JPH04155247A - Sample observation by microscopic fourier transform infrared spectroscopy - Google Patents

Sample observation by microscopic fourier transform infrared spectroscopy

Info

Publication number
JPH04155247A
JPH04155247A JP28047790A JP28047790A JPH04155247A JP H04155247 A JPH04155247 A JP H04155247A JP 28047790 A JP28047790 A JP 28047790A JP 28047790 A JP28047790 A JP 28047790A JP H04155247 A JPH04155247 A JP H04155247A
Authority
JP
Japan
Prior art keywords
image
sample
light
mask
fourier transform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28047790A
Other languages
Japanese (ja)
Inventor
Toshiyuki Murata
村田 敏幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP28047790A priority Critical patent/JPH04155247A/en
Publication of JPH04155247A publication Critical patent/JPH04155247A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve efficiency and accuracy of measurement with easier alteration by a method wherein an overall image of a sample is synthesized and displayed on the same screen with the first image as second image after the recording of an image of a part shielded with a mask as the first image to make clear a positional relationship of a part to be measured. CONSTITUTION:Part alone shielded with shielding masks 10 and 11 is monitored with TV camera 15 as first image (a) and inputted into an image processor 16 to be displayed on a screen of a TV monitor 17. Then, an optical path is removed from the masks 10 and 11 and the image is monitored as an overall image of a sample 2 with the camera 15 again. A signal from the camera 15 is inputted into the device 16 and displayed on the screen of the monitor 17 as second image (b) to be shown as synthesized image on the same screen with the image (a). Therefore, a positional relationship of a position to be measured in the sample 2 is made clear to facilitate alteration. Thereafter, spectroscopic characteristic and intensity of the part are measured using infrared rays thereby achieving a shorter measuring time and a higher measuring accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、顕微式フーリエ変換赤外分光法における試料
観察方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a sample observation method in microscopic Fourier transform infrared spectroscopy.

〔従来の技術〕[Conventional technology]

第4図は、従来の一般的な顕微分光測定装置を示し、試
料観察時には、光源1°からの可視光を試料2に照射し
、その透過光を対物鏡3で集光し、像面4に拡大像を形
成する。更に、この像面4からの光をリレーレンズ5を
介して拡大結像させ、その後、接眼レンズ6により像面
4を観察する。
FIG. 4 shows a conventional general microspectrometry device. When observing a sample, visible light from a 1° light source is irradiated onto the sample 2, the transmitted light is focused by an objective mirror 3, and an image plane 4 An enlarged image is formed. Further, the light from this image plane 4 is enlarged and imaged through a relay lens 5, and then the image plane 4 is observed through an eyepiece lens 6.

一方、分光測定を行う場合には、可視光を赤外光に切換
え、光路切換え用ミラー7を像面4とリレーレンズ5と
の間に介装することによりリレー光学系8に赤外光を導
き、その後、検出器9により分光スペクトルを得て、解
析を行う。
On the other hand, when performing spectroscopic measurements, visible light is switched to infrared light, and an optical path switching mirror 7 is interposed between the image plane 4 and the relay lens 5 to transmit the infrared light to the relay optical system 8. After that, a spectroscopic spectrum is obtained by the detector 9 and analyzed.

そして、例えば第5図(a)に示すような試料2中の測
定対象部位Aのみの分光スペクトルを測定したい場合、
第4図に示すように、像面4に測定対象部位以外からの
光束を遮蔽するマスク10.11を設置し、測定対象部
位からの光束のみを分光して、その分光スペクトルを得
るのである。
For example, if you want to measure the spectrum of only the measurement target site A in the sample 2 as shown in FIG. 5(a),
As shown in FIG. 4, a mask 10.11 is installed on the image plane 4 to block light beams from areas other than the area to be measured, and only the beams from the area to be measured are separated to obtain their spectra.

つまり、第5図(b)に示すように、像面4に、各辺が
ナイフェツジに形成され、且つスリット長を任意に変更
できる長方形のスリットからなる遮蔽マスク10.11
を設置し、測定対象部位A以外の部位B、Cからの光束
を遮蔽し、且つ測定対象部位Aからの光束が最大限に得
られるようにスリット長を可変とし、測定を行う。
That is, as shown in FIG. 5(b), a shielding mask 10.11 consisting of a rectangular slit formed in a knife shape on each side on the image plane 4 and whose slit length can be changed arbitrarily.
is installed, the slit length is made variable so as to block the light flux from parts B and C other than the measurement target part A, and to obtain the maximum light flux from the measurement target part A, and the measurement is performed.

〔発明が解決しようとするiB) しかしながら、上記方法で測定対象を限定すると、第5
図(c)に示すように、遮蔽マスクl0111を通して
観測されるのは部位Aのみであり、他の部位B、Cは遮
蔽されているために試料2の保全体における部位への位
置間係を目視観察により再確認することができない、ま
して、測定対象が微小になるほど、あるいは全体像が半
導体チップや生体細胞組織のように複雑であるほど測定
対象の位置関係を把握することが非常に重要であるにも
拘わらず、遮蔽マスク10.11を通しては非常に困難
である。
[iB to be solved by the invention] However, if the measurement target is limited by the above method, the fifth
As shown in Figure (c), only part A is observed through the shielding mask l0111, and the other parts B and C are shielded, so the positional relationship between the parts in the whole specimen 2 is not clear. It is extremely important to understand the positional relationship of the measurement target when it cannot be reconfirmed by visual observation, and the smaller the measurement target becomes, or the more complex the overall image is, such as a semiconductor chip or biological cell tissue. Despite this, it is very difficult to see through the shielding mask 10.11.

本発明は、上述の事柄に留意してなされたもので、その
目的とするところは、試料全体における測定部位の位置
確認及び移動を容易に行うことができる顕微式フーリエ
変換赤外分光法における試料観察方法を提供することに
ある。
The present invention has been made with the above-mentioned considerations in mind, and its purpose is to easily confirm and move the position of the measurement site in the entire sample. The objective is to provide an observation method.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的を達成するため、本発明に係る顕微式フーリ
エ変換赤外分光法における試料観察方法は、マスクを像
点に設けると共に、光路に対して移動自在に構成し、当
該マスクを光路中に設けた状態で像点における結合像を
テレビカメラによってモニターし、当該テレビカメラか
らの信号を画像処理装置に入力して、当該画像処理装置
によってマスクで遮光された部位のみを第1画像として
記録した後、前記マスクを光路から外した状態で再び像
点における結合像を前記テレビカメラによってモニター
し、当該テレビカメラからの信号を画像処理装置に入力
して第2画像として前記第1画像と同一の画面上で合成
像として観察できるようにした点に特徴がある。
In order to achieve the above object, the sample observation method in microscopic Fourier transform infrared spectroscopy according to the present invention includes a mask provided at the image point and configured to be movable with respect to the optical path. The combined image at the image point was monitored by a television camera in the state in which the mask was placed, the signal from the television camera was input to an image processing device, and the image processing device recorded only the area shielded from light by the mask as the first image. Thereafter, with the mask removed from the optical path, the combined image at the image point is monitored again by the TV camera, and the signal from the TV camera is input to the image processing device to produce a second image that is the same as the first image. The feature is that it can be observed as a composite image on the screen.

〔作用〕[Effect]

上記特徴構成によれば、マスクによって遮蔽された部位
の像を第1画像として記録した後、試料の全体像を第2
画像として前記第1i!i像と同一の画面上で合成して
表示するため、試料全体における測定対象部位の位置関
係が明確になると共に、容易に測定対象部位の変更が行
えるため、従来のものと比べて飛躍的な測定時間の短縮
及び測定精度の向上が可能となる。
According to the above characteristic configuration, after recording the image of the part blocked by the mask as the first image, the entire image of the sample is recorded as the second image.
The first i as an image! Since it is synthesized and displayed on the same screen as the i-image, the positional relationship of the measurement target part in the entire sample becomes clear, and the measurement target part can be easily changed, making it a dramatic improvement compared to conventional methods. It is possible to shorten measurement time and improve measurement accuracy.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図ないし第3図は、本発明に係る顕微式フーリエ変
換赤外分光法における試料観察方法の一実施例を示し、
これらの図において第4回及び第5図に示す符号と同一
のものは同一物または相当物を示す。
1 to 3 show an example of a sample observation method in microscopic Fourier transform infrared spectroscopy according to the present invention,
In these figures, the same reference numerals as those shown in the fourth and fifth figures indicate the same or equivalent parts.

まず、第1図に示すように、試料観察時には、光源1°
からの可視光をミラー12.13およびコンデンサ鏡】
4を介して試料ステージ2°に載置された試料2に照射
する。試02を透過した光または照射光によって励起さ
れた螢光や燐光などの光は、対物鏡3を介して像点4で
結像する。この像点4には、測定対象部位以外からの光
を遮蔽する例えば、各辺がナイフェツジに形成され、且
つスリット長を任意に変更できる長方形のスリットから
成る遮蔽マスク】0、】】を設置し、試料2中の測定対
象部位からの光のみが遮蔽マスク10、IIを通過する
ように設定する。なお、遮蔽する手段として他に、円形
のピンホール等を用いてもよい。
First, as shown in Figure 1, when observing a sample, the light source is 1°.
Mirror 12.13 and condenser mirror]
4 to the sample 2 placed on the sample stage 2°. Light such as fluorescence or phosphorescence excited by the light transmitted through the sample 02 or the irradiation light forms an image at an image point 4 via the objective mirror 3. At this image point 4, a shielding mask [0, ]], which blocks light from other than the measurement target area, is installed, for example, consisting of a rectangular slit with knife edges on each side and whose slit length can be changed arbitrarily. , so that only the light from the part to be measured in the sample 2 passes through the shielding masks 10 and II. Note that a circular pinhole or the like may be used as the shielding means.

その後、像点4を通過しだ光をテレビカメラ】5によっ
て像点4における結合像としてモニターし、テレビカメ
ラ15からの信号を画像処理装置16に入力して、遮蔽
マスク】Oll】によって遮蔽された部位のみを第1画
像aとして記録し、テレビモニタ17の画面上に表示す
る(第3図参照)。
Thereafter, the light passing through the image point 4 is monitored as a combined image at the image point 4 by the television camera 5, and the signal from the television camera 15 is input to the image processing device 16 and is blocked by the shielding mask Oll. Only the part that has been detected is recorded as the first image a, and displayed on the screen of the television monitor 17 (see FIG. 3).

次に、試料2全体からの光が像点4を通過するように遮
蔽マスク10.11を光路から外し、像点4を通過した
光は、再びテレビカメラ15によって像点4における試
料2の全体像としてモニターし、テレビカメラ15から
の信号を画像処理装置16に入力して第2画像すとして
テレビモニタ17の西面上に表示された第1画像aと同
一画面上に合成像として表示するC輌3図参照)。
Next, the shielding mask 10.11 is removed from the optical path so that the light from the entire sample 2 passes through the image point 4. The signal from the television camera 15 is input to the image processing device 16, and the second image is displayed as a composite image on the same screen as the first image a displayed on the west side of the television monitor 17. (See Figure C3).

従って、この合成像を観察する場合、第1画像aにおけ
る遮蔽マスク10.11により遮蔽された部位以外は遮
蔽マスク10.11により形成された測定対象部位観察
用の開口部であるため、この開口部と第2画像すとして
の試料2の全体像とを同一の画面上で確認できるため、
試料2中における測定対象部位の位1関係が明確となる
と共に、試料2を移動させることにより、測定対象部位
の変更も容易に行える。
Therefore, when observing this composite image, since the part other than the part shielded by the shielding mask 10.11 in the first image a is the opening for observing the measurement target part formed by the shielding mask 10.11, this opening and the entire image of sample 2 as the second image on the same screen.
The positional relationship between the measurement target parts in the sample 2 becomes clear, and by moving the sample 2, the measurement target parts can be easily changed.

而して、上記方法により測定対象部位を設定した後、赤
外光を用いて測定対象部位の分光特性や強度を測定する
には、第2菌に示すように、遮蔽マスク10.11を第
1画像aとして記録した位置に戻した後、ミラー12を
移動させ、光源1から発した赤外光を例えば三光束干渉
計等からなる干渉計18を通過させて、波長ごとにエネ
ルギー強度変調をかけ、その後ミラー19.20.13
およびコンデンサ鏡14を介して試料2に照射し、その
透過光を対物鏡3を介して像点4で結像する。
After setting the measurement target site using the above method, in order to measure the spectral characteristics and intensity of the measurement target site using infrared light, as shown in the second example, the shielding mask 10. After returning to the position recorded as one image a, the mirror 12 is moved and the infrared light emitted from the light source 1 is passed through an interferometer 18 consisting of, for example, a three-beam interferometer, and energy intensity modulation is performed for each wavelength. hang, then mirror 19.20.13
The sample 2 is irradiated through the condenser mirror 14, and the transmitted light is imaged at the image point 4 through the objective mirror 3.

像点4には、予め可視光を用いて測定対象部位の光束の
みを透過させるように試料2を設定しであるため、測定
対象部位以外からの赤外光は遮蔽される。そして、ミラ
ー21を光路中に導入し、測定対象部位からの赤外光を
リレー光学系8に導入する。赤外光は干渉計18によっ
て波長毎に周波数の異なるエネルギー変調を受けている
ので、測定対象部位からの赤外光を直接検出器9で検出
し、周波数分析することによって分光スペクトルを得る
Since the sample 2 is set in advance at the image point 4 using visible light so as to transmit only the light beam from the region to be measured, infrared light from other than the region to be measured is blocked. Then, the mirror 21 is introduced into the optical path, and the infrared light from the measurement target site is introduced into the relay optical system 8. Since the infrared light is subjected to energy modulation with different frequencies for each wavelength by the interferometer 18, the infrared light from the measurement target site is directly detected by the detector 9, and a spectroscopic spectrum is obtained by frequency analysis.

上述の実施例では透過式の顕微式フーリエ変換赤外分光
法について説明したが、反射式で測定を行う場合には、
第2図に示すように、矢印P方向にミラー19を移動さ
せ、ミラー22.23.24を介して試料2に光を照射
してその反射光を用いて同様に測定を行えばよい。
In the above example, transmission type microscopic Fourier transform infrared spectroscopy was explained, but when measuring with reflection type,
As shown in FIG. 2, the mirror 19 may be moved in the direction of the arrow P, the sample 2 may be irradiated with light through the mirrors 22, 23, and 24, and the reflected light may be used to perform the same measurement.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、マスクによって
遮蔽された部位の像を第1画像として記録した後、試料
の全体像を第2画像として前記第1画像と同一の画面上
で合成して表示するため、試料全体における測定対象部
位の位置関係が明確になると共に、容易に測定対象部位
の変更が行えるため、従来のものと比べて飛躍的な測定
時間の短縮及び測定精度の向上が可能となったのである
As explained above, according to the present invention, after recording the image of the area covered by the mask as the first image, the entire image of the sample is combined as the second image on the same screen as the first image. This makes it clear the positional relationship of the parts to be measured in the entire sample, and the part to be measured can be easily changed, dramatically shortening measurement time and improving measurement accuracy compared to conventional methods. It became possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明の一実施例を示し、第1回
は顕微式フーリエ変換赤外線分光光度計における測定対
象部位の位置確認用光学配置図、第2図は赤外光分光測
定用光学配置図、第3図は試料観察のための動作説明図
である。 第4図及び第5図は従来例を示し、第4図は従来の顕微
分光測定装置の構成図、第5図は遮蔽マスクによる非測
定対象部位の遮蔽方法を説明するための平面図である。 1、l゛ −光源、2−試料、4−像点、10.11−
゛遮蔽マスク、15  テレビカメラ、16−画像処理
袋W、a  −第1画像、b−第2M像。 出 願 人  株式会社 板場製作所 代 理 人  弁理士  藤本英夫 第4図 Q17一
Figures 1 to 3 show one embodiment of the present invention, the first being an optical layout diagram for confirming the position of the measurement target part in a microscopic Fourier transform infrared spectrophotometer, and the second being an infrared light spectrometry diagram. FIG. 3 is an explanatory diagram of the operation for sample observation. 4 and 5 show conventional examples, FIG. 4 is a configuration diagram of a conventional microspectroscopic measurement device, and FIG. 5 is a plan view for explaining a method of shielding a non-measurement target region with a shielding mask. . 1, l゛ - light source, 2- sample, 4- image point, 10.11-
``Shielding mask, 15 television camera, 16-image processing bag W, a-first image, b-second M image. Applicant: Itaba Seisakusho Co., Ltd. Representative: Patent Attorney: Hideo Fujimoto Figure 4 Q171

Claims (1)

【特許請求の範囲】[Claims] 光源からの光を試料に照射し、該試料からの反射あるい
は透過光をマスクを介して分光測定する顕微式フーリエ
変換赤外分光法において、前記マスクを像点に設けると
共に、光路に対して移動自在に構成し、当該マスクを光
路中に設けた状態で像点における結合像をテレビカメラ
によってモニターし、当該テレビカメラからの信号を画
像処理装置に入力して、当該画像処理装置によってマス
クで遮光された部位のみを第1画像として記録した後、
前記マスクを光路から外した状態で再び像点における結
合像を前記テレビカメラによってモニターし、当該テレ
ビカメラからの信号を画像処理装置に入力して第2画像
として前記第1画像と同一の画面上で合成像として観察
できるようにしたことを特徴とする顕微式フーリエ変換
赤外分光法における試料観察方法。
In microscopic Fourier transform infrared spectroscopy, in which a sample is irradiated with light from a light source and the reflected or transmitted light from the sample is spectrally measured, the mask is provided at the image point and moved relative to the optical path. The combined image at the image point is monitored by a television camera with the mask provided in the optical path, the signal from the television camera is input to an image processing device, and the image processing device blocks light with a mask. After recording only the affected area as the first image,
With the mask removed from the optical path, the combined image at the image point is monitored again by the television camera, and the signal from the television camera is input to the image processing device to produce a second image on the same screen as the first image. A method for observing a sample in microscopic Fourier transform infrared spectroscopy, which is characterized in that it can be observed as a composite image.
JP28047790A 1990-10-18 1990-10-18 Sample observation by microscopic fourier transform infrared spectroscopy Pending JPH04155247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28047790A JPH04155247A (en) 1990-10-18 1990-10-18 Sample observation by microscopic fourier transform infrared spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28047790A JPH04155247A (en) 1990-10-18 1990-10-18 Sample observation by microscopic fourier transform infrared spectroscopy

Publications (1)

Publication Number Publication Date
JPH04155247A true JPH04155247A (en) 1992-05-28

Family

ID=17625625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28047790A Pending JPH04155247A (en) 1990-10-18 1990-10-18 Sample observation by microscopic fourier transform infrared spectroscopy

Country Status (1)

Country Link
JP (1) JPH04155247A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864139A (en) * 1997-02-13 1999-01-26 Spectra-Tech Inc. Confocal microspectrometer system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864139A (en) * 1997-02-13 1999-01-26 Spectra-Tech Inc. Confocal microspectrometer system

Similar Documents

Publication Publication Date Title
US5192980A (en) Apparatus and method for method for spatially- and spectrally-resolved measurements
JP5092104B2 (en) Spectrometer and spectroscopic method
JP2733491B2 (en) Raman analyzer
US20080158550A1 (en) Spectral Imaging Camera and Applications
US7696479B2 (en) Method and apparatus for frequency-converting infrared light
JP2004509324A (en) How to adjust the spectroscopic data of a sample and generate a standard Raman spectrum
US9250133B2 (en) Spectral imaging camera and applications
US5241362A (en) Microscopic spectrometer with auxiliary imaging system
JP3316012B2 (en) Temperature measuring device using a micro-Raman spectrophotometer
JPH03148045A (en) Spectroscopic measuring apparatus using microscope method
US7123358B2 (en) Method for Raman imaging of semiconductor materials
KR20150146075A (en) Confocal spectrogram microscope
CA2596076A1 (en) Method and apparatus for variable-field illumination
JPH04155247A (en) Sample observation by microscopic fourier transform infrared spectroscopy
JP3667397B2 (en) Raman spectrometer
JP7318868B2 (en) Sample measuring device, measuring method and program
JP2002014043A (en) Multicolor analyzer for microscope, and multicolor analysis method using microscope
JPH04152246A (en) Microscopic infrared spectro-photometer of fourier transform type
WO2009050437A1 (en) A system and method for infrared imaging
CA3142126A1 (en) Broadband raman excitation spectroscopy with structured excitation profiles
CN111855639A (en) Spectrum acquisition system and spectrum acquisition method
JPH03148043A (en) Spectroscopic measuring apparatus using infrared-ray microscope method
JPH0524203Y2 (en)
KR102442981B1 (en) Instant raman imaging apparatus
JPH11218445A (en) Optical probe