light.
Line phosphorography technology is being developed.

本明細書に置いて、特に断らない限り、X線とは真空レ
ベルに対する内殻電子のエネルギレベルに対応するエネ
ルギの電磁波を指し、高エネルギ光とは紫外光、特に真
空紫外光を除いた遠紫外光と近紫外光とを指す。
In this specification, unless otherwise specified, X-rays refer to electromagnetic waves with energy corresponding to the energy level of core electrons with respect to vacuum level, and high-energy light refers to ultraviolet light, especially far-field light excluding vacuum ultraviolet light. Refers to ultraviolet light and near ultraviolet light.

[従来の技術] X線露光に用いられるレジストは、現像すると未露光部
も溶解するものが多い。たとえば、日立化成製商品名R
E−5000P、日本ゼオン製Z−CMR,東京応化製
PMMA、0EBR−1000等は、未露光部の溶解速
度が速いため、現像後の残膜率が低い。このようなレジ
ストを単体でそのまま使用すると、未露光部のサイドエ
ッチ等によりレジストパターンサイズのコントロールが
難しく、また残膜率が低いことから半導体材料のエツチ
ング時には十分な選択比が得難いという問題がある。
[Prior Art] In many resists used for X-ray exposure, unexposed areas also dissolve when developed. For example, Hitachi Chemical product name R
E-5000P, Z-CMR manufactured by Nippon Zeon, PMMA manufactured by Tokyo Ohka, 0EBR-1000, etc., have a low residual film rate after development because the dissolution rate of the unexposed area is fast. If such a resist is used alone, it is difficult to control the resist pattern size due to side etching in unexposed areas, and the low residual film rate makes it difficult to obtain a sufficient selectivity when etching semiconductor materials. .

そこで、X線用レジストの上に露光によって現像される
自己現像型難溶層を塗布し、現像する方法が行われてい
る。露光部においては難溶層力鳴溶解するようになり、
未露光部においては、難溶層が保護膜として働く。さら
に、現像時には未露光部が現像液になるべく接触しない
ようにして残膜率の向上を図っている。
Therefore, a method is used in which a self-developing type poorly soluble layer that is developed by exposure to light is coated on the X-ray resist and then developed. In the exposed area, the poorly soluble layer begins to dissolve with force,
In the unexposed area, the hardly soluble layer acts as a protective film. Furthermore, during development, the unexposed area is kept from coming into contact with the developer as much as possible in order to improve the residual film rate.

しかしながら、この方法は作業工程が複雑で、欠陥の発
生する確率が高くなる。
However, this method requires complicated work steps and increases the probability of defects occurring.

[発明が解決しようとする課題] 劣化の少ないパターンを形成し、良好な素子ノくターン
を得るためには、現像後のノくターンサイズをコントロ
ールすると共に、残膜率を向上させ、エツチング時に必
要な選択比を得ることが望まれる。
[Problems to be solved by the invention] In order to form a pattern with little deterioration and obtain a good element turn, it is necessary to control the turn size after development, improve the residual film rate, and improve the etching process during etching. It is desirable to obtain the necessary selectivity.

本発明の目的は、パターンサイズのコントロールを容易
にし、残膜率を向上することのできるX線露光方法を提
供することである。
An object of the present invention is to provide an X-ray exposure method that allows easy control of pattern size and improves film remaining rate.

[課題を解決するための手段] 本発明のX線露光方法は、基板上に塗布したレジストを
X線で露光するX線露光方法であって、酸素を含む雰囲
気中で高エネルギ光をレジストに照射する工程と、その
後、酸素を含まない雰囲気でX線をマスクを通してレジ
ストに照射する工程とを含む。
[Means for Solving the Problems] The X-ray exposure method of the present invention is an X-ray exposure method in which a resist coated on a substrate is exposed to X-rays, and the resist is exposed to high-energy light in an oxygen-containing atmosphere. and then irradiating the resist with X-rays through a mask in an oxygen-free atmosphere.

[作用] 酸素を含む雰囲気中で高エネルギ光をレジストに照射す
ると、レジストの表面部においてレジストの難溶化が生
じる。
[Function] When a resist is irradiated with high-energy light in an oxygen-containing atmosphere, the resist becomes less soluble on the surface of the resist.

その後酸素を含まない雰囲気でX線をマスクを通してレ
ジストに照射すると、X線のパターン露光が行われ、X
線が照射されたところのレジストは容易に溶解するよう
になる。X線が照射しなかった部分においては、以前に
形成された難溶層が残る。この難溶層を保護層として利
用しつつ現像を行なうことにより、パターンサイズの精
度を保つと共に、現像後の残膜率を向上させることがで
きる。
After that, X-rays are irradiated to the resist through a mask in an oxygen-free atmosphere, and X-ray pattern exposure is performed.
The resist where the radiation is irradiated becomes easily dissolved. In the areas not irradiated with X-rays, the previously formed poorly soluble layer remains. By performing development while utilizing this poorly soluble layer as a protective layer, it is possible to maintain accuracy in pattern size and to improve the rate of film remaining after development.

このようにして、現像後の残膜率が高く、劣化の少ない
レジストパターンを得ることができる。
In this way, a resist pattern with a high residual film rate after development and little deterioration can be obtained.

[実施例] 以下、本発明を実施例に沿って説明する。[Example] Hereinafter, the present invention will be explained along with examples.

第1図にX線露光装置を概略的に示す。FIG. 1 schematically shows an X-ray exposure apparatus.

SOR光源(図示せず)から発したSOR光7は、光真
空領域内に設けたミラー6によって反射されると共に短
波長成分がカットされる。ミラー6は、たとえばPt、
石英等によって形成される。
SOR light 7 emitted from an SOR light source (not shown) is reflected by a mirror 6 provided within the optical vacuum region, and short wavelength components are cut off. The mirror 6 is made of, for example, Pt,
It is formed from quartz, etc.

短波長成分がカットされたSOR光は高真空領域とHe
雰囲気とを分ける、たとえば厚さ約20μmのBe窓5
に入射し、Be窓5を通過することによって長波長成分
がカットされる。Be窓5を通過したSOR光7はHe
雰囲気を通過し、SiC膜、カプトン膜等で形成された
出射窓8から出射する。なお、He雰囲気は、Heガス
容器3によって取り囲まれている。出射窓8を透過した
SOR光は、マスク4を介して半導体基板2上に照射さ
れる。マスク4は、たとえばシリコンウェハの中央部を
開口し、そこにSiC等のX線に対する透明体の膜を形
成し、その透明膜上にX線に対する吸収体であるTa、
金、W等の重金属のパターンを形成したものである。入
射するX線(S。
The SOR light with short wavelength components cut is in the high vacuum region and He
For example, a Be window 5 with a thickness of about 20 μm separates it from the atmosphere.
The long wavelength components are cut off by passing through the Be window 5. The SOR light 7 passing through the Be window 5 becomes He
The light passes through the atmosphere and is emitted from an exit window 8 formed of a SiC film, a Kapton film, or the like. Note that the He atmosphere is surrounded by the He gas container 3. The SOR light transmitted through the emission window 8 is irradiated onto the semiconductor substrate 2 through the mask 4. The mask 4 has an opening in the center of the silicon wafer, for example, and a film of an X-ray transparent material such as SiC is formed there, and Ta, which is an X-ray absorber, is formed on the transparent film.
A pattern of heavy metal such as gold or W is formed. Incident X-rays (S.

R光)は、吸収体の無い部分のみで透過する。半導体基
板2の上にはレジスト層が形成されている。
R light) is transmitted only through the portion without the absorber. A resist layer is formed on the semiconductor substrate 2.

マスク4を透過したX線によってレジスト層は選択的に
露光される。
The resist layer is selectively exposed to X-rays transmitted through the mask 4.

X線による露光に先立って、半導体基板2の上に塗布し
たレジスト層をKrFエキシマレーザ光等の高エネルギ
光で照射する。X線露光装置と別の位置においてエキシ
マレーザ光を照射する時は、大気等の酸素を含む雰囲気
中において半導体基板2の全面にエキシマレーザ光を照
射すればよい。
Prior to exposure to X-rays, the resist layer coated on the semiconductor substrate 2 is irradiated with high-energy light such as KrF excimer laser light. When irradiating the excimer laser light at a location other than the X-ray exposure device, the entire surface of the semiconductor substrate 2 may be irradiated with the excimer laser light in an oxygen-containing atmosphere such as the atmosphere.

X線露光装置においてエキシマレーザ光を照射する時は
、エキシマレーザ光をX線と同等の光路まで導き、マス
ク4を外して、またはマスク4を介して酸素を含む雰囲
気中でレジスト層上に照射すればよい。酸素を含む雰囲
気にエキシマレーザ光が照射すると、オゾンが発生し、
オゾンの影響によりレジスト表面に難溶解層が形成され
る。この難溶解層は元のレジストと比較して現像液に溶
は難い性質を有する。
When irradiating excimer laser light in an X-ray exposure device, the excimer laser light is guided to the same optical path as X-rays, and the resist layer is irradiated with the mask 4 removed or through the mask 4 in an atmosphere containing oxygen. do it. When excimer laser light is irradiated into an atmosphere containing oxygen, ozone is generated.
A hardly soluble layer is formed on the resist surface due to the influence of ozone. This hardly soluble layer has a property that it is difficult to dissolve in a developer compared to the original resist.

その後、半導体基板2の周辺を酸素を含まない雰囲気に
置換し、X線(SOR光)7によって半導体基板2上の
レジスト層をパターン露光する。
Thereafter, the surroundings of the semiconductor substrate 2 are replaced with an oxygen-free atmosphere, and the resist layer on the semiconductor substrate 2 is pattern-exposed with X-rays (SOR light) 7.

酸素を含まない雰囲気中でX線を照射された領域は、現
像されると溶解するように変化する。X線に照射されな
かった所では難溶解層が残る。
The area irradiated with X-rays in an oxygen-free atmosphere changes so that it dissolves when developed. A hardly soluble layer remains in areas that were not exposed to X-rays.

このように、レジスト層を一旦酸素を含む雰囲気中で露
光して難溶解層を形成した後、酸素を含まない雰囲気中
でX線露光することにより、現像後の残膜率を向上する
ことができる。
In this way, the residual film rate after development can be improved by once exposing the resist layer to light in an oxygen-containing atmosphere to form a hardly soluble layer, and then exposing it to X-rays in an oxygen-free atmosphere. can.

なお、X線露光も大気中等の酸素を含む雰囲気中で行う
と、X線露光時にも表面に難溶解層が形成され、選択性
が失われる。また、レジスト上に酸素遮断膜を塗布した
り、酸素を含まない雰囲気中でエキシマレーザ光により
予備露光しても、非露光部と露光部の溶解速度に変化は
生じず、残膜率の向上には寄与しない。
Note that if the X-ray exposure is also performed in an atmosphere containing oxygen such as the air, a hardly soluble layer will be formed on the surface during the X-ray exposure, and selectivity will be lost. Furthermore, even if an oxygen barrier film is applied to the resist or pre-exposure is performed using excimer laser light in an oxygen-free atmosphere, there is no change in the dissolution rate between the unexposed and exposed areas, and the residual film rate is improved. does not contribute to

なお、半導体基板2はステージ1の上にウェハチャック
等によって固定されており、ステージ1を駆動すること
によりその位置を変化させる。図中11はステージ駆動
系を示す。また、光学アライメント系9.10は、たと
えばマスク4と半導体基板2との間の面内方向および面
外方向のアライメントを調整する。
Note that the semiconductor substrate 2 is fixed on the stage 1 by a wafer chuck or the like, and its position is changed by driving the stage 1. In the figure, 11 indicates a stage drive system. Further, the optical alignment system 9.10 adjusts the alignment between the mask 4 and the semiconductor substrate 2 in the in-plane direction and the out-of-plane direction, for example.

以下、第2図(A)〜(F)を参照して、本発明の実施
例によるX線露光方法をより詳細に説明する。
Hereinafter, an X-ray exposure method according to an embodiment of the present invention will be described in more detail with reference to FIGS. 2(A) to 2(F).

先ず第2図(A)に示すように、シリコン等で形成され
た半導体基板2を準備する。
First, as shown in FIG. 2(A), a semiconductor substrate 2 made of silicon or the like is prepared.

次に、第2図(B)に示すように、半導体基板2の表面
上にレジスト層13をスピナ等によって塗布する。レジ
スト層13はX線露光に使用することのできる、たとえ
ば日立化成製RE−5000P等の厚さ約1μmのレジ
スト層から形成される。
Next, as shown in FIG. 2(B), a resist layer 13 is applied onto the surface of the semiconductor substrate 2 using a spinner or the like. The resist layer 13 is formed of a resist layer with a thickness of about 1 μm, such as RE-5000P manufactured by Hitachi Chemical, which can be used for X-ray exposure.

第2図(C)に示すように、1気圧の大気中で −半導
体基板2上のレジスト層13全面をエキシマレーザ光1
4で照射する。
As shown in FIG. 2(C), the entire surface of the resist layer 13 on the semiconductor substrate 2 is covered with an excimer laser beam in an atmosphere of 1 atm.
Irradiate at 4.

なお、大気の代りに酸素を含む雰囲気を用いてもよい。Note that an atmosphere containing oxygen may be used instead of the atmosphere.

但し、1%以下の濃度の酸素は酸素を含む雰囲気には含
めない。エキシマレーザとしては、たとえばKrFレー
ザを用いることができる。また、紫外領域の高エネルギ
光を発生する他のエキシマレーザ(たとえばArF)ま
たは他の高エネルギ光源を用いることもできる。
However, oxygen with a concentration of 1% or less is not included in the oxygen-containing atmosphere. For example, a KrF laser can be used as the excimer laser. Other excimer lasers (eg, ArF) or other high-energy light sources that generate high-energy light in the ultraviolet region can also be used.

酸素を含む雰囲気に高エネルギの光を照射すると、化学
反応が生じ、オゾンが発生する。この時、同時にレジス
トも高エネルギ光に感光されるが、感光反応を起こして
いる時にオゾンが存在すると、オゾンの影響を受け、レ
ジストが難溶化する。このエキシマレーザ光照射の工程
は、X線露光装置内において行なっても、X線露光装置
外において行ってもよい。また、X1lA露光装置内で
行う場合、マスク4を除去した状態で半導体基板2全面
に照射するのが強度の面から好ましいが、マスクを介し
て照射してもよい。マスクを介して高エネルギ光を照射
する場合、レジスト層の全面は照射されないが、パター
ン巾がサブミクロン以下のように細い場合、照射後の拡
散によって照射領域の影響が非照射領域にも及び、全面
照射と同等の効果を得ることができる。
When high-energy light is irradiated into an oxygen-containing atmosphere, a chemical reaction occurs and ozone is produced. At this time, the resist is also exposed to high-energy light, but if ozone is present during the photosensitive reaction, the resist becomes less soluble due to the influence of ozone. This excimer laser irradiation step may be performed within the X-ray exposure apparatus or outside the X-ray exposure apparatus. Further, when performing the irradiation in an X11A exposure apparatus, it is preferable to irradiate the entire surface of the semiconductor substrate 2 with the mask 4 removed from the viewpoint of intensity, but irradiation may be performed through the mask. When high-energy light is irradiated through a mask, the entire surface of the resist layer is not irradiated, but if the pattern width is as narrow as submicron or less, the influence of the irradiated area extends to non-irradiated areas due to diffusion after irradiation. It is possible to obtain the same effect as full-surface irradiation.

このように、難溶解層15を形成したレジスト層13の
状態を、第2図(A)に拡大して示す。
The state of the resist layer 13 with the hardly soluble layer 15 formed in this way is shown in an enlarged manner in FIG. 2(A).

難溶解層15は、たとえば厚さ約1μmのレジストの表
面部に厚さ約0.1μm程度形成される。
The hardly soluble layer 15 is formed, for example, to a thickness of about 0.1 μm on the surface of a resist having a thickness of about 1 μm.

次に、半導体基板をX線露光装置の露光位置に配置した
状態で、半導体基板とマスクとの間の雰囲気を酸素を含
まない雰囲気に置換する。すなわち、レジスト層には酸
素を含まない雰囲気が接する。また、マスクと半導体基
板(レジスト層)との間のギャップおよび面内の位置合
わせを行う。
Next, with the semiconductor substrate placed at the exposure position of the X-ray exposure apparatus, the atmosphere between the semiconductor substrate and the mask is replaced with an oxygen-free atmosphere. That is, the resist layer is brought into contact with an atmosphere that does not contain oxygen. Also, the gap and in-plane alignment between the mask and the semiconductor substrate (resist layer) are performed.

第2図(E)に示すように、マスク4を介してレジスト
層13にX線7を照射し、露光を行う。
As shown in FIG. 2(E), the resist layer 13 is irradiated with X-rays 7 through the mask 4 for exposure.

X線は、たとえば波長4〜20λ程度のX線である。マ
スク4は、SiC等で形成された厚さ約2μm程度のメ
ンブレン16の上に、Ta等のX線吸収体のパターン1
7が形成されたものである。
The X-rays are, for example, X-rays with a wavelength of about 4 to 20λ. The mask 4 includes a pattern 1 of an X-ray absorber such as Ta on a membrane 16 made of SiC or the like and having a thickness of about 2 μm.
7 was formed.

パターン幅は、たとえば細いもので約0.1μm1太い
もので約10μmである。メンブレン16に照射したX
線は、そのままメンブレン16を透過してレジスト層1
3に照射する。吸収体17を照射したX線は、そこで反
射、吸収されレジスト層13は照射しない。このように
して、レジスト層13はマスク4に従って選択的に露光
される。
The width of the pattern is, for example, about 0.1 μm for a thin pattern and about 10 μm for a thick pattern. X irradiated on membrane 16
The line passes through the membrane 16 as it is and passes through the resist layer 1.
Irradiate to 3. The X-rays irradiated onto the absorber 17 are reflected and absorbed there, and the resist layer 13 is not irradiated. In this way, resist layer 13 is selectively exposed according to mask 4.

X線によって照射されたレジスト層13は、難溶解層1
5の部分を含め、現像によって溶解する状態に変化する
。X線によって照射されなかった部分においては、表面
に難溶解層15か残存し、現像液を用いて現像しても溶
解することが防止される。
The resist layer 13 irradiated with X-rays becomes the hardly soluble layer 1
Including the part 5, it changes to a state where it dissolves by development. In areas not irradiated with X-rays, the hardly soluble layer 15 remains on the surface and is prevented from dissolving even if developed using a developer.

現像を行うと、第2図(F)に示すように、未露光部分
のレジストパターン18が形状の崩れなしに残留する。
When the development is performed, the unexposed portions of the resist pattern 18 remain without deformation, as shown in FIG. 2(F).

X線露光の前にエキシマレーザ光によってレジスト層表
面を照射し、難溶解層を形成する場合を説明したが、エ
キシマレーザ光の代りに紫外領域の波長を有する他の高
エネルギ光を用いることもできる。
Although we have described the case where the surface of the resist layer is irradiated with excimer laser light before X-ray exposure to form a hardly soluble layer, other high-energy light having a wavelength in the ultraviolet region may also be used instead of excimer laser light. can.

また、マスクのない状態でレジスト層全面にエキシマレ
ーザ光を照射する場合を説明したが、マスクの吸収体の
幅が、たとえば1ミクロン程度以下と、狭い場合には、
マスクを通して高エネルギ光を照射してもよい。マスク
上の吸収体によって高エネルギ光は遮断され、レジスト
層は選択的に露光されるが、高エネルギ光による露光の
影響は、拡散によってレジスト層の面内方法にも広がる
In addition, although we have described the case where the entire surface of the resist layer is irradiated with excimer laser light without a mask, if the width of the absorber of the mask is narrow, for example, about 1 micron or less,
High energy light may be irradiated through the mask. Although the high-energy light is blocked by the absorber on the mask and the resist layer is selectively exposed, the influence of exposure to high-energy light also spreads in the plane of the resist layer due to diffusion.

このため、細い領域を残して露光されたレジスト層も、
全面露光されたレジスト層と同等にその全面に難溶解層
を形成する。
For this reason, the resist layer that is exposed leaving a narrow area is also
A hardly soluble layer is formed on the entire surface of the resist layer, which is equivalent to the entire surface of the exposed resist layer.

酸素を含まない雰囲気としてHeを用いる場合を説明し
たが、Ar等の他の不活性ガスやN2等を用いることも
できる。
Although a case has been described in which He is used as the oxygen-free atmosphere, other inert gases such as Ar, N2, etc. may also be used.

以上、実施例に沿って本発明を説明したが、本発明はこ
れらに制限されるものではない。たとえば、種々の変更
、改良、組合せ等が可能なことは当業者に自明であろう
Although the present invention has been described above with reference to Examples, the present invention is not limited thereto. For example, it will be obvious to those skilled in the art that various changes, improvements, combinations, etc. are possible.

[発明の効果] 以上説明したように、本発明によれば、酸素を含む雰囲
気中でレジスト層に高エネルギ光を照射して難溶解層を
形成するため、X線露光後の現像において残存率が低下
し、パターンの劣化を防止し、また残膜率を向上するこ
とができる。
[Effects of the Invention] As explained above, according to the present invention, since a hardly soluble layer is formed by irradiating the resist layer with high-energy light in an oxygen-containing atmosphere, the residual rate is low in development after X-ray exposure. is reduced, pattern deterioration can be prevented, and the remaining film rate can be improved.

得られるパターンの精度が向上し、またエツチングの選
択比が向上する。
The accuracy of the resulting pattern is improved, and the etching selectivity is also improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、X線露光装置の概要を示す断面図、第2図(
A)〜(F)は、本発明の実施例によるX線露光方法を
説明するための断面図である。 図において、 2     半導体基板 3      Heガス容器 4     マスク 5     Be窓 7      SOR光(X線) 8     出射窓(SiC膜) 13     レジスト層 14     エキシマレーザ光 15     難溶解層 16     マスクのメンブレン 17     マスクの吸収体 18     レジストパターン \−二一 (A)Si基板 13ニレジスト層 (B)レジスト層塗布 14:エキシマレーザ光 (C)エキシマレーザ光照封 15:難溶解層 (D>拡大図 実*例 第2図(その]) 17:吸収体 (E)パターン露光 / 18ニレジストパターン (F)現象(レジストパターン形成) 実施例 第2図(その2)
Figure 1 is a sectional view showing an outline of the X-ray exposure apparatus, and Figure 2 (
A) to (F) are cross-sectional views for explaining an X-ray exposure method according to an embodiment of the present invention. In the figure, 2 semiconductor substrate 3 He gas container 4 mask 5 Be window 7 SOR light (X-ray) 8 exit window (SiC film) 13 resist layer 14 excimer laser light 15 hardly soluble layer 16 mask membrane 17 mask absorber 18 Resist pattern\-21 (A) Si substrate 13 Resist layer (B) Resist layer coating 14: Excimer laser light (C) Excimer laser light irradiation 15: Hardly soluble layer (D> Enlarged image *Example Fig. 2 ]) 17: Absorber (E) pattern exposure/18 Resist pattern (F) phenomenon (resist pattern formation) Example Fig. 2 (Part 2)

Claims (2)

【特許請求の範囲】[Claims] (1)、基板上に塗布したレジストをX線で露光するX
線露光方法であって、 酸素を含む雰囲気中で高エネルギ光をレジストに照射す
る工程(第2図(C))と、 その後、酸素を含まない雰囲気でX線をマスクを通して
レジストに照射する工程(第2図(E))と を含むX線露光方法。
(1), exposing the resist coated on the substrate to X-rays
A line exposure method, which includes a step of irradiating the resist with high-energy light in an oxygen-containing atmosphere (Fig. 2 (C)), and then a step of irradiating the resist with X-rays through a mask in an oxygen-free atmosphere. (FIG. 2(E)).
(2)、請求項1記載のX線露光方法であって、前記高
エネルギ光照射工程が前記マスクを通して行われるX線
露光方法。
(2) The X-ray exposure method according to claim 1, wherein the high-energy light irradiation step is performed through the mask.
JP2281661A 1990-10-19 1990-10-19 X-ray exposure Pending JPH04155914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2281661A JPH04155914A (en) 1990-10-19 1990-10-19 X-ray exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2281661A JPH04155914A (en) 1990-10-19 1990-10-19 X-ray exposure

Publications (1)

Publication Number Publication Date
JPH04155914A true JPH04155914A (en) 1992-05-28

Family

ID=17642217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2281661A Pending JPH04155914A (en) 1990-10-19 1990-10-19 X-ray exposure

Country Status (1)

Country Link
JP (1) JPH04155914A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6456377B1 (en) 1997-01-20 2002-09-24 Nikon Corporation Method for measuring optical feature of exposure apparatus and exposure apparatus having means for measuring optical feature
KR100452898B1 (en) * 2001-02-16 2004-10-15 가부시끼가이샤 도시바 Pattern forming method and method for disposing a chemical liquid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6456377B1 (en) 1997-01-20 2002-09-24 Nikon Corporation Method for measuring optical feature of exposure apparatus and exposure apparatus having means for measuring optical feature
US6825932B2 (en) 1997-01-20 2004-11-30 Nikon Corporation Method for measuring optical feature of exposure apparatus and exposure apparatus having means for measuring optical feature
KR100452898B1 (en) * 2001-02-16 2004-10-15 가부시끼가이샤 도시바 Pattern forming method and method for disposing a chemical liquid

Similar Documents

Publication Publication Date Title
JP2538728B2 (en) Gray level mask and method of manufacturing the same
JP4011687B2 (en) Mask structure, exposure apparatus using the mask structure, and semiconductor device manufacturing method using the mask structure
JP2003209053A (en) Lithography apparatus and device manufacturing method
US7781150B2 (en) Method of photolithographic exposure
US5147742A (en) Photomask and fabrication of the same
JPH09232203A (en) Reflection-type x-ray mask structure, apparatus for x-ray exposure and method therefor, and device manufactured by using the reflection-type x-ray mask structure
US6420101B1 (en) Method of reducing post-development defects in and around openings formed in photoresist by use of non-patterned exposure
JPH04155914A (en) X-ray exposure
TW200944959A (en) Lithographic apparatus comprising a closing device and device manufacturing method using the same
JPH0666251B2 (en) X-ray mask and method of manufacturing the same
JP2003156836A (en) Photomask structure, exposure method and exposure system
US5870448A (en) X-ray mask and fabrication process using it
JP2002217097A (en) Reflection-type x-ray mask structure, method of manufacturing device using the same x-ray exposure apparatus, and x-ray exposure method
JPH0653106A (en) Formation of fine resist pattern
JPH11111587A (en) Projection aligner for manufacturing semiconductor and semiconductor device manufacture process using it
JPH11111586A (en) Projection aligner for manufacturing semiconductor, and semiconductor device manufacture process using it
JP2002148809A (en) Method for producing resist substrate and resist substrate
JPS6278550A (en) Developing method for radiation sensitive film
JPH08250420A (en) Processing method of plurality field in x-ray lithography
JPH05136026A (en) Pattern forming method
JPH08222501A (en) Exposure method
JP2007220933A (en) Exposure device
JPH11111585A (en) Projection aligner for manufacturing semiconductor, and semiconductor device manufacturing process using it
JPH07183199A (en) Pattern formation method and aligner and pattern formation device
JPH0469918A (en) X-ray exposing method