JPH0415410Y2 - - Google Patents

Info

Publication number
JPH0415410Y2
JPH0415410Y2 JP19432286U JP19432286U JPH0415410Y2 JP H0415410 Y2 JPH0415410 Y2 JP H0415410Y2 JP 19432286 U JP19432286 U JP 19432286U JP 19432286 U JP19432286 U JP 19432286U JP H0415410 Y2 JPH0415410 Y2 JP H0415410Y2
Authority
JP
Japan
Prior art keywords
stool
mold
bottom plate
ingot
conductive plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19432286U
Other languages
Japanese (ja)
Other versions
JPS63101157U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19432286U priority Critical patent/JPH0415410Y2/ja
Publication of JPS63101157U publication Critical patent/JPS63101157U/ja
Application granted granted Critical
Publication of JPH0415410Y2 publication Critical patent/JPH0415410Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

〔産業上の利用分野〕 本考案は、エレクトロスラグ再溶解(以下、単
にESRと記す)による鋳塊の製造に際し使用す
る鋳造構造に関する。 〔従来技術とその問題点〕 ESR法は、大気中または不活性ガス下で溶融
フラツクスのジユール熱により消耗電極を溶解
し、水冷銅製のモールド内で凝固させる方法であ
り、溶融フラツクスが溶湯を大気から保護し、溶
湯中の酸化物、硫化物をフラツクス中に吸収して
取り除き、不純物の少ないFe基、Ni等の合金を
得るものである。 従来におけるESR法の開始時は、第5図に示
す縦断面図のように、銅製のスツール1上に同じ
く銅製のモールド2を乗せて有底の箱形のを形成
し、その内部のスツール1中心部には厚さ30mm程
度の底板3を乗せ、その底板3の周辺に例えば
NgO粉4等を詰め、更に底板3の上に例えば旋
盤切粉5を乗せて消耗電極6を旋盤切粉5に当接
した状態でフラツクス7で消耗電極6の先端部を
埋めてから消耗電極6に(+)電圧を印加する。
消耗電極6に(+)電圧を印加すると、(−)電
極側のスツール1との間で旋盤切粉5がジユール
熱により溶解し始め、これが火種となつてフラツ
クス7が溶解し始め、次いで、溶融フラツクスの
ジユール熱により消耗電極6の溶解が始まる。 ところが、スツール1上に乗せた底板3を、通
電開始時のアーキングによるスツール1の溶損を
防止するために消耗電極6と同材質の金属を使用
しているが、底板3の歪み、スツール1のくぼみ
等により、底板3とスツール1との密着性が悪
く、接触面積が小さくなり、従つて、通電性が悪
化している。この底板3とスツール1間の通電悪
化により、溶解開始後、あるいは定常状態に入つ
てからも、底板3とスツール1間の密着していな
い部分にボトムアークが発生し、またESR鋳塊
の帯電により鋳塊とモールド2間のフラツクスス
キンの薄い部分にサイドアークが発生するため、
アーク発生部の鋳塊肌悪化を来たす。スツー
ル1及びモールド2の溶損を来す。モールド2
溶損部からの銅混入による鋳塊の銅汚染を来た
す。更に、溶解電力効率の低下による電力原単
位悪化を来たす。等種々の問題があつた。なお、
MgO粉4は、鋳塊ボトムがスツール1に溶着す
るのを防止するためのものである。 〔問題点を解決するための手段〕 本考案は、前述の問題点を解決するためになし
たもので、その特徴は、中央に底板を有する導電
板をスツール上に載置せしめたESRにおける鋳
型構造にある。 以下、本考案の鋳型構造について詳細に説明す
る。 本考案を構成する導電板は、スツールによく密
着することが重要であり、消耗電極、溶融フラツ
クス、鋳塊、底板、スツールと順に流れる電流の
導電性を良くするためのもので、その厚さは0.5
〜5mmが好ましく、0.5mm以下では、スツールと
の接触性が向上する反面、通電に際して短時間に
溶損してしまう可能性があり。又、5mm以上で
は、通電による溶損が発生しないが、反面、スツ
ールとの接触性が悪化する。この導電板は鋳塊処
理中の合金成分を実質的に変化させない成分のも
のであればよく、望ましくは、鋳塊成分と同一材
質を選定することにより、たとえ部分的に溶損し
たとしても鋳塊の銅汚染等の従来のような問題点
のおそれもない。又、導電板の中央に底板を設け
ているのは、消耗電極からの電流を底板を介して
スツールに導くためであり、この底板を導電板よ
り厚く底板の溶損消失を防いでいる。0.5〜5mm
の導電板のみで、底板をその中央に備えていない
と導電板の中央部溶解と同時にスツールも溶解
し、スツールの寿命を短かくするとともに、スツ
ールの銅が溶出して鋳塊ボトムを銅汚染すること
になる。前記底板は、従来の底板と同様にその厚
さが20〜50mmの金属で、好ましくは鋳塊成分を変
えない材質あるいは消耗電極と同材質のものがよ
い。 第1図乃至第4図は、本考案の実施態様を示す
縦断面図で、第5図と同一部材については同一符
号を付与した。 第1図は、平面視がモールド2の外周にほぼ等
しい大きさの金属板でその中央部に底板3が嵌ま
る孔を開け、その孔に底板3を嵌め溶接固着して
なる中央に底板3を有する導電板8aを作成し
た。この導電板8aをスツール上に載置し、次い
でモールド2を乗せて導電板8aをスツール1と
モールド2との間で挟んだ鋳型構造の例である。
この第1図の例では、導電板8aの周辺はモール
ド2の自重を受け、導電板8aとスツール1が完
全に密着していることになる。 第2図は、平面視がモールド2の外周にほぼ等
しい大きさの金属板を用いて、その中央部に底板
3を乗せ溶接固着してなる中央に底板3を有する
導電板8bを作成し、この導電板8bを第1図の
ようにスツール1とモールド2との間に挟んだ例
である。第1図の例に比べて、導電板8bの作成
が中央部に孔を開けない金属板を使用する点容易
に作成できるものである。 第3図は、第1図の例における金属板の外周が
モールド2内部に密接して収まる形状としたもの
であり、又、第4図は、第2図の例における金属
板が第3図のようにモールド2内部に密接して収
まる形状としたものである。 第1図及び第2図の例は、導電板自身の重さと
モールドの重さで導電板とスツールを密着させる
構造となし、又、第3図、第4図の例は、導電板
の外周をモールドの内面に接触させるとともに、
導電板の自重で導電板をスツールに密着させてい
る。 〔実施例〕 本考案例として第1図に示す鋳型構造を使用
し、又、従来例として第5図に示すように導電板
の無い鋳型構造のESR法で鋳塊を製造した。 第1表には鋳塊製造条件を示し、第2表にはそ
の結果を示した。
[Industrial Application Field] The present invention relates to a casting structure used in producing an ingot by electroslag remelting (hereinafter simply referred to as ESR). [Prior art and its problems] The ESR method is a method in which a consumable electrode is melted by the joule heat of a molten flux in the atmosphere or under an inert gas, and then solidified in a water-cooled copper mold. The oxides and sulfides in the molten metal are absorbed into the flux and removed, resulting in a Fe-based, Ni, etc. alloy with few impurities. At the beginning of the conventional ESR method, as shown in the longitudinal cross-sectional view shown in Fig. 5, a mold 2 made of copper is placed on a stool 1 made of copper to form a box-shaped box with a bottom. A bottom plate 3 with a thickness of about 30 mm is placed in the center, and around the bottom plate 3, for example,
Pack NgO powder 4, etc., then put lathe chips 5 on top of the bottom plate 3, and with the consumable electrode 6 in contact with the lathe chips 5, fill the tip of the consumable electrode 6 with flux 7, and then Apply (+) voltage to 6.
When a (+) voltage is applied to the consumable electrode 6, the lathe chips 5 begin to melt due to Joule heat between the stool 1 on the (-) electrode side, this becomes a ignition source, and the flux 7 begins to melt, and then, Melting of the consumable electrode 6 begins due to the joule heat of the molten flux. However, the bottom plate 3 placed on the stool 1 is made of the same metal as the consumable electrode 6 in order to prevent the stool 1 from melting due to arcing when electricity is started, but the bottom plate 3 is distorted and the stool 1 Due to the depressions and the like, the adhesion between the bottom plate 3 and the stool 1 is poor, the contact area is small, and therefore the electrical conductivity is deteriorated. Due to this deterioration of the current flow between the bottom plate 3 and the stool 1, a bottom arc is generated in the part where the bottom plate 3 and the stool 1 are not in close contact even after the start of melting or after entering a steady state, and the ESR ingot is charged. As a result, side arcs occur in the thin part of the flux skin between the ingot and mold 2.
This causes deterioration of the ingot skin in the area where the arc occurs. Stool 1 and mold 2 will be damaged by melting. mold 2
Copper contamination of the ingot occurs due to copper mixed in from the melted parts. Furthermore, the power consumption rate deteriorates due to a decrease in melting power efficiency. Various problems arose. In addition,
The MgO powder 4 is for preventing the bottom of the ingot from being welded to the stool 1. [Means for solving the problem] The present invention was made to solve the above-mentioned problem, and its feature is that it is a mold for ESR in which a conductive plate with a bottom plate in the center is placed on a stool. It's in the structure. Hereinafter, the mold structure of the present invention will be explained in detail. It is important that the conductive plate that constitutes this invention adheres well to the stool, and is designed to improve the conductivity of the current that flows through the consumable electrode, molten flux, ingot, bottom plate, and stool in this order. is 0.5
-5 mm is preferable; if it is less than 0.5 mm, the contact with the stool improves, but there is a possibility that it will be melted and damaged in a short time when electricity is applied. Further, if the thickness is 5 mm or more, melting loss due to current flow will not occur, but on the other hand, contact with the stool will deteriorate. This conductive plate may be made of a material that does not substantially change the alloy composition during ingot processing, and preferably, by selecting the same material as the ingot composition, even if it is partially melted, There is no fear of conventional problems such as copper contamination of the lump. Furthermore, the reason why the bottom plate is provided in the center of the conductive plate is to guide the current from the consumable electrode to the stool through the bottom plate, and this bottom plate is thicker than the conductive plate to prevent the bottom plate from melting away. 0.5~5mm
If the conductive plate is used only and the bottom plate is not placed in the center, the stool will also melt at the same time as the center of the conductive plate melts, shortening the life of the stool, and the copper from the stool will dissolve and contaminate the bottom of the ingot. I will do it. The bottom plate is made of metal with a thickness of 20 to 50 mm, like the conventional bottom plate, and is preferably made of a material that does not change the ingot composition or the same material as the consumable electrode. 1 to 4 are longitudinal cross-sectional views showing embodiments of the present invention, and the same members as in FIG. 5 are given the same reference numerals. FIG. 1 shows a metal plate whose size is approximately the same as the outer circumference of a mold 2 when viewed from above, a hole into which the bottom plate 3 is fitted is formed in the center of the metal plate, and the bottom plate 3 is fitted into the hole and fixed by welding. A conductive plate 8a having the following was created. This is an example of a mold structure in which the conductive plate 8a is placed on a stool, then the mold 2 is placed on it, and the conductive plate 8a is sandwiched between the stool 1 and the mold 2.
In the example shown in FIG. 1, the periphery of the conductive plate 8a receives the weight of the mold 2, so that the conductive plate 8a and the stool 1 are in complete contact with each other. In FIG. 2, a conductive plate 8b having a bottom plate 3 in the center is created by using a metal plate whose size is almost equal to the outer circumference of the mold 2 in plan view, and placing the bottom plate 3 in the center and fixing it by welding. This is an example in which the conductive plate 8b is sandwiched between the stool 1 and the mold 2 as shown in FIG. Compared to the example shown in FIG. 1, the conductive plate 8b can be easily manufactured in that a metal plate without a hole in the center is used. 3 shows a shape in which the outer periphery of the metal plate in the example in FIG. 1 fits closely inside the mold 2, and in FIG. 4, the metal plate in the example in FIG. It has a shape that fits closely inside the mold 2 as shown in FIG. The examples shown in Figures 1 and 2 have a structure in which the conductive plate and the stool are brought into close contact by the weight of the conductive plate itself and the weight of the mold, and the examples shown in Figures 3 and 4 have a structure in which the conductive plate is brought into close contact with the stool by the weight of the conductive plate itself and the weight of the mold. is brought into contact with the inner surface of the mold, and
The conductive plate is held tightly against the stool by its own weight. [Example] As an example of the present invention, a mold structure shown in FIG. 1 was used, and as a conventional example, an ingot was manufactured by the ESR method using a mold structure without a conductive plate as shown in FIG. Table 1 shows the ingot manufacturing conditions, and Table 2 shows the results.

【表】【table】

【表】【table】

【表】 第2表の結果より、本考案は、従来例に比べて
スツールへの導電性が向上し、溶融フラツクス部
での帯電が少なくなることによつて鋳塊中間部の
アークが減少し、従つて鋳塊の肌荒れが減少して
その手入面積率も20%減少し、又、モールドの補
修回数も従来例の1/3に減少し、電力原単位も向
上していることがわかる。なお、この実施例で
は、鋳塊の銅汚染については分析しなかつた。 〔考案の効果〕 本考案は、ESRによる鋳塊の製造に際して使
用する鋳型構造において、中央に底板を有する導
電板をスツール上に載置する簡単な構造の鋳型で
あるにもかかわらず、得られる鋳塊の表面性状の
向上、モールドの長寿命化、更に電力原単位の低
下等多々の大きな効果を得るものである。 なお、本考案の鋳造構造は、ESRの全ての型
状にも適用されるものであり、例えば、モールド
固定式、鋳塊引下げ式、モールド移動式、多電極
式にも適用される。
[Table] From the results in Table 2, the present invention improves the conductivity to the stool compared to the conventional example, and reduces arcing in the middle of the ingot due to less charging in the molten flux area. Therefore, it can be seen that the surface roughness of the ingot is reduced and the area ratio to be repaired is also reduced by 20%, the number of mold repairs is reduced to 1/3 of that of the conventional method, and the electricity consumption rate is also improved. . In this example, copper contamination of the ingot was not analyzed. [Effects of the invention] The present invention has a simple structure in which a conductive plate with a bottom plate in the center is placed on a stool in the mold structure used when manufacturing ingots by ESR. This has many great effects, such as improving the surface quality of the ingot, extending the life of the mold, and lowering the power consumption. Note that the casting structure of the present invention is applicable to all types of ESR, such as a fixed mold type, an ingot pulling type, a moving mold type, and a multi-electrode type.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本考案の鋳型構造を示す縦断面図、
第2図、第3図、第4図は、本考案の他の鋳塊構
造を示す縦断面図、第5図は、従来例における鋳
型構造を示す縦断面図である。 1……スツール、2……モールド、3……底
板、6……消耗電極、8a,8b……導電板。
FIG. 1 is a longitudinal sectional view showing the mold structure of the present invention;
FIG. 2, FIG. 3, and FIG. 4 are longitudinal sectional views showing other ingot structures of the present invention, and FIG. 5 is longitudinal sectional views showing a mold structure in a conventional example. 1... Stool, 2... Mold, 3... Bottom plate, 6... Consumable electrode, 8a, 8b... Conductive plate.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] エレクトロスラグ再溶解による鋳塊の製造に際
し使用する鋳型構造において、中央に底板を有す
る導電板をスツール上に載置したことを特徴とす
るエレクトロスラグ再溶解用鋳型構造。
1. A mold structure for electroslag remelting, which is used for manufacturing an ingot by electroslag remelting, characterized in that a conductive plate having a bottom plate in the center is placed on a stool.
JP19432286U 1986-12-16 1986-12-16 Expired JPH0415410Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19432286U JPH0415410Y2 (en) 1986-12-16 1986-12-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19432286U JPH0415410Y2 (en) 1986-12-16 1986-12-16

Publications (2)

Publication Number Publication Date
JPS63101157U JPS63101157U (en) 1988-07-01
JPH0415410Y2 true JPH0415410Y2 (en) 1992-04-07

Family

ID=31151188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19432286U Expired JPH0415410Y2 (en) 1986-12-16 1986-12-16

Country Status (1)

Country Link
JP (1) JPH0415410Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4711173B2 (en) * 2005-03-17 2011-06-29 大同特殊鋼株式会社 Ingot manufacturing method

Also Published As

Publication number Publication date
JPS63101157U (en) 1988-07-01

Similar Documents

Publication Publication Date Title
US5206987A (en) Battery assembly process
FR2425296A1 (en) NON-FUSIBLE ELECTRODE FOR PLASMA WELDING AND ITS MANUFACTURING PROCESS
US4207454A (en) Method for electroslag welding of metals
CA1290807C (en) Battery assembly process and apparatus
US4450007A (en) Process for electroslag remelting of manganese-base alloys
JPH0415410Y2 (en)
GR3021308T3 (en) Method and assembly for consumable electrode vacuum arc melting
US4037077A (en) Battery welding method
EP2000548B1 (en) Arc start material for electroslag remelting of superalloy and arc starting method employing the arc start material
US3271828A (en) Consumable electrode production of metal ingots
JP3118944B2 (en) Manufacturing method of lead storage battery
JPH0347952B2 (en)
JPH0931558A (en) Vacuum arc remelting method
JP4711173B2 (en) Ingot manufacturing method
JPS6483378A (en) Method for preventing weld crack
US4150247A (en) Stub design for ESR electrodes
US4073640A (en) Method of melting slag
JP2002110135A (en) Manufacturing method of lead storage battery
JPH06290770A (en) Forming method of strap for lead acid battery
JP2002008624A (en) Strap for lead-acid battery
CA1143800A (en) Method of electroslag welding by plate-type electrodes and flux used in the welding process
JPH07188795A (en) Electroslag melting method
JPS5915436Y2 (en) Non-consumable electrode tip for arc melting furnace
JPH1110344A (en) Ignition tip of arc welding machine
JP2002164037A (en) Method of manufacturing plate group shelf for lead-acid battery