JPH04154901A - Manufacture of copper powder for powder metallurgy - Google Patents

Manufacture of copper powder for powder metallurgy

Info

Publication number
JPH04154901A
JPH04154901A JP2277278A JP27727890A JPH04154901A JP H04154901 A JPH04154901 A JP H04154901A JP 2277278 A JP2277278 A JP 2277278A JP 27727890 A JP27727890 A JP 27727890A JP H04154901 A JPH04154901 A JP H04154901A
Authority
JP
Japan
Prior art keywords
copper powder
powder
copper
fine
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2277278A
Other languages
Japanese (ja)
Other versions
JP2544017B2 (en
Inventor
Hiroshi Yoshinaga
弘 吉永
Osamu Iwazu
岩津 修
Ki Hara
原 機
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2277278A priority Critical patent/JP2544017B2/en
Publication of JPH04154901A publication Critical patent/JPH04154901A/en
Application granted granted Critical
Publication of JP2544017B2 publication Critical patent/JP2544017B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture copper powder for powder metallurgy having good fluidity, compactibility and high deflective strength by mixing the specific parti cle diameters of coarse copper powder and fine copper powder at the specific ratio and cracking bulky sintered body obtd. with heat treatment at the specific temp. CONSTITUTION:To 10-40wt.% of the coarse copper powder having 75-250mum particle diameter obtd. with electrolytic method, atomizing method, etc., 90-60% of the fine copper powder having <=25mum particle diameter is added and mixed. The heat treatment is executed to this mixed material at 650-760 deg.C for about 60min. This heat treatment is desirable to execute in the reducing atmosphere of hydrogen gas, etc. By this heat treatment, the fine copper powder is sintered around the above coarse copper powder. Successively, the obtd. bulky sintered body is cracked by using a rotary type pulverizer, etc. By this method, the copper powder for powder metallurgy, of which the compact body with good fluidity, compactibility and high deflective strength can be compacted, is obtd. This copper powder is used by suitable screening according to the usage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、粉末冶金用銅粉の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing copper powder for powder metallurgy.

〔従来の技術〕[Conventional technology]

一般的に銅系粉末冶金製品を造る場合、主原料の銅粉が
70〜91wt%に副原料としてSn、Pb、Zn、P
、C等を9〜30Δt%添加、混合して混合粉とし、こ
れを成型、焼結することにより作られる。
Generally, when producing copper-based powder metallurgy products, the main raw material copper powder is 70 to 91 wt%, and the auxiliary raw materials are Sn, Pb, Zn, and P.
, C, etc. are added in an amount of 9 to 30 Δt%, mixed to form a mixed powder, which is then molded and sintered.

前記、主原料の銅粉には電解銅粉、アトマイズ銅粉が用
いられる。
As the main raw material copper powder, electrolytic copper powder or atomized copper powder is used.

しかし、現在行われている方法による混合粉は前記した
通り70〜91し%を銅粉が占め、この主原料の銅粉の
特性が製造工程、作業性及び最終製品特性に大きく影響
するので、主原料の銅粉により用途が限定される欠点が
あった。即ち、成形工程で金型に粉末を充填するとき、
粉末の流動性が良いものは複雑な形状をした金型にも粉
末がすぐに、均一に充填されるが、粉末の流動性が悪い
と複雑な形状をした金型には完全に充填されず、空隙が
できて所定の強さの圧粉体ができない。
However, as mentioned above, copper powder accounts for 70 to 91% of the mixed powder produced by the current method, and the characteristics of the main raw material, copper powder, greatly affect the manufacturing process, workability, and final product characteristics. The drawback was that its uses were limited by the copper powder used as the main raw material. That is, when filling the mold with powder in the molding process,
If the powder has good fluidity, it will quickly and evenly fill molds with complex shapes, but if powder has poor fluidity, it will not be completely filled into molds with complex shapes. , voids are created, making it impossible to form a green compact with the specified strength.

粉末の流動性は、一般にアトマイズ法で作った粒状もし
くは球形の粉は速く流れ、電解法で造った樹枝状銅粉は
流れが悪く、特に微粉になると軽く、かさ高いため全く
流れない。すなわち粉の形状と粒度により流動性が決ま
るのである。
Regarding the fluidity of powder, granular or spherical powder made by atomization generally flows quickly, while dendritic copper powder made by electrolysis has poor flow, and especially fine powder does not flow at all because it is light and bulky. In other words, fluidity is determined by the shape and particle size of the powder.

流動性はJIS Z 2502に規定される流動度で表
され数値の小さいほど速く流れる。
Fluidity is expressed by the flow rate specified in JIS Z 2502, and the smaller the value, the faster the flow.

電解銅粉の場合、粒子の形が樹枝状のため技のからみに
よりできた圧粉体は壊れにくいが反対に枝が邪魔をして
粉の流れが悪いので成形工程で金型に粉末を充填する時
、何等かの対策を講して使用している。しかし、最近の
小型、軽量化による部品の肉厚が1.0mm以下の場合
、完全には充填ができずブリッジングを生じ、多くの空
隙が出来ることにより製品の寸法にバラツキが生じる。
In the case of electrolytic copper powder, the shape of the particles is dendritic, so the green compact created by the technique is difficult to break, but on the other hand, the branches get in the way and make it difficult for the powder to flow, so it is difficult to fill the powder into the mold during the molding process. When doing so, I take some precautions when using it. However, when the wall thickness of parts is less than 1.0 mm due to recent miniaturization and weight reduction, filling cannot be completed completely and bridging occurs, creating many voids and causing variations in product dimensions.

この対策として、微粉を焼結、造粒させ成形性と流動性
を改善さす案もあるが、この粉末を用いると焼結体の寸
法変化が大きく特殊な用途にしか用いられていないのが
現状である。
As a countermeasure to this problem, there is a proposal to improve formability and fluidity by sintering and granulating fine powder, but the use of this powder causes a large change in the dimensions of the sintered body, and currently it is only used for special purposes. It is.

出発原料がアトマイズ銅粉の場合は、粒状若しくは球形
粉のため、流動性が非常に良く、金型への充填時にブリ
ッジングを生じることがないので、製造工程であまり工
夫を必要としないが、製造履歴と形状からくる欠点とし
て圧粉体を造る時に高い圧力を用いないと、できた圧粉
体が小さい力で容易に壊れる欠点がある。
When the starting material is atomized copper powder, it has very good fluidity because it is a granular or spherical powder and does not cause bridging when filling into a mold, so it does not require much ingenuity in the manufacturing process. A disadvantage due to the manufacturing history and shape is that unless high pressure is used when making the powder compact, the resulting compact will easily break with a small force.

このことは、圧粉体が次工程の焼結へ輸送するときに壊
れることによる収率の低下、焼結炉の中で壊れることに
より焼結した後で不良品を選別することになるので経済
的な無駄を生じる。
This causes a decrease in yield due to the green compact breaking during transportation to the next process of sintering, and the cost of selecting defective products after sintering due to breakage in the sintering furnace. This results in a lot of waste.

そこで一般には、アトマイズ粉を焼鈍して銅粒子を軟ら
かくし、成形性の改善が行われているが、形状からくる
欠点を完全に改善できないのが現状である。
Generally, therefore, the moldability is improved by annealing the atomized powder to soften the copper particles, but at present it is not possible to completely improve the defects caused by the shape.

上記欠点を改善するためには、電解銅粉とアトマイズ銅
粉を混合する案もあるが、粒度5粒形が異なるため均一
に混合することが困難で、次工程への輸送や成形工程で
色々工夫をこらし、成形作業を行っているが、なお十分
でないのが現状である。
In order to improve the above disadvantages, there is a plan to mix electrolytic copper powder and atomized copper powder, but since the particle size and shape are different, it is difficult to mix uniformly, and there are various problems during transportation to the next process and molding process. Although efforts are being made to mold the material, the current situation is that it is still not sufficient.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者等は従来の電解銅粉、アトマイズ銅粉及びそれ
らの混合粉の欠点を改善する方法、即ち、流動性が良く
、しかも成形性の良好な銅粉末の製造方法を種々検討し
た結果、本発明を完成したものである。
The present inventors have investigated various methods for improving the drawbacks of conventional electrolytic copper powder, atomized copper powder, and mixed powder thereof, that is, methods for producing copper powder with good flowability and moldability. This completes the present invention.

〔問題を解決するための手段〕[Means to solve the problem]

即ち、本発明は粒径が75〜250μmの粗銅物10〜
40−1%に粒径25μm以下の銅微粉90〜6ht%
を加え、混合した後、650〜760°Cで60分間熱
処理した焼結塊を解砕したことを特徴とする粉末冶金用
銅粉の製造方法である。
That is, the present invention uses blister copper products having a particle size of 75 to 250 μm.
40-1% and 90-6ht% of copper fine powder with a particle size of 25μm or less
This is a method for producing copper powder for powder metallurgy, characterized in that the sintered lump is heat-treated at 650 to 760°C for 60 minutes after being mixed and crushed.

以下に本発明について詳細に説明する。The present invention will be explained in detail below.

〔作用〕[Effect]

本発明で用いる粗銅物及び銅微粉は、電解法やアトマイ
ズ法で製造したもので、粒径75〜250μmの粗銅物
は樹枝状の先端が丸みを帯びた形状や粒状または球形の
粉からなる。また、粒径25μm以下の銅微粉は単独の
ものや凝集または、小さい樹枝状の銅粉である。
The blister copper product and fine copper powder used in the present invention are produced by an electrolytic method or an atomization method, and the blister copper product with a particle size of 75 to 250 μm consists of a dendritic shape with a rounded tip, or a granular or spherical powder. Further, the fine copper powder having a particle size of 25 μm or less is a single powder, an aggregated copper powder, or a small dendritic copper powder.

本発明は粗銅物の周りに銅微粉を焼結することにより粗
銅物の持っている欠点を改善することにあり、例えば、
粗銅物が電解銅粉の場合、樹枝状の間に銅微粉を充填し
て焼結させるか、もしくは、その外周に銅微粉を焼結さ
せ、全体として丸味を持った粉末とすることにより、流
動性を改善する。
The present invention aims to improve the drawbacks of blister copper by sintering fine copper powder around the blister.
If the blister copper product is electrolytic copper powder, it is possible to make it flowable by filling the dendritic space with fine copper powder and sintering it, or by sintering fine copper powder around the periphery to make the powder have a round shape as a whole. improve sex.

また、粗銅物がアトマイズ銅粉の場合、その外周に銅微
粉を焼結させることにより、多孔質な表面を持った粉末
とし、これにより、成形性を改善しようとするものであ
る。
Further, when the blister copper product is atomized copper powder, fine copper powder is sintered around the outer periphery of the powder to create a powder with a porous surface, thereby improving moldability.

このため、本発明に用いる銅微粉は25μm以下のもの
が必要で、これが25μm以上であると樹枝状の間に充
填されないか、外周に銅微粉を焼結させられないため、
流動性や成形性の改善の効果が少ない。
For this reason, the copper fine powder used in the present invention needs to be 25 μm or less, and if it is 25 μm or more, it will not be filled between the dendritic structures or the copper fine powder will not be sintered on the outer periphery.
Less effective in improving fluidity and moldability.

本発明に用いる粗銅物の粒径を75〜250μmとした
のは、75μm以下だと銅微粉との粒径の差が余りなく
粒子全体が微粉の状態を示し成形性は良いが、流動性が
悪くなるからであり、250μm以上だとできた粒子に
粗銅物の占める割合が多くなり、その結果、流動性は良
いが見掛密度が大きく成形性が改善されない理由による
。また、前記2種類の銅粉の比率は、r粒径75〜25
0μmの粗銅物1を10〜40−1%とし、r25μm
以下の銅微粉1を90〜60wt%の範囲とすることが
好ましい。
The reason why the particle size of the blister copper used in the present invention is set to 75 to 250 μm is because if it is less than 75 μm, there is not much difference in particle size from the fine copper powder, and the entire particle is in a fine powder state, and the moldability is good, but the fluidity is poor. This is because if the particle size is 250 μm or more, the proportion of blister copper in the resulting particles increases, and as a result, although the fluidity is good, the apparent density is large and the moldability is not improved. In addition, the ratio of the two types of copper powder is r particle size 75 to 25.
0μm blister copper 1 is 10-40-1%, r25μm
It is preferable that the following copper fine powder 1 be in the range of 90 to 60 wt%.

この二つの特性は相反するもので「75〜250μmの
粗銅物」の混合比を40wt%以上にすると流動性が良
く金型への充填作業性が良くなるが、一方で粉末の見掛
密度が大きくなり、成形性が悪くなる。
These two properties are contradictory; if the mixing ratio of "blistered copper material of 75 to 250 μm" is 40 wt% or more, the fluidity is good and the filling workability into the mold is improved, but on the other hand, the apparent density of the powder is It becomes larger and the moldability deteriorates.

したがって「75〜250μ−の粗銅物」を10〜40
wt%と「25μm以下の銅微粉」を90〜60wt%
混合し、熱処理して、焼結塊を粉砕することにより成形
性と流動性を同時に改善した銅粉を得ることができる。
Therefore, "75-250 μ-blister copper" is 10-40
wt% and 90 to 60 wt% of "fine copper powder of 25 μm or less"
By mixing, heat-treating, and pulverizing the sintered mass, it is possible to obtain copper powder with improved formability and flowability at the same time.

熱処理の条件は、焼結中に銅粒子が酸化しないこと、及
び粗銅粉の周りに銅微粉を強固に焼結さすためには、水
素ガス等の還元性雰囲気で行うことが好ましい。熱処理
をすることにより粗銅粉と銅微粉が焼結され銅粒子は焼
鈍され軟らかくなると共に成形性、流動性が改善される
が以下の理由でその温度範囲を限定する。650℃より
低い温度では、ルーズ粉焼結のため粗銅粉と銅微粉の焼
結が強固でなく解砕により粒度が微細になりなりすぎ、
流動性が悪くなるので650°C以上とする。
The heat treatment is preferably performed in a reducing atmosphere such as hydrogen gas in order to prevent the copper particles from being oxidized during sintering and to firmly sinter the copper fine powder around the blister copper powder. By heat treatment, the blister copper powder and fine copper powder are sintered, the copper particles are annealed and softened, and the moldability and fluidity are improved, but the temperature range is limited for the following reasons. At temperatures lower than 650℃, the sintering of blister copper powder and fine copper powder is not strong due to loose powder sintering, and the particle size becomes too fine due to crushing.
The temperature should be 650°C or higher since fluidity will deteriorate.

760°Cより高い温度では粒子同志、特に銅微粉の焼
結が強固に進み焼結塊が硬く解砕を何度もしなければ必
要な粒度の粉末が得られず、また、解砕後の粒子が丸み
をおび特に粗銅粉の周りに焼結した銅微粉は、粗銅粉に
強く押し付けられた緻密な銅粉となってしまい、流動性
は良いが成形性が悪くなる。
At temperatures higher than 760°C, sintering of particles, especially fine copper powder, progresses, resulting in a hard sintered mass, and powder with the required particle size cannot be obtained unless it is crushed many times. Copper fine powder that is rounded and sintered especially around blister copper powder becomes dense copper powder that is strongly pressed against blister copper powder, and has good fluidity but poor formability.

次に、粗銅粉と銅微粉の焼結塊を回転式粉砕機、例えば
マイクロジェット (安用商事■)で解砕することによ
り理由はわからないが粗銅粉1〜3個の周りを銅微粉が
多孔質に焼結した状態の粉末が得られる。
Next, by crushing the sintered lump of blister copper powder and fine copper powder using a rotary crusher, for example, Microjet (Asuyo Shoji ■), the fine copper powder forms porous particles around one to three pieces of blister copper powder, although the reason is unknown. A finely sintered powder is obtained.

本発明によって得られた銅粉は、それぞれの用途に適し
た粒度に調整して用いられる。例えば、銅系焼結部品や
焼結軸受部品には、150μm以下を使用すれば目的に
応じた流動性、成形性のよい原料粉末となる。
The copper powder obtained by the present invention is used after being adjusted to a particle size suitable for each use. For example, for copper-based sintered parts and sintered bearing parts, if a particle size of 150 μm or less is used, the raw material powder will have good fluidity and moldability depending on the purpose.

(実施例〕 以下に実施例にしたがって本発明の詳細な説明する。(Example〕 The present invention will be described in detail below based on examples.

実施例(1) 75μmの粗銅粉3Qw t%に25μm以下の銅微粉
70wt%を加え混合した後、電気炉に入れ、700’
Cで60分間水素雰囲気で熱処理した塊を回転式粉砕機
で粉砕して、粗銅粉の周りに銅微粉末を焼結させた銅粉
を得た。
Example (1) After adding and mixing 70 wt% of copper fine powder of 25 μm or less to 3Qwt% of 75 μm crude copper powder, the mixture was placed in an electric furnace and heated for 700'
The lump heat-treated at C for 60 minutes in a hydrogen atmosphere was pulverized with a rotary pulverizer to obtain copper powder in which fine copper powder was sintered around blister copper powder.

得られた銅粉を150μm以下にふるい分けした。The obtained copper powder was sieved to 150 μm or less.

見掛密度を、(日本工業会規格)  JIS Z 25
04に準じ測定すると2.85(g/cJ)であった。
Apparent density, (Japan Industrial Association standard) JIS Z 25
When measured according to 04, it was 2.85 (g/cJ).

(日本工業会規格)  JIS Z 2502による流
動度は23.0(sec150g) と良好な値であっ
た。
(Japan Industrial Association Standards) The fluidity according to JIS Z 2502 was 23.0 (sec 150 g), which was a good value.

圧縮性は、銅粉を1.5t/c+1で圧縮成形して、抗
折力試験片(長さ30mm、 巾12mm、厚さ6mm
)を作り、(国際規格)  rso 3927に準じて
圧粉密度を求めた結果6.47(g/cJ)であった。
Compressibility was determined by compression molding copper powder at 1.5t/c+1 and using a transverse rupture strength test piece (length 30mm, width 12mm, thickness 6mm).
) was prepared, and the green density was determined according to (international standard) RSO 3927, and the result was 6.47 (g/cJ).

国際規格I303995に準じて圧粉体の抗折力を測定
した結果、126(kg/mm2)であった。結果を表
1に示す。
The transverse rupture strength of the green compact was measured in accordance with international standard I303995 and was found to be 126 (kg/mm2). The results are shown in Table 1.

実施例(2)〜(8) 粗銅粉の粒径及び粗銅粉と銅微粉の配合比率を変化させ
、また熱処理温度を変化させた以外は実施例(1)と同
じ条件で銅粉を製造し、得られた銅粉の特性を実施例(
1)と同じ条件で測定して、その結果を表1に示す。
Examples (2) to (8) Copper powder was produced under the same conditions as in Example (1), except that the particle size of the blister copper powder and the blending ratio of the blister copper powder and fine copper powder were changed, and the heat treatment temperature was changed. The characteristics of the obtained copper powder are shown in Examples (
Measurements were made under the same conditions as in 1), and the results are shown in Table 1.

実施例(9) 75〜250μmの粒度分布をもった粗銅粉40−1%
に25μm以下の銅微粉60wt%を加え混合した後、
電気炉に入れ、760°Cで60分間水素雰囲気で熱処
理した塊を回転式粉砕機で粉砕して、粗銅粉の周りに銅
微粉末を焼結させた銅粉を得た。得られた銅粉を150
μm以下にふるい分けした。そして、実施例(1)と同
し条件で、その特性を測定した結果を表1に示す。
Example (9) 40-1% blister copper powder with particle size distribution of 75 to 250 μm
After adding and mixing 60 wt% of copper fine powder of 25 μm or less,
The lump was placed in an electric furnace and heat-treated in a hydrogen atmosphere at 760° C. for 60 minutes, and then pulverized with a rotary pulverizer to obtain copper powder in which fine copper powder was sintered around blister copper powder. 150% of the obtained copper powder
It was sieved to micrometers or less. Table 1 shows the results of measuring the characteristics under the same conditions as in Example (1).

実施例00) 75〜250μmの粒度分布をもった粗銅粉10wt%
に25μm以下の銅微粉90wt%を加え混合し実施例
(9)と同じ条件で熱処理、粉砕、ふるい分けして銅粉
を製造した。得られた銅粉を実施例(1)と同じ条件で
、その特性を測定した結果を表1に示す。
Example 00) 10 wt% blister copper powder with particle size distribution of 75 to 250 μm
90 wt % of fine copper powder having a diameter of 25 μm or less was added thereto and mixed, followed by heat treatment, crushing, and sieving under the same conditions as in Example (9) to produce copper powder. The properties of the obtained copper powder were measured under the same conditions as in Example (1), and the results are shown in Table 1.

比較例(1)〜(3) 本発明の効果を明確にするため、実施例(1)で用いた
粗銅粉と銅微粉の混合粉を熱処理せず、混合粉のままで
、その特性を実施例(1)と同じ条件で測定し、その結
果を比較例(1)として表1に示す。
Comparative Examples (1) to (3) In order to clarify the effects of the present invention, the mixed powder of blister copper powder and copper fine powder used in Example (1) was not heat-treated, and its characteristics were tested as the mixed powder. Measurement was carried out under the same conditions as in Example (1), and the results are shown in Table 1 as Comparative Example (1).

なお、この比較例(1)の粉末は金型に粉末を充填する
とき微粉が飛散し作業環境が大変悪かった。
It should be noted that the powder of Comparative Example (1) caused a very poor working environment as fine powder was scattered when the powder was filled into a mold.

表1 また、粗銅粉の粒径が本発明の範囲の下限を外れるもの
について比較例(2)、上限を外れるものについて比較
例(3)として、配合比率、熱処理条件等は本発明の範
囲内で行い、得られた銅粉の特性を実施例(1)と同じ
条件で測定し、その結果を表1に示す。
Table 1 In addition, Comparative Example (2) is for a blister copper powder whose particle size is outside the lower limit of the range of the present invention, and Comparative Example (3) is for a case where the particle size is outside the upper limit. The characteristics of the obtained copper powder were measured under the same conditions as in Example (1), and the results are shown in Table 1.

表1から本発明の方法により得られた銅粉は、従来の混
合粉に比べ流動性が改善され、また、粗銅粉の粒径を限
定することにより、見掛密度、流動度、抗折力を適当な
範囲にできることが明らかである。
From Table 1, the copper powder obtained by the method of the present invention has improved fluidity compared to conventional mixed powder, and by limiting the particle size of the blister copper powder, the apparent density, fluidity, transverse rupture strength, It is clear that it is possible to set the value within an appropriate range.

〔発明の効果ン 以上のように本発明を実施することにより以下の効果を
得る。
[Effects of the Invention] By implementing the present invention as described above, the following effects can be obtained.

■流動性の良い粉であり、流動度が小さく、成形性が良
(、抗折力の大きいものが得られる。
■It is a powder with good fluidity, low flowability, and good moldability (and a large transverse rupture strength can be obtained).

■最近のユーザの要求する小型焼結部品の肉厚が1、h
ll以下のものを容易に造ることができる。
■The wall thickness of small sintered parts required by recent users is 1, h.
ll or less can be easily produced.

通常の粉末冶金用原料銅粉として、流動性と成形性に優
れた銅粉が得られ、焼結含油軸受、焼結機械部品さらに
焼結集電ブラシのかしめ粉等として作業性の良い銅粉を
安定して供給できる。
Copper powder with excellent fluidity and formability can be obtained as a raw material copper powder for ordinary powder metallurgy, and can be used as sintered oil-impregnated bearings, sintered machine parts, and caulking powder for sintered current collector brushes with good workability. A stable supply is possible.

Claims (1)

【特許請求の範囲】[Claims] (1)粒径が75〜250μmの粗銅粉10〜40wt
%に粒径25μm以下の銅微粉90〜60wt%を加え
、混合した後、650〜760℃で熱処理した焼結塊を
解砕することを特徴とする粉末冶金用銅粉の製造方法。
(1) 10-40wt of blister copper powder with a particle size of 75-250μm
A method for producing copper powder for powder metallurgy, which comprises adding 90 to 60 wt % of fine copper powder having a particle size of 25 μm or less to and mixing, and then crushing a sintered lump that has been heat-treated at 650 to 760°C.
JP2277278A 1990-10-15 1990-10-15 Method for producing copper powder for powder metallurgy Expired - Fee Related JP2544017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2277278A JP2544017B2 (en) 1990-10-15 1990-10-15 Method for producing copper powder for powder metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2277278A JP2544017B2 (en) 1990-10-15 1990-10-15 Method for producing copper powder for powder metallurgy

Publications (2)

Publication Number Publication Date
JPH04154901A true JPH04154901A (en) 1992-05-27
JP2544017B2 JP2544017B2 (en) 1996-10-16

Family

ID=17581303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2277278A Expired - Fee Related JP2544017B2 (en) 1990-10-15 1990-10-15 Method for producing copper powder for powder metallurgy

Country Status (1)

Country Link
JP (1) JP2544017B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20130911A1 (en) * 2013-06-04 2014-12-05 Velp Scient Srl CONSUMABLE PRODUCT, MACHINE AND PROCEDURE FOR ELEMENTARY ANALYSIS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20130911A1 (en) * 2013-06-04 2014-12-05 Velp Scient Srl CONSUMABLE PRODUCT, MACHINE AND PROCEDURE FOR ELEMENTARY ANALYSIS

Also Published As

Publication number Publication date
JP2544017B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
US4740238A (en) Platelet-containing tantalum powders
JP4267699B2 (en) Deagglomerated tantalum powder and method for preparing the same, and agglomerated tantalum powder
JP6333099B2 (en) Method for producing Ag / SnO2 electrical contact powder and method for producing Ag / SnO2 electrical contact material
CN107552720A (en) A kind of steel-casting precoated sand, its preparation method and anti-agglutinatting property detection method
JP6333098B2 (en) Method for producing Ag / SnO2 electrical contact powder and method for producing Ag / SnO2 electrical contact material
CN105382253A (en) Method for producing premixed copper-tin 10 bronze
US5689796A (en) Method of manufacturing molded copper-chromium family metal alloy article
JPH03162502A (en) Manufacture of iron base powder mixed material for powder metallurgy
RU2681022C1 (en) Method for producing narrow fractional spherical powders from heat-resisting alloys based on nickel aluminide
US2620555A (en) Contact alloys
JPS61210101A (en) Raw material composition for sintering and production of sintered body
JP2002299114A (en) Dust core
CN105087975B (en) A kind of high-content titanium additives and preparation method thereof for producing aluminium alloy
JPH04154901A (en) Manufacture of copper powder for powder metallurgy
KR102441218B1 (en) Tungsten Carbide Powder
JPH1136006A (en) Uniformly grained molybdenum powder and its production
JP7457002B2 (en) Manufacturing method of high-density artificial graphite electrode
JPS6267102A (en) Production of sintered bronze alloy powder
JP2647523B2 (en) Thermal spraying Cr lower 3 C lower 2-NiCr composite powder manufacturing method
US2745742A (en) Method of making a sintered brazing pellet
JPH01184203A (en) Alloy powder for injected-compacting
US2192742A (en) Electric furnace heater element
CN112091228B (en) Preparation method of large-particle spherical tungsten powder
Karibyan et al. Atomized copper powders
JPH044361B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees