JPH0415552A - Method for measuring freshness of animal tissue - Google Patents

Method for measuring freshness of animal tissue

Info

Publication number
JPH0415552A
JPH0415552A JP11847090A JP11847090A JPH0415552A JP H0415552 A JPH0415552 A JP H0415552A JP 11847090 A JP11847090 A JP 11847090A JP 11847090 A JP11847090 A JP 11847090A JP H0415552 A JPH0415552 A JP H0415552A
Authority
JP
Japan
Prior art keywords
electric constant
tissue
animal tissue
freshness
cell membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11847090A
Other languages
Japanese (ja)
Other versions
JPH0690165B2 (en
Inventor
Michio Miyagawa
宮川 道夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2118470A priority Critical patent/JPH0690165B2/en
Publication of JPH0415552A publication Critical patent/JPH0415552A/en
Publication of JPH0690165B2 publication Critical patent/JPH0690165B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To allow rapid and quantitative measurement by measuring plural times the complex reflectivity i.e. electric constant of the animal tissue at the frequency at which the presence of the cell membrane does not affect the electric constant and at the frequency at which the presence thereof affects the electric constant. CONSTITUTION:The electric constant of the animal tissue 5 is measured at a relatively low frequency of <=10KHz and a high frequency of several MHz or above by a probe 1 and an electric constant measuring instrument 3. The results of the measurement are analyzed by a data processor 4 to measure the degree of the destruction of the cell membrane by contrasting the value of the electric constant at the high frequency at which the presence of the cell membrane does not affect the electric constant and the value at the low frequency. Further, the measurement of the electric constant of the tissue 5 is repeated plural times by changing the measuring position by the instrument 3. The fluctuation in the electric constant is larger as the tissue 5 is fresh and the cell membrane is less damaged. The electric constant of the tissue 5 is, however, uniformized in a specified relation and the directivity of the tissue and the difference between the local parts are no longer exhibited when the freshness is successively lost. The result obtd. by determining the statistical characteristic, such as dispersion, of the measured values by the processor 4 is, thereupon, decided as the index of the freshness of the tissue 5.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、魚を含む動物組織の鮮度を迅速、かつ定量
的に評価することのできる動物組織の鮮度計測方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for measuring the freshness of animal tissues, which can quickly and quantitatively evaluate the freshness of animal tissues including fish.

[従来の技術1 魚1食肉など主として食品として供される動物組織の鮮
度評価は、視覚による色や形の観察、および指での圧迫
による弾性の評価など、人間の経験的、かつ定性的評価
、あるいは、まれにはペハ(p H)センサによる酸性
度からの評価など、間接的評価に頼ってきた。また、特
別な動物組織、すなわち人体組織の鮮度、すなわち死後
経過時間の評価等は、生理学的検査および顕微鏡等を使
用した組織学的検査など専門家の経験的知識を基本とし
た医学的検査方法に頼ってきた。
[Conventional technology 1 The freshness of animal tissues mainly served as food, such as fish meat, is evaluated based on human experience and qualitative evaluation, such as visual observation of color and shape, and evaluation of elasticity by pressure with fingers. Or, in rare cases, indirect evaluations have been relied upon, such as evaluations based on acidity using pH sensors. In addition, evaluation of the freshness of special animal tissues, that is, human tissues, that is, the time elapsed after death, etc., is performed using medical examination methods based on the experiential knowledge of experts, such as physiological examinations and histological examinations using microscopes, etc. I have relied on

[発明が解決しようとする課題] ところで、上記従来の動物組織の鮮度を評価する方法は
、これを行う人間の主観に左右されるため、客観性に欠
けるとともに、定量的な評価が不可能であったり、ある
いは鮮度以外の添加物による影響を受けるなど、定量的
指標としての適切さを欠いていた。
[Problems to be solved by the invention] By the way, the above-mentioned conventional method for evaluating the freshness of animal tissue is influenced by the subjectivity of the person performing the method, so it lacks objectivity and makes quantitative evaluation impossible. It lacks appropriateness as a quantitative indicator, as it may be affected by additives other than freshness.

また、顕微鏡等を使用した組織学的検査では、膜構造の
損傷程度など、客観的評価の可能な項目もあるが、人間
の視覚による判定であるから定量的評価は困難である上
、動物組織の顕微鏡試料を作成するのに長時間を要する
欠点があった。
In addition, histological examination using a microscope etc. allows for objective evaluation of some items, such as the degree of damage to membrane structures, but quantitative evaluation is difficult because judgments are made by human vision, and animal tissue The drawback was that it took a long time to prepare microscopic specimens.

したがって、上記のような手段に基づいて動物組織の鮮
度を評価しようとしても、短時間の測定が不可能で、か
つ−殻付のある定量的な評価法の開発が困難である。そ
の結果、動物組織の色や形および弾性の個体差、評価す
る人間の経験度や主観、および添加物の影響等の理由に
より、鮮度に関して客観性のある評価が下せないという
問題点があった。
Therefore, even if one attempts to evaluate the freshness of animal tissue based on the above-mentioned means, short-term measurement is not possible, and it is difficult to develop a quantitative evaluation method that includes shelling. As a result, there is a problem in that objective evaluations of freshness cannot be made due to individual differences in the color, shape, and elasticity of animal tissue, the level of experience and subjectivity of the person making the evaluation, and the influence of additives. Ta.

この発明は、上記の問題点を解決するためになされたも
ので、評価する大の主観や経験によらず、短時間の内に
動物組織の鮮度を客観的、かつ定量的に再規性よく測定
する動物組織の鮮度計測方法を得ることを目的とするも
のである。
This invention was made to solve the above problems, and it is possible to objectively and quantitatively evaluate the freshness of animal tissue in a short period of time, regardless of the subjectivity or experience of the person making the evaluation. The purpose is to obtain a method for measuring the freshness of animal tissue to be measured.

[課題を解決するための手段] この発明に係る動物組織の鮮度計測方法は、動物組織の
複素反射率を細胞膜の存在が影響する周波数と影響しな
い周波数において複数回測定し、さらに測定した複素反
射率を処理して得られた電気定数の統計的性質から動物
組織の鮮度を定量的に計測するものである。
[Means for Solving the Problems] A method for measuring the freshness of animal tissue according to the present invention includes measuring the complex reflectance of animal tissue multiple times at frequencies affected by the presence of cell membranes and frequencies not affected by the presence of cell membranes, and then The freshness of animal tissue is quantitatively measured from the statistical properties of the electrical constant obtained by processing the ratio.

[作用] この発明においては、動物組織の複素反射率を測定し、
さらに、この測定された複素反射率から得られる電気定
数をデータ処理装置で処理してばらつき等の統計的性質
を調べ、これにより動物組織の鮮度を評価する。
[Function] In this invention, the complex reflectance of animal tissue is measured,
Further, the electrical constant obtained from the measured complex reflectance is processed by a data processing device to examine statistical properties such as variations, thereby evaluating the freshness of the animal tissue.

[実施例] 第1図はこの発明を実施するための計測装置の一例を示
すブロック図である。この図において、1はプローブで
、一対の検出電極2を備えている。3は電気定数測定装
置、4はデータ処理装置、5は魚5食肉等主として食品
に供される動物組織である。
[Embodiment] FIG. 1 is a block diagram showing an example of a measuring device for implementing the present invention. In this figure, 1 is a probe, which is equipped with a pair of detection electrodes 2. 3 is an electrical constant measuring device, 4 is a data processing device, and 5 is an animal tissue mainly used for food such as fish and meat.

次に計測方法について説明する。Next, the measurement method will be explained.

この発明では、動物組織5の摘出後の時間経過による蛋
白変性や冷凍および解凍による細胞膜の破壊が、電気定
数に反映されるという事実を利用する。
This invention utilizes the fact that protein denaturation over time after removal of animal tissue 5 and destruction of cell membranes due to freezing and thawing are reflected in electrical constants.

つまり、第1図に示すように、プローブ1と電気定数測
定装置3による動物組織5の電気定数の測定を、細胞膜
の存在が電気定数に影響をJ与える10K Hz以下の
比較的低い周波数と、細胞膜の存在が電気定数に影響を
与えない数M Hz以下の比較的高い周波数で行う。こ
の測定結果をデータ処理装置4により解析すると、細胞
膜の存在が電気定数に影響を与えない高い周波数での電
気定数の値と、低い周波数での電気定数の対比から膜の
破壊程度が測定できる。
That is, as shown in FIG. 1, the measurement of the electrical constant of the animal tissue 5 by the probe 1 and the electrical constant measuring device 3 is performed at a relatively low frequency of 10 KHz or less, where the presence of cell membranes affects the electrical constant. It is carried out at a relatively high frequency of several MHz or less, at which the presence of cell membranes does not affect the electrical constants. When this measurement result is analyzed by the data processing device 4, the degree of membrane destruction can be determined from the comparison between the electrical constant value at high frequencies where the presence of the cell membrane does not affect the electrical constants and the electrical constant at low frequencies.

さらに、この発明では動物組織5の摘出後の時間経過に
よる蛋白変性や冷凍および解凍による細胞膜の破壊が、
電気定数のばらつきとして反映されるという事実を利用
する。
Furthermore, in this invention, protein denaturation due to the passage of time after extraction of the animal tissue 5 and destruction of cell membranes due to freezing and thawing are prevented.
The fact that this is reflected as variations in electrical constants is utilized.

つまり、動物組織5の電気定数の測定を電気定数測定装
置3により測定位置を変えて複数回繰り返えず。動物組
織5が新鮮で細胞膜の損傷が少なければ少ない程細胞の
配列の仕方により、組織構成の方向性や局部間差異のた
め電気定数のばらつきが大きくなる。しかし、動物組織
5の膜破壊が進み鮮度が落ちてくると、膜破壊と一定の
関係をもって動物組織5は電気定数的に均一化し、組織
方向性や局部間差異を示さなくなる。したがって、プロ
ーブ1と電気定数測定装置3による動物組織電気定数の
測定値の分散など統計的性質をデク処理装置4により求
め、この結果を動物組織5の鮮度の指標とする。
In other words, the measurement of the electrical constant of the animal tissue 5 cannot be repeated multiple times by changing the measurement position using the electrical constant measuring device 3. The fresher the animal tissue 5 is and the less damage there is to the cell membrane, the greater the variation in electrical constants due to the direction of tissue composition and local differences due to the way the cells are arranged. However, as the membrane destruction of the animal tissue 5 progresses and its freshness decreases, the animal tissue 5 becomes uniform in terms of electrical constants in a certain relationship with the membrane destruction and no longer exhibits tissue directionality or local differences. Therefore, the statistical properties such as the variance of the animal tissue electrical constants measured by the probe 1 and the electrical constant measuring device 3 are determined by the deku processing device 4, and the results are used as an index of the freshness of the animal tissue 5.

以下、この発明の具体例を詳細に説明する。Hereinafter, specific examples of this invention will be explained in detail.

第1図において、電気定数測定用のプローブ1と、電気
定数測定装置3により、動物組織5の表面あるいは内部
の複素反射率を、複数の周波数および測定装置で複数回
測定する。ここでは、−例として動物組織5の電気定数
をIKHzからIGHzまでの同波数範囲内で201点
選び、プロブ]と電気定数測定装置3およびデータ処理
装置4により、比誘電率と導電率の単位で動物組織5の
電気定数を測定する方法を説明する。
In FIG. 1, a probe 1 for measuring electrical constants and an electric constant measuring device 3 measure the complex reflectance on the surface or inside of an animal tissue 5 multiple times using a plurality of frequencies and measuring devices. Here, as an example, 201 electrical constants of animal tissue 5 are selected within the same wavenumber range from IKHz to IGHz, and the units of relative permittivity and conductivity are A method for measuring the electrical constant of animal tissue 5 will be explained below.

なお、電気定数を求めることは、直接的にはプローブ1
の複素反射率を測定することによって行われるが、プロ
ーブ1の固有インピーダンスが定まっていれば、測定量
はデータ処理装置4でインピーダンスに変換できる。こ
のインピーダンスは測定対象たる動物組織5の複素誘電
特性、すなわち、比誘電率と導電率に1対1に対応して
いるので、プローブ1で結局は比誘電率および導電率を
測定することが可能となる。
Note that determining the electrical constants is directly performed using probe 1.
However, if the characteristic impedance of the probe 1 is determined, the measured quantity can be converted into impedance by the data processing device 4. Since this impedance corresponds one-to-one to the complex dielectric properties of the animal tissue 5 to be measured, that is, the relative permittivity and conductivity, the probe 1 can ultimately measure the relative permittivity and conductivity. becomes.

10KHz以下の比較的低い周波数では、細胞膜のイン
ピーダンスは非常に大きいので電流は細胞膜外のみを流
れるが、数MHz以上の比較的高い周波数では、細胞膜
のインピーダンスが低下するので電流の流れ方は細胞膜
に左右されなくなる。したがって、データ処理装置4に
より、低周波での比誘電率と導電率あるいは何れかの一
方を高周波での対応する比誘電率と導電率と比較解析す
ることにより、また、多点で測定された同様な電気定数
の分散など統計量をデータ処理装置4で求めることによ
り、動物組織5の膜破壊や蛋白変性の定量的評価、すな
わち動物組織5の鮮度計測が可能となる。
At relatively low frequencies of 10 KHz or less, the impedance of the cell membrane is very large, so the current flows only outside the cell membrane, but at relatively high frequencies of several MHz or more, the impedance of the cell membrane decreases, so the current flows through the cell membrane. You will no longer be influenced by it. Therefore, by using the data processing device 4 to compare and analyze the relative permittivity and/or conductivity at low frequencies with the corresponding relative permittivity and conductivity at high frequencies, By obtaining statistical quantities such as the variance of similar electric constants using the data processing device 4, it becomes possible to quantitatively evaluate membrane destruction and protein denaturation of the animal tissue 5, that is, measure the freshness of the animal tissue 5.

第2図にI M Hzから3000MHzまでの201
点の周波数で測定した動物組織5の複素反射率(インピ
ーダンス)から得られる比誘電率、導電率を示す。
Figure 2 shows 201 from I M Hz to 3000 MHz.
The relative permittivity and conductivity obtained from the complex reflectance (impedance) of the animal tissue 5 measured at a point frequency are shown.

第3図に同じく複数回測定した場合の測定値のばらつき
を示す。
FIG. 3 also shows the variation in measured values when measurements were performed multiple times.

上記測定は単にプローブ1を動物組織5に接触または刺
入するだけでよく、電気定数の測定や測定結果のデータ
処理もほとんど瞬時に完了することができるから、簡単
、かつ迅速な鮮度の評価が可能である。
The above measurement requires simply contacting or inserting the probe 1 into the animal tissue 5, and the measurement of electrical constants and data processing of the measurement results can be completed almost instantly, making it possible to easily and quickly evaluate freshness. It is possible.

[発明の効果1 以上説明したように、この発明は、動物組織の複素反射
率を細胞膜の存在が影響する周波数と影響しない周波数
にJ3いて複数回測定し、さらに測定した複素反射率を
処理して得られた電気定数の統計的性質から動物組織の
鮮度を定量的に計測するので、魚を含む動物組織の鮮度
を迅速、かつ定量的に測定することができ、食品衛生お
よび食品の保存1品質管理等に益することが大きいばか
りでなく、法医学等学術的な面においても利用価値が大
きい利点を有する。
[Effect of the invention 1 As explained above, the present invention measures the complex reflectance of animal tissue multiple times at frequencies affected by the presence of cell membranes and frequencies not affected by the presence of cell membranes, and further processes the measured complex reflectance. The freshness of animal tissues can be measured quantitatively from the statistical properties of the electrical constants obtained by It not only greatly benefits quality control, etc., but also has the advantage of being of great utility value in academic fields such as forensic medicine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明を実施するため計測装置の一例を示す
ブロック図、第2図、第3図はこの発明により得られた
データの一例を示す図である。 図中、1はプローブ、2は検出電極、3は電気定数測定
装置、4はデータ処理装置、5は動物組織である。
FIG. 1 is a block diagram showing an example of a measuring device for implementing the present invention, and FIGS. 2 and 3 are diagrams showing examples of data obtained by the present invention. In the figure, 1 is a probe, 2 is a detection electrode, 3 is an electrical constant measuring device, 4 is a data processing device, and 5 is an animal tissue.

Claims (1)

【特許請求の範囲】[Claims]  動物組織の複素反射率を細胞膜の存在が影響する周波
数と影響しない周波数において複数回測定し、さらに前
記測定した複素反射率を処理して得られた電気定数の統
計的性質から前記動物組織の鮮度を定量的に計測するこ
とを特徴とする動物組織の鮮度計測方法。
The freshness of the animal tissue is determined by measuring the complex reflectance of the animal tissue multiple times at frequencies affected by the presence of cell membranes and at frequencies not affected by the presence of cell membranes, and further processing the measured complex reflectance to determine the statistical properties of the electrical constants obtained. A method for measuring the freshness of animal tissue, characterized by quantitatively measuring the freshness of animal tissue.
JP2118470A 1990-05-08 1990-05-08 How to measure the freshness of animal tissues Expired - Lifetime JPH0690165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2118470A JPH0690165B2 (en) 1990-05-08 1990-05-08 How to measure the freshness of animal tissues

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2118470A JPH0690165B2 (en) 1990-05-08 1990-05-08 How to measure the freshness of animal tissues

Publications (2)

Publication Number Publication Date
JPH0415552A true JPH0415552A (en) 1992-01-20
JPH0690165B2 JPH0690165B2 (en) 1994-11-14

Family

ID=14737473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2118470A Expired - Lifetime JPH0690165B2 (en) 1990-05-08 1990-05-08 How to measure the freshness of animal tissues

Country Status (1)

Country Link
JP (1) JPH0690165B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2074934A2 (en) * 1993-02-25 1995-09-16 Nte Sa Procedure for determining the composition of meat substances.
JP2006030083A (en) * 2004-07-20 2006-02-02 Aska Corp Decision system of meat quality of fish
JP2009079966A (en) * 2007-09-26 2009-04-16 Shizuoka Prefecture Method of determining maturity of meat
CN101825594A (en) * 2010-05-18 2010-09-08 中国农业大学 Method for quick nondestructive detection of freshness of freshwater fish
JP2014035330A (en) * 2012-08-10 2014-02-24 Fisheries Research Agency Device for determining a quality state of fish

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4265206B2 (en) * 2002-11-27 2009-05-20 株式会社 東北テクノアーチ Non-contact conductivity measurement system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2074934A2 (en) * 1993-02-25 1995-09-16 Nte Sa Procedure for determining the composition of meat substances.
JP2006030083A (en) * 2004-07-20 2006-02-02 Aska Corp Decision system of meat quality of fish
JP2009079966A (en) * 2007-09-26 2009-04-16 Shizuoka Prefecture Method of determining maturity of meat
CN101825594A (en) * 2010-05-18 2010-09-08 中国农业大学 Method for quick nondestructive detection of freshness of freshwater fish
JP2014035330A (en) * 2012-08-10 2014-02-24 Fisheries Research Agency Device for determining a quality state of fish

Also Published As

Publication number Publication date
JPH0690165B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
Pliquett Bioimpedance: a review for food processing
Swatland On-line monitoring of meat quality
JP4893526B2 (en) Cell physical property value measuring method and physical property measuring apparatus
Pérez-Esteve et al. Use of impedance spectroscopy for predicting freshness of sea bream (Sparus aurata)
Kjær et al. Prediction of starch, soluble sugars and amino acids in potatoes (Solanum tuberosum L.) using hyperspectral imaging, dielectric and LF-NMR methodologies
US20120310541A1 (en) Online determination of inter alia fat, protein, lactose, somatic cell count and urea in milk by dielectric spectroscopy between 0.3 mhz and 1.4 ghz using chemometric evaluation
HU216496B (en) Apparatus and probe for depth-selective measurement of electrical impedance of organic and biological materials
US20160331266A1 (en) Biological impedance measurement probe, measurement system and method based on spectral characteristic
US20020165464A1 (en) Assessment of organs for transplant, xenotransplant, and predicting time of death
Wei et al. Monitoring the fermentation, post-ripeness and storage processes of set yogurt using voltammetric electronic tongue
US6073047A (en) Method and apparatus for diagnosis, detection of cell abnormalities and morphology of living systems
Kent et al. A new multivariate approach to the problem of fish quality estimation
Leng et al. A method to detect water-injected pork based on bioelectrical impedance technique
JPH0415552A (en) Method for measuring freshness of animal tissue
US20100100002A1 (en) Apparatus for diagnosis and monitoring of hepatic steatosis based on electrical impedance measurement
Whitman et al. Electrical measurement for detecting early postmortem changes in porcine muscle
DE102004014338B4 (en) Method for determining the properties of a fabric sample
NO20201071A1 (en) Tissue fluid measurement device
Shivamurthy et al. Complex permittivity extraction of layered biological samples
US10921274B2 (en) Apparatus for in vivo dielectric spectroscopy
CN108872389A (en) A kind of discrimination method of cold fresh beef based on ultrasonic imaging technique and solution chilled beef
O’Toole et al. Non-contact assessment of apple condition using magnetic induction spectroscopy: Preliminary results and indications
JPH10142170A (en) Probe for dielectric relaxation measurement
Gómez-Sánchez et al. Introduction of a muscular bidirectional electrical anisotropy index to quantify the structural modifications during aging in raw meat
Aziz et al. Test frequency optimization using single factor ANOVA for capacitive oil palm fruit ripeness sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term