JPH04152546A - Radioactivation inspection method of lattice defect material - Google Patents

Radioactivation inspection method of lattice defect material

Info

Publication number
JPH04152546A
JPH04152546A JP2279874A JP27987490A JPH04152546A JP H04152546 A JPH04152546 A JP H04152546A JP 2279874 A JP2279874 A JP 2279874A JP 27987490 A JP27987490 A JP 27987490A JP H04152546 A JPH04152546 A JP H04152546A
Authority
JP
Japan
Prior art keywords
energy
under test
layer
radioactivated
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2279874A
Other languages
Japanese (ja)
Other versions
JP2643580B2 (en
Inventor
Hajime Akiyama
肇 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2279874A priority Critical patent/JP2643580B2/en
Publication of JPH04152546A publication Critical patent/JPH04152546A/en
Application granted granted Critical
Publication of JP2643580B2 publication Critical patent/JP2643580B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To obtain an inspection method which can evaluate, over a wide range, the lattice defect concentration of a material under test in a high-temperature state without causing irradiation damage to the material under test by a method wherein only a layer, to be radioactivated, which has been formed on the surface of the material under test is radioactivated to a short-life positron radiation source. CONSTITUTION:A layer 22 to be radioactivated is formed on the surface of a material 25 under test; a high-energy beam 21 is remote-irradiated; one part of the layer 22 to be radioactivated is radioactivated to a short-life positron radiation source RI by a nuclear reaction. Said layer 22 to be radioactivated and the material 25 under test are set to arbitrary surroundings; the energy spectrum of radiated extinction gammarays 28 when positrons 27 radiated from said positron radiation source are extinguished at reduced speed in the material 25 under test is measured; the defect concentration of the material 25 under test is remote-measured by means of the spread of the width of the energy spectrum. For example, polysilicon, as a layer to be radio- activated, which has been doped with <10>B is deposited on silicon as a material 25 under test; it is irradiated with <2>He<+2> as a high-energy beam 21: <13>N is generated as a radioactivated part 23.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体等、機能材料の格子欠陥濃度を遠隔的
に測定する格子欠陥材料放射化検査方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a lattice defect material activation inspection method for remotely measuring the lattice defect concentration of a functional material such as a semiconductor.

〔従来の技術〕[Conventional technology]

第3図は陽電子を用いた従来の第1の格子欠陥検査方法
を示す説明図で、図において、il+は陽電子線源、【
21は陽電子、(3)ニ被検査材料、(4a)は格子間
位置、(4b)に欠陥位置、(5m)、(5b)σγ線
、161H半導体検出器である。
FIG. 3 is an explanatory diagram showing the first conventional lattice defect inspection method using positrons. In the figure, il+ is a positron beam source,
21 is a positron, (3) is a material to be inspected, (4a) is an interstitial position, (4b) is a defect position, (5m), (5b) is a σγ ray, and is a 161H semiconductor detector.

陽電子IiI源il+に例えば53p、を用いた場合、
最高2.5M@Vのエネルギーを持った陽電子121が
放出され、シリコン等の被検査材料(3)に照射される
When using, for example, 53p as the positron IiI source il+,
Positrons 121 having a maximum energy of 2.5 M@V are emitted and are irradiated onto the material to be inspected (3) such as silicon.

陽電子(2:は被検査材料(31中において周囲の電子
と非弾性衝突によりエネルギーを失い減速され、最終的
に熱化陽電子となって格子間位置(4s)や欠陥位置(
4b)等で電子と対消滅を起こし、消滅r線(5m) 
=(5b) を各々2本ずつ放出する。この検査方法は
欠陥濃度の相違によって消滅γ線(5s)J5b)のエ
ネルギースペクトルが変化することを利用したものであ
る。以下その原理を説明する。
Positrons (2:) lose energy and decelerate due to inelastic collisions with surrounding electrons in the material to be inspected (31), and finally become thermalized positrons that move to interstitial positions (4s) and defect positions (
4b) etc. causes pair annihilation with electrons, resulting in annihilation r-rays (5m)
=(5b) Two pieces of each are released. This inspection method utilizes the fact that the energy spectrum of annihilation gamma rays (5s) changes depending on the difference in defect concentration. The principle will be explained below.

一般に陽電子と電子が対消滅すると、アインシュタイン
の関係式に従い静止質量と運動エネルギーを光量子とし
て放出する。この時エネルギー保存則から放出されたγ
線の全エネルギーは、ET−2fflc  +E−+E
+            ・・・11+で示される。
Generally, when a positron and an electron annihilate, they emit rest mass and kinetic energy as photons according to Einstein's relation. At this time, γ released from the law of conservation of energy
The total energy of the line is ET-2fflc +E-+E
+...Indicated by 11+.

ここで、mは電子及び陽電子の質量、Cは光速度、2−
は電子の運動エネルギー E+は陽電子の運動エネルギ
ーで、E+ニ電子のそれに対して十分小さいので無視で
きる。いま2本のγ線が放出された場合を考えると、実
験室系ではγ線のエネルギーErハドップラー効果によ
り電子の運動エネルギー分だけ広がりを持つ。すなわち
、Eγ=mc2(1±v−CO5θ/2c)     
=42ここで、Vは消滅した電子の速度であり、θはγ
線と電子の運動方向のなす角である。いま電子のエネル
ギーが4eVであるとすると、上記121式の第2項は
2KeVになる。即ち、陽電子によって電子の運動エネ
ルギーが約500倍に増幅されたことになる。最近の半
導体検出器の分解能の半値幅(FWHM)に約1keV
なので、&eVの電子エネルギーに対応する運動分布は
十分検出可能である。
Here, m is the mass of the electron and positron, C is the speed of light, and 2-
is the kinetic energy of the electron.E+ is the kinetic energy of the positron, which is sufficiently smaller than that of the E+ double electron, so it can be ignored. Now, if we consider the case where two gamma rays are emitted, in a laboratory system, the energy of the gamma rays is spread by the kinetic energy of the electrons due to the Hadopppler effect. That is, Eγ=mc2(1±v−CO5θ/2c)
=42 where V is the velocity of the annihilated electron and θ is γ
It is the angle between the direction of motion of the line and the electron. Assuming that the energy of the electron is 4 eV, the second term in equation 121 above is 2 KeV. In other words, the kinetic energy of the electron is amplified approximately 500 times by the positron. The resolution half width (FWHM) of recent semiconductor detectors is approximately 1 keV.
Therefore, the motion distribution corresponding to the electron energy of &eV can be sufficiently detected.

以上の陽電子消滅機構を踏まえた上で完全結晶中で消滅
した場合と、格子欠陥内で消滅した場合での各々の消滅
γ線のエネルギースペクトルを第4図及び第5図に示す
。第4図に完全結晶中で消滅した陽電子による消滅γ線
のエネルギースペクトルを示したものである。陽電子に
正の電荷を持っているので、クーロン相互作用の為イオ
ン殻から反発力を受ける。このため完全結晶中では格子
間位置で消滅する確率が高い。伝導電子は運動エネルギ
ーが比較的小さいことによりその消滅γ線のエネルギー
幅は小さいが、内殻電子は運動エネルギーが比較的大き
いことにより、その消滅rMのエネルギー幅に広くなる
((21式による)。今、全カウント&A、Eγ−51
1keV近傍でのカウント数Cより、 S = C/ A          ・・・(3)を
定義し、Sパラメータと呼称する。Sパラメータはドツ
プラー拡がりの中心部分を全体のカウントで割ったもの
で、伝導電子の寄与を全体のカウントで規格化するもの
である。上記ノ寸うメータに完全結晶を仮定すると材質
によって特定の値を持つものである。
Based on the above positron annihilation mechanism, FIGS. 4 and 5 show the energy spectra of each annihilation gamma ray when the positron annihilates in a perfect crystal and when it annihilates within a lattice defect. Figure 4 shows the energy spectrum of annihilation gamma rays caused by positrons annihilated in a perfect crystal. Since the positron has a positive charge, it receives a repulsive force from the ion shell due to Coulomb interaction. Therefore, in a perfect crystal, there is a high probability of annihilation at interstitial positions. Conduction electrons have a relatively small kinetic energy, so the energy range of their annihilation gamma rays is small, but core electrons have a relatively large kinetic energy, so the energy range of their annihilation rM is wide ((according to equation 21) .Now, all counts & A, Eγ-51
From the count number C near 1 keV, S = C/A (3) is defined and is called the S parameter. The S parameter is the central part of the Doppler spread divided by the total count, which normalizes the contribution of conduction electrons by the total count. Assuming that the above-mentioned dimension meter is a perfect crystal, it will have a specific value depending on the material.

第5図は空孔型格子欠陥濃度の比較的高い試料における
消滅raのエネルギースペクトルを示したものである。
FIG. 5 shows the energy spectrum of annihilation ra in a sample with a relatively high concentration of vacancy-type lattice defects.

空孔型格子欠陥が存在すると陽電子にこれに捕獲され、
内殻電子との消滅確率は下がり、伝導電子との消滅確率
は上がる。このため、ドツプラー拡がりは完全結晶中で
の陽電子消滅の場合に比較して尖鋭化し、Sパラメータ
の@は増加する。この変化を利用して空孔型格子欠陥濃
度を評価することが可能であり、高感度の検査方法とし
て実用化されている。
If a vacancy-type lattice defect exists, it will be captured by a positron,
The probability of annihilation with core electrons decreases, and the probability of annihilation with conduction electrons increases. Therefore, the Doppler spread becomes sharper than in the case of positron annihilation in a perfect crystal, and the S parameter @ increases. This change can be used to evaluate the concentration of vacancy-type lattice defects, and it has been put into practical use as a highly sensitive inspection method.

次に従来の第2の格子欠陥濃度検査方法として特公昭6
0−1577号公報に示された例を説明する。
Next, as the second conventional lattice defect concentration inspection method,
An example shown in Publication No. 0-1577 will be explained.

この検査方法は高エネルギーX線又は高エネルギー電子
線を被検査材料に遠隔照射し、被検査材料をほぼ均一に
陽電子放出源に放射化することにより、陽電子を被検査
材料中にほぼ均一に発生させることを可能とし、従来の
陽電子の外部照射による方法のように被検査材料の表面
層だけでなく、又表面層の状態に左右されることなく被
検査材料全体の平均欠陥濃度を任意の温度状態にかいて
行なえるようにすることを目的とするものである。
This inspection method remotely irradiates the material to be inspected with high-energy X-rays or high-energy electron beams, and the material to be inspected is almost uniformly activated by a positron emission source, thereby generating positrons almost uniformly in the material to be inspected. Unlike the conventional method using external positron irradiation, the average defect concentration of the entire material to be inspected can be measured at any temperature, without being affected by the condition of the surface layer. The purpose is to make it possible to do so depending on the situation.

第6図及びWC7図に上記方法に係るもので、第6図は
被検査材料へ高エネルギーX線又は高エネルギー電子線
を照射する状況を示す側面因、第7図は消滅γ線測定室
の模式断面図である。図において、(10)に高エネル
ギーX線又に高エネルギー電子線であり、被検査材料(
IIs)に数分間照射することにより放射化させる。こ
の直後にコンベア等により消滅rm測定室1121に移
送され、電気炉αa内に収納され任意の温度状態に設定
される。(141は放射Iii!遮蔽のための鉛シール
ド、OaH熱迩蔽のための水ジャケット又にアルミ箔等
である。又、電気炉(13及び鉛シールドθ4)の開口
部外側には半導体検出器部が設置されており、放射化さ
れた被検査材料(llb)より放出された消滅γ線(1
′6のエネルギーを測定する。エネルギースペクトルの
解釈に第3図の従来例で述べ几主旨と同一である。
Figures 6 and WC7 are related to the above method, with Figure 6 showing the side view of the situation in which the material to be inspected is irradiated with high-energy X-rays or high-energy electron beams, and Figure 7 showing the annihilation gamma-ray measurement chamber. It is a schematic cross-sectional view. In the figure, (10) shows high-energy X-rays or high-energy electron beams, and the material to be inspected (
IIs) is activated by irradiation for several minutes. Immediately after this, it is transferred to the extinction rm measurement chamber 1121 by a conveyor or the like, and is stored in the electric furnace αa and set at an arbitrary temperature state. (141 is a lead shield for radiation III! shielding, a water jacket or aluminum foil for OaH heat shielding, etc. Also, a semiconductor detector is installed outside the opening of the electric furnace (13 and lead shield θ4). annihilation gamma rays (1 lb) emitted from the activated inspected material (llb).
Measure the energy of '6. The gist of the interpretation of the energy spectrum is the same as that described in the conventional example shown in FIG.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の第1の格子欠陥濃度検査方法は以上のように構成
されていたので、外部照射用陽電子線源を用いなければ
ならない。従来、この陽電子線源としてH22Nm +
”Cu *68Cu I 19Ne等が使用されている
が、19N、以外のこれら陽電子線源は長寿命の非密封
陽電子線源が多く、使用条件に厳しい制限力があり、高
温状態での欠陥濃度測定に利用できるの框上記陽電子線
源と被検査材料との化学反応や陽電子線源の蒸発等を避
けるために不活性気体元素の19N、に限られるという
問題点があった。
Since the first conventional lattice defect concentration inspection method is configured as described above, an external irradiation positron beam source must be used. Conventionally, H22Nm +
``Cu There was a problem in that the available gas was limited to 19N, an inert gas element, in order to avoid chemical reactions between the positron beam source and the material to be inspected and evaporation of the positron beam source.

又、従来の第2の格子欠陥濃度検査方法は被検査材料が
p IJコン等の機能材料である場合、放射化を行なう
為に照射した高エネルギーX線又は高エネルギー電子線
によって生成される格子欠陥が無視できない濃度になる
ため、低濃度欠陥の評価を行なうことが困難であるとい
う問題点があった。
In addition, when the material to be inspected is a functional material such as p-IJ, the conventional second lattice defect concentration inspection method uses a lattice generated by high-energy X-rays or high-energy electron beams irradiated for activation. There was a problem in that it was difficult to evaluate low-concentration defects because the defects had a concentration that could not be ignored.

この発明は上記のような問題点を解消する為になされた
もので、高温状態にある被検査材料の格子欠陥濃度を広
い範囲にわたって評価できる格子欠陥材料放射化検査方
法を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and its purpose is to provide a lattice defect material activation inspection method that can evaluate the lattice defect concentration of a material to be inspected in a high temperature state over a wide range. .

〔課@を解決するための手段〕[Means to solve section @]

この発明に係る格子欠陥材料放射化検査方法は予め被検
査材料の表面に被放射化層を形成し、高エネルギーイオ
ン線を遠隔照射して核反応によって被放射化層の一部を
短寿命の陽電子放出源(RE)に放射化する第1の工程
と、前記被放射化層と一体化された被検査材料を任意の
環境に設定し、陽電子放出源より放射される陽電子が被
検査材料中で減速消滅して放出する消滅r線のエネルギ
ースペクトルe 1llJ定し、そのエネルギースペク
トル幅の広がりから被検査材料の欠陥濃度を遠隔測定す
るようにし友ものである。
The activation inspection method for a lattice defect material according to the present invention involves forming an activation layer on the surface of the material to be inspected in advance, and remotely irradiating a high-energy ion beam to partially destroy the activation layer through a nuclear reaction. A first step of activating the positron emission source (RE), setting the material to be inspected integrated with the layer to be energized in an arbitrary environment, and emitting positrons from the positron emission source into the material to be inspected. The energy spectrum e1llJ of the annihilation r-rays emitted by deceleration and annihilation is determined, and the defect concentration of the material to be inspected can be remotely measured from the spread of the energy spectrum width.

〔作用〕[Effect]

この発明における格子欠陥濃度検査方法に、被検査材料
の表面に形成された被放射化層のみを短寿命の陽電子放
出源に放射化することにより、被検査材料に照射損傷を
与えることなく陽電子線源と一体化させ、かつ高温状態
での測定も可能にすることができる。
In the lattice defect concentration inspection method of the present invention, only the layer to be activated which is formed on the surface of the material to be inspected is activated by a short-lived positron emission source, so that the positron beam can be used without causing radiation damage to the material to be inspected. It can be integrated with the source and also enable measurements at high temperatures.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例である格子欠陥材料放射化検査
方法を示す説明図である。図において、Hに高エネルギ
ーイオン線、固ニ被放射化層、瞥に放射化部分、(ロ)
に被検査材料、(2′7)は陽電子、シ81は消滅r線
、嶽は半導体検出器である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is an explanatory diagram showing a lattice defect material activation inspection method which is an embodiment of the present invention. In the figure, H is the high-energy ion beam, solid 2 is the activated layer, and (b) is the activated part.
(2'7) is a positron, (81) is an annihilation r-ray, and (2) is a semiconductor detector.

被検査材料(ハ)としてシリコンについて、その格子欠
陥濃度を測定する時、例えばIOHのドープされたポリ
シリコンを被放射化層としてデポし、高エネルギーイオ
ン線Qυとして2 He2”を照射すると10B(α、
n)13N反応により放射化部分−として13Nが生成
される。これは半減期9.96分、陽電子の最大エネル
ギー1−19Mayの特性を持ったものである。尚、前
記核反応のしきい値エネルギーニ4.7MeVであるが
、仮に6MeVで高エネルギーイオン練れを照射したと
すると、Rp−ao、gmである。このことから被放射
化層の厚さnRpより厚くすることにより、被検査材料
□□□が高エネルギーイオン練れにより直接受ける照射
損傷を回避することができる。又、加速エネルギー1.
19MeV f持つ几陽電子のシリコン中での飛程は約
2000声mであるため、被放射化層□□□を多少厚め
に作っても陽電子のの妨げになるという問題に無い。次
に第7図の従来例に示したような電気炉Q31中に収納
して任意の温度状態に設定し几後、放射化部分−から放
出される陽電子−が結晶格子間又は欠陥に捕獲された後
、放出する消滅rM(ハ)?半導体検出器四でとらえ、
そのエネルギースペクトルを評価することにより欠陥濃
度を評価することが可能である。
When measuring the lattice defect concentration of silicon as the material to be inspected (c), for example, if polysilicon doped with IOH is deposited as the layer to be activated and irradiated with 2 He2'' as a high-energy ion beam Qυ, 10B ( α,
n) 13N is produced as the activated moiety by the 13N reaction. This has the characteristics of a half-life of 9.96 minutes and a maximum positron energy of 1-19 May. Note that the threshold energy of the nuclear reaction is 4.7 MeV, but if high-energy ion beams are irradiated at 6 MeV, Rp-ao, gm. Accordingly, by making the thickness of the layer to be activated larger than the thickness nRp, it is possible to avoid radiation damage directly caused to the material to be inspected by high-energy ion mixing. Also, acceleration energy 1.
Since the range of a positron having 19 MeV f in silicon is about 2000 m, there is no problem of hindering the positron even if the irradiated layer is made somewhat thicker. Next, it is placed in an electric furnace Q31 as shown in the conventional example in Fig. 7 and set to an arbitrary temperature state. After that, the annihilation rM(ha) released? Captured by four semiconductor detectors,
It is possible to evaluate the defect concentration by evaluating the energy spectrum.

なお、上記実施例においてはl0B(αon)13Nの
核反応を利用し几場合を示したが、適当な陽電子線源と
なり得る反応に多数あるので、ポリシリコン中にドープ
され良状態での化学的安定性等が良い元素を選べば、よ
り広い環境条件下゛での欠陥濃度測定が可能になる。
In the above example, the nuclear reaction of 10B(αon)13N was used to demonstrate the case, but since there are many reactions that can be a suitable positron beam source, it is possible to dope it into polysilicon and chemically If an element with good stability is selected, it becomes possible to measure the defect concentration under a wider range of environmental conditions.

以上に述べた消滅r@(ハ)のエネルギースペクトル幅
の広がりから欠陥濃度を求める方法の他に第2の検査方
法として陽電子(財)の寿命を測定することにより、欠
陥の種類及び濃度を測定してもよい。
In addition to the above-mentioned method of determining the defect concentration from the spread of the energy spectrum width of annihilation r@(c), a second inspection method is to measure the lifetime of positrons (goods) to determine the type and concentration of defects. You may.

その原理を第2図に示す。陽電子111cIυにおいて
、β十崩壊が起こると、陽電子□□□と同時に崩壊r線
−が放出される。これが半導体検出器−によって検出さ
れた時刻を基準として一方の陽電子(資)が格子欠陥に
捕獲され、後に放出される消滅γ線(ハ)が半導体検出
器@によって検出されるまでの時間を#電子岡の寿命と
定義すると、欠陥の種類によって陽電子が捕獲状MKあ
る時間が異なることより陽電子−の寿命分布によって欠
陥の種類が特定できるものである。
The principle is shown in Figure 2. When β0 decay occurs in the positron 111cIυ, a decay r-ray is emitted at the same time as the positron □□□. Based on the time when this was detected by the semiconductor detector, the time it takes for one positron (capital) to be captured by a lattice defect and for the later emitted annihilation gamma ray (c) to be detected by the semiconductor detector Defining it as the lifetime of an electron, the type of defect can be identified based on the lifetime distribution of positrons since the amount of time a positron stays in the trapped MK differs depending on the type of defect.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、被検査材料の表面に予
め形成され九被放射化層のみを放射化して短寿命の陽電
子線源を生成することにより、被検査材料が損傷を受け
ることなく陽電子#を含んだ被放射化層と一体化でき、
高温状態での欠陥濃度を従来より低#度の範囲から測定
ができるという効果がある。
As described above, according to the present invention, a short-lived positron beam source is generated by activating only the nine activation layers that are preformed on the surface of the material to be inspected, thereby preventing the material to be inspected from being damaged. It can be integrated with the activated layer containing positron #,
This method has the advantage that the defect concentration under high temperature conditions can be measured from a lower degree range than before.

【図面の簡単な説明】 第1図はこの発明の一実施例である格子欠陥材料放射化
検査方法を示す説明図、′Jg2図はこの発明の他の実
施例による格子欠陥材料放射化検査方法を示す説明図、
第3図に従来の第1の格子欠陥濃度検査方法を示す説明
図、第4図μ完全結晶中で消滅した陽電子による消滅γ
線のエネルギースペクトルを示す特性図、第5図に空孔
型欠陥濃度の比較的高い試料にかける消滅γ゛線のエネ
ルギースペクトルを示す特性図、第6図及び第7図は従
来の第2の格子欠陥濃度検査方法を示すもので、第6図
は被検査材料へ高エネルギーX線又は高エネルギー電子
線を照射する状況を示す側面図、第7図に消滅rM測定
室の模式断面図である。
[Brief Description of the Drawings] Fig. 1 is an explanatory diagram showing a method for testing the activation of lattice-defect materials according to an embodiment of the present invention, and Fig. 2 is an explanatory diagram showing a method for testing the activation of lattice-defect materials according to another embodiment of the present invention. An explanatory diagram showing
Fig. 3 is an explanatory diagram showing the conventional first lattice defect concentration inspection method, and Fig. 4 annihilation γ due to positrons annihilated in μ perfect crystal.
Figure 5 is a characteristic diagram showing the energy spectrum of the annihilation γ゛ ray applied to a sample with a relatively high concentration of vacancy-type defects. This shows the lattice defect concentration inspection method. Figure 6 is a side view showing the situation in which the material to be inspected is irradiated with high-energy X-rays or high-energy electron beams, and Figure 7 is a schematic cross-sectional view of the annihilation rM measurement chamber. .

Claims (1)

【特許請求の範囲】[Claims] 被検査材料の表面に被放射化層を形成し、高エネルギー
イオン線を遠隔照射し、核反応によつて前記被放射化層
の一部を短寿命の陽電子放出源(RI)に放射化する第
1の工程と、前記被放射化層と一体化された被検査材料
を任意の環境に設定し、前記陽電子放出源より放射され
る陽電子が前記被検査材料中で減速消滅して放出する消
滅γ線のエネルギースペクトルを測定し、そのエネルギ
ースペクトル幅の広がりから前記被検査材料の欠陥濃度
を遠隔測定することを特徴とする格子欠陥材料放射化検
査方法。
A layer to be activated is formed on the surface of the material to be inspected, a high-energy ion beam is irradiated remotely, and a part of the layer to be activated is activated by a nuclear reaction into a short-lived positron emission source (RI). A first step, in which the material to be inspected integrated with the layer to be radiated is set in an arbitrary environment, and positrons emitted from the positron emission source decelerate and annihilate in the material to be inspected and are emitted. A lattice defect material activation inspection method characterized by measuring the energy spectrum of γ-rays and remotely measuring the defect concentration of the inspected material from the spread of the energy spectrum width.
JP2279874A 1990-10-16 1990-10-16 Lattice defect material activation inspection method Expired - Lifetime JP2643580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2279874A JP2643580B2 (en) 1990-10-16 1990-10-16 Lattice defect material activation inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2279874A JP2643580B2 (en) 1990-10-16 1990-10-16 Lattice defect material activation inspection method

Publications (2)

Publication Number Publication Date
JPH04152546A true JPH04152546A (en) 1992-05-26
JP2643580B2 JP2643580B2 (en) 1997-08-20

Family

ID=17617150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2279874A Expired - Lifetime JP2643580B2 (en) 1990-10-16 1990-10-16 Lattice defect material activation inspection method

Country Status (1)

Country Link
JP (1) JP2643580B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6919563B2 (en) 2002-08-29 2005-07-19 Semiconductor Technology Academic Research Center Defect evaluation apparatus utilizing positrons
CN109632855A (en) * 2018-11-15 2019-04-16 北京大学 The detection method of the impurity defect concentration of cation position is substituted in compound semiconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6919563B2 (en) 2002-08-29 2005-07-19 Semiconductor Technology Academic Research Center Defect evaluation apparatus utilizing positrons
CN109632855A (en) * 2018-11-15 2019-04-16 北京大学 The detection method of the impurity defect concentration of cation position is substituted in compound semiconductor

Also Published As

Publication number Publication date
JP2643580B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
JP5044390B2 (en) Dosimeter for detection of neutron radiation
US9268043B2 (en) Radiation-monitoring system with correlated hodoscopes
JP4995905B2 (en) Detector assembly and method for detecting radiation with angular resolution
US20100046690A1 (en) Apparatus and Method for Detection of Fissile Material Using Active Interrogation
WO2008031313A1 (en) Multiple dr/ct detection device of containers
WO2012000298A1 (en) Articles detection device and detection method thereof
Hawkesworth et al. Radiography with neutrons
US20120002783A1 (en) Nondestructive inspection system using nuclear resonance fluorescence
Rabhi et al. Calibration of imaging plates to electrons between 40 and 180 MeV
RU2143712C1 (en) Chamber for exposure and/or counting used in neutron analysis
US7874730B2 (en) Systems and methods for reducing a degradation effect on a signal
Kerr et al. Neutron transmission imaging with a portable DT neutron generator
JPH04152546A (en) Radioactivation inspection method of lattice defect material
Sabharwal et al. Multiple backscattering on monoelemental materials and albedo factors of 279, 320, 511 and 662 keV gamma photons
Pietropaolo et al. Characterization of the γ background in epithermal neutron scattering measurements at pulsed neutron sources
US3507734A (en) Process of making an imaging scintillation chamber
JP4189836B2 (en) Photon-induced positron annihilation gamma-ray spectroscopy and measurement of short-lived nuclear levels
JPH03140851A (en) X-ray fluorescent image of element
Naganawa et al. A neutron detector with submicron spatial resolution using fine-grained nuclear emulsion
JP2013130418A (en) Nuclear material detection device and nuclear material detection method
JP2589398B2 (en) Lattice defect material activation inspection method
US7599463B2 (en) Remote sensing device to detect materials of varying atomic numbers
Kamal Nuclear Radiation Detectors
JPH0213736B2 (en)
Maekawa et al. Development a new positron source for spin-polarized positron beam generation