JPH04152503A - Rare earth permanent magnet - Google Patents

Rare earth permanent magnet

Info

Publication number
JPH04152503A
JPH04152503A JP2277065A JP27706590A JPH04152503A JP H04152503 A JPH04152503 A JP H04152503A JP 2277065 A JP2277065 A JP 2277065A JP 27706590 A JP27706590 A JP 27706590A JP H04152503 A JPH04152503 A JP H04152503A
Authority
JP
Japan
Prior art keywords
rare earth
earth elements
heat treatment
permanent magnet
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2277065A
Other languages
Japanese (ja)
Inventor
Masahiro Tobiyo
正博 飛世
Ken Takahashi
研 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2277065A priority Critical patent/JPH04152503A/en
Publication of JPH04152503A publication Critical patent/JPH04152503A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To enable high-energy products to be obtained in bulk materials of R2Fe14C-based alloy by a method wherein the title magnet is expressed by a composition formula: (R'100-xRa)xFe100-x-y-zMyCz where R is a kind or more of rare earth elements, R' a kind or more of heavy rare earth elements, M a specific element, and X-Z and a are values within respectively specified ranges. CONSTITUTION:This magnet is expressed by a composition formula: (R'100-xRz)xFe100-x-y-zMyCz, where R is one or two kinds or more light rare earth elements, R' one or two kinds or more heavy rare earth elements M at least a kind out of Al, Si, P, Cr, V, Ti, Mn, Ga, Ge, In, Sn, Ni, and N with x 10-15%, y 1-12%, z 4-10%, and a 50% or more by atomic percentage. Molten alloy of the above-mentioned composition is formed into a thin strip by superquenching, and a rare earth permanent magnet is prepared by heat treatment of this thin strip. Heat treatment is preferably conducted at 700-900 deg.C. For example, the above-mentioned alloy composition is Gd4.7, Nd7.1, Fe76.4, Al5.9, C5.9.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、希土類−鉄系永久磁石およびその製造方法に
関するものであり、とくに従来の技術では困難であった
高保磁力、高エネルギー積を実現するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a rare earth-iron permanent magnet and a method for manufacturing the same, and in particular realizes high coercive force and high energy product, which have been difficult with conventional techniques. It is something to do.

[従来の技術] この種の既知の材料は、正方品構造を有するR2Fe1
4B (ただしRは希土類元素を示す。)である。Bを
Cで置き換えたR2Fe14Gはキュリー温度はR2F
e14Bよりもやや低いが異方性磁界は大きく、新しい
永久磁石材料の候補として注目されている(例えば、R
,Grossinger他:J、Magn、Magn、
Mat、83.1990.130〜132頁及び特開平
1−73051号公報)。
[Prior Art] A known material of this kind is R2Fe1 with a square structure.
4B (R represents a rare earth element). R2Fe14G in which B is replaced with C has a Curie temperature of R2F
Although the anisotropy field is slightly lower than that of e14B, it has a large anisotropic magnetic field and is attracting attention as a candidate for a new permanent magnet material (for example, R
, Grossinger et al.: J. Magn.
Mat, 83.1990. pages 130-132 and JP-A-1-73051).

例えば、Stade1maier他はバルクの[)y−
Fe−C合金において、鋳造後、熱処理をすることによ
って1Hc=12.5koeの保磁力を得たことを報告
している。 (H,H,S t a d e1maie
r他: Mat、Letters  4.1986.3
77〜380頁)。
For example, Stadelmaier et al.
It has been reported that a coercive force of 1Hc=12.5koe was obtained by heat-treating an Fe-C alloy after casting. (H,H,Stad e1maie
r et al.: Mat, Letters 4.1986.3
77-380).

ところがRが重希土類元素の場合には、Feのモーメン
トとRのモーメントが反平行に結合するため軽希土類元
素の場合とくらべて飽和磁化が小さくなってしまう。し
たがって、Rは軽希土類元素を主成分にすることが望ま
しい。しかしRが軽希土類元素の場合、R2Fe14C
化合物が生成しにくいので、高保磁力を容易に得ること
ができない、Buschow他は、R2Fe14Gを生
成させるための熱処理条件を報告している(K、 H。
However, when R is a heavy rare earth element, the moment of Fe and the moment of R are coupled in an antiparallel manner, so that the saturation magnetization becomes smaller than when R is a light rare earth element. Therefore, it is desirable that R contains a light rare earth element as a main component. However, when R is a light rare earth element, R2Fe14C
Buschow et al. reported heat treatment conditions for producing R2Fe14G (K, H.

Buschow他: J、Les s−CommonM
et、142.1988.349〜357頁及び特開平
2−4940号公報)。
Buschow et al.: J, Les s-Common M
et, 142.1988. pp. 349-357 and JP-A-2-4940).

更に、Buschow他は、R2Fe14CのFeの一
部をMnで置換することにより、R2(Fe、Mn)1
4C化合物を安定化できることを示した(例えばに、H
,J、B、uschow他:J。
Furthermore, Buschow et al. replaced a part of Fe in R2Fe14C with Mn to form R2(Fe,Mn)1
It was shown that 4C compounds can be stabilized (for example, H
, J., B., uschow et al.: J.

de、Phys、49.1988、C8−593〜59
4頁、特開平2−8345号公報)。
de, Phys, 49.1988, C8-593-59
4 pages, JP-A-2-8345).

[@明が解決しようにする課題] しかし、前記の熱処理条件を規定した発明では、約83
0℃以下の温度ではR2Fe14Cが生成する反応速度
はたいへん遅く、また、希土類元素の種類によって決ま
るある温度(例えばRがNdの場合は890℃)以上で
は、R2Fe14Gが分解してしまうので、R2Fe1
4Gが生成する温度範囲はたいへん狭い。その上に、長
時間の熱処理(例えばRがNdの場合は500時間)を
必要にするので、実用上問題が大きい。また、長時間の
熱処理は粒成長をまねき、高保磁力化を図るさまたげに
なる。
[Problem that @Ming is trying to solve] However, in the invention that specifies the heat treatment conditions mentioned above, about 83
At temperatures below 0°C, the reaction rate for producing R2Fe14C is very slow, and at temperatures above a certain temperature determined by the type of rare earth element (e.g. 890°C when R is Nd), R2Fe14G decomposes.
4G produces a very narrow temperature range. Moreover, it requires a long heat treatment (for example, 500 hours when R is Nd), which is a big problem in practice. In addition, long-term heat treatment causes grain growth, which hinders efforts to increase coercive force.

またRFeC:系にMnを添加する発明では、Mnの導
入によってR2(Fe、Mn)14Gを安定に生成させ
ることができても、保磁力の発生に必要な金属組織が実
現されないため、高保磁力を得ることができないと同時
にMnのモーメントはFeのモーメントと反強磁性的に
結合し、磁化が減少してしまうので、多量のMnを添加
することは望ましくない。
Furthermore, in the invention of adding Mn to the RFeC: system, even if it is possible to stably generate R2(Fe, Mn)14G by introducing Mn, the metal structure necessary for generating coercive force cannot be achieved, resulting in a high coercive force. It is not desirable to add a large amount of Mn because the moment of Mn is antiferromagnetically coupled with the moment of Fe and the magnetization decreases.

従って本発明の目的は、このような欠点を解消し、R2
Fe14C系合金のバルク材において高エネルギー積を
得ることを可能にしたものである。
Therefore, an object of the present invention is to eliminate such drawbacks and to improve R2
This makes it possible to obtain a high energy product in the bulk material of Fe14C alloy.

具体的には本発明は、液体急冷法を用いて非晶質R−F
e−M−C系合金薄帯を作成し、これに適切な熱処理を
施すことにより、大きな飽和磁化を有するR2 (Fe
、M)14C化合物を短時間のうちに生成させると同時
に、保磁ノJを発生するような金属組織を実現し、R2
Fe14C系合金による高エネルギー積永久磁石を実現
する方法を提供することである。
Specifically, the present invention uses a liquid quenching method to produce amorphous R-F.
By creating an e-M-C alloy ribbon and subjecting it to appropriate heat treatment, R2 (Fe
, M) 14C compound is generated in a short time, and at the same time, a metal structure that generates coercive J is realized, and R2
The object of the present invention is to provide a method for realizing a high-energy product permanent magnet using an Fe14C alloy.

[課題を解決するための手段] 本発明は、組成式:  (R’ 100−a Ra )
 xF e +。。−x−y−zMyCz (ただし、 Rは軽希土類元素の1種または2種以 上、R′は重希土類元素の1種または2種以上、MはA
 I+ S x+ P+ C: rl v、 T 11
 Mn、 Ga、Ge、In、Sn、Ni、Nの少なく
とも1種以上であり、原子百分率で Xは10〜15% yは 1〜12% 2は 4〜10% aは 50%以上 で表されることを特徴にする希土類永久磁石である。
[Means for Solving the Problems] The present invention has the following compositional formula: (R' 100-a Ra )
xF e +. . -x-y-zMyCz (However, R is one or more light rare earth elements, R' is one or more heavy rare earth elements, M is A
I+ S x+ P+ C: rl v, T 11
At least one of Mn, Ga, Ge, In, Sn, Ni, and N, represented by an atomic percentage of X of 10 to 15%, y of 1 to 12%, 2 of 4 to 10%, and a of 50% or more. It is a rare earth permanent magnet characterized by

本発明はまた、前記組成の合金溶湯な超急冷法によって
薄帯とし、前記薄帯を熱処理することを特徴にする希土
類永久磁石の製造方法である。熱処理は700〜900
℃で行うことが好ましい。
The present invention also provides a method for producing a rare earth permanent magnet, which comprises forming a molten alloy having the composition into a thin ribbon by an ultra-quenching method, and heat-treating the thin ribbon. Heat treatment is 700-900
Preferably, the reaction is carried out at ℃.

以下これについて詳しく説明する。本発明の永久磁石は
(R,R’ ) −F e−M−Cの4元系合金であっ
て、RはCe、Pr、Nd、Sm、Euからなる軽希土
類元素の中から選んだ少なくとも1種または2種以上の
組み合わせ、R′はGd、Tb、Dy、Ho、Er、T
m、Luからなる重希土類元素の1種または2種以上の
組み合わせである。、MはAl、Si、P、Cr、V、
Ti、Mn、Ga、Ge、In、Sn、Ni、Nの各々
1種以上であり、R2(Fe、M)14C化合物を含ん
だものである。
This will be explained in detail below. The permanent magnet of the present invention is a quaternary alloy of (R,R')-Fe-MC, where R is at least one selected from light rare earth elements consisting of Ce, Pr, Nd, Sm, and Eu. One type or a combination of two or more types, R' is Gd, Tb, Dy, Ho, Er, T
It is one kind or a combination of two or more kinds of heavy rare earth elements consisting of m and Lu. , M is Al, Si, P, Cr, V,
It is one or more of each of Ti, Mn, Ga, Ge, In, Sn, Ni, and N, and contains an R2(Fe, M)14C compound.

また、上記一般式において、軽希土類元素RはlOから
15原子%の範囲とした。Rの量が少なすぎると残留磁
束密度(Br)は向上するものの、保磁力が極端に減少
するため最大エネルギー積((BH)wax)は減少す
る。したがってR量は10原子%以上とした。Rの量が
多すぎると、残留磁束密度(Br)が減少し、この場合
も最大エネルギー積((BH) max)が減少するの
で、R量は15原子%以下とした。また重希土類元素の
量が保磁力が大きくなるが、磁化が減少するので軽希土
類元素の量を越えないことが望ましい。よってaは50
%以上とした。
Furthermore, in the above general formula, the light rare earth element R is in the range of 10 to 15 at %. If the amount of R is too small, the residual magnetic flux density (Br) will improve, but the coercive force will be extremely reduced, so the maximum energy product ((BH)wax) will decrease. Therefore, the amount of R was set to 10 atomic % or more. If the amount of R is too large, the residual magnetic flux density (Br) will decrease and the maximum energy product ((BH) max) will also decrease in this case, so the amount of R was set to 15 atomic % or less. Further, although the amount of heavy rare earth elements increases the coercive force, it decreases magnetization, so it is desirable that the amount of heavy rare earth elements does not exceed the amount of light rare earth elements. Therefore a is 50
% or more.

元素MはR2(Fe、M)14C化合物を安定に生成す
る作用があり、重希土類元素と添加元素Mを同時に添加
することによって(R,R量 )2(Fe、M)14C
:化合物の安定生成がより促進される。しかし、Mの量
が少なすぎたり多すぎたりすると、 (R,R量 ) 
2 (F e、 M) 14C:化合物が安定に生成せ
ず、このため高保磁力が得られない、よってM量は1〜
12原子%でなければならない。
Element M has the effect of stably generating R2(Fe,M)14C compounds, and by adding heavy rare earth elements and additive element M at the same time (R, R amount)2(Fe,M)14C
: Stable production of the compound is further promoted. However, if the amount of M is too small or too large, (R, R amount)
2 (Fe, M) 14C: The compound does not form stably, and therefore a high coercive force cannot be obtained. Therefore, the amount of M is 1 to 1.
Must be 12 atomic percent.

また、C量が多すぎると、残留磁束密度(Br)、およ
び保磁力が減少し大きな最大エネルギー積((B H)
 wax)が得られない。C量が少なすぎるとR2(F
e、M)14C化合物が生成しないので、高保磁力が得
られない。したがってC量を4〜10原子%とした。
In addition, if the amount of C is too large, the residual magnetic flux density (Br) and coercive force decrease, resulting in a large maximum energy product ((B H)
wax) cannot be obtained. If the amount of C is too small, R2(F
e, M) Since no 14C compound is generated, high coercive force cannot be obtained. Therefore, the amount of C was set to 4 to 10 at%.

なお、この発明では特性を維持しながら、キュリー温度
の上昇と耐食性を改善するのに、C01Niの各々1種
以上をFeに対して50%まで置換することができる。
In the present invention, one or more of each of C01Ni can be substituted up to 50% of Fe in order to improve the Curie temperature increase and corrosion resistance while maintaining the characteristics.

本発明の磁石の形態としては合金薄帯を粉砕して磁粉を
得た後、有機バインダー等で固めたいわゆるボンド磁石
、あるいは、前記磁粉をホットプレスで固めた圧密磁石
、更に温間で組成加工した温間加工磁石、あるいはそれ
を再粉砕して磁粉とした後にバインダで固めた磁気異方
性ボンド磁石にすることができる。なお、本発明で合金
薄帯とは、超急冷法で得られた連続帯状のものに限られ
るものではなくフレーク状のものも含むものである。あ
るいは、例えばアトマイズ法によって直接に磁粉を得る
ことも本発明の範囲を逸脱するもので11ない。
The form of the magnet of the present invention is a so-called bonded magnet in which magnetic powder is obtained by crushing an alloy ribbon and then hardened with an organic binder, etc., or a consolidated magnet in which the magnetic powder is hardened by hot pressing, and further processed into a composition by warm processing. It can be made into a warm-processed magnet, or a magnetically anisotropic bonded magnet made by re-pulverizing it into magnetic powder and solidifying it with a binder. In the present invention, the alloy ribbon is not limited to a continuous ribbon obtained by an ultra-quenching method, but also includes a flake. Alternatively, it is not beyond the scope of the present invention to obtain magnetic powder directly, for example, by an atomization method.

また、得られた微細結晶粒を有する磁粉を低温度で粒成
長しないように工夫すれば焼結磁石を得ることもできる
Furthermore, if the obtained magnetic powder having fine crystal grains is devised to prevent grain growth at a low temperature, a sintered magnet can be obtained.

以下、実施例によって本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

[実施例] (実施例−1) 合金組成はD y4.7P r7.I F e82.3
G5.9 (原子百分率)である。純度99.9%のD
y、Pr、FeおよびFe5Gを用いて、上記組成のイ
ンゴットをアーク溶解で作成した。このインゴットをア
ルゴンガス雰囲気中で高周波溶解したのち、0.5kg
/cm2のアルゴンガスを溶湯に加圧して内径0.5m
mの石英ノズルから、約42m/Sの周速で回転する直
径160mmの銅製の回転ロール上に噴射し、急速に冷
却凝固させて薄帯を作成した。このようにして得た薄帯
を熱処理し、振動試料型磁力針を用いて、最大磁場18
kOeの範囲で磁気特性を測定した。これらの試料の保
磁力と熱処理温度との関係を調べたところ、第1図に示
すように、700℃以上の温度でで熱処理したときに、
最も高い保磁カフkOeを示すことがわかった。熱処理
時間を1時間から30時間まで延長した場合にも、保磁
力の変化は認められなかった。また、Dyを添加してい
ないPr11.8Fe82.3G5.9合金の場合の保
磁力の変化を同図に示したが、保磁力は小さくDyの添
加が保磁力の発生に効果があることがわかる。一方、は
じめに作成したインゴットから切り出した試料を700
℃で熱処理したが、その保磁力は約2000eで小さか
った。このことから、本発明はR−F e−C系合金の
高保磁力化を実現できる方法であるこ之が確認できた。
[Example] (Example-1) The alloy composition was Dy4.7P r7. I F e82.3
G5.9 (atomic percentage). D with 99.9% purity
An ingot having the above composition was prepared by arc melting using Y, Pr, Fe, and Fe5G. After high frequency melting of this ingot in an argon gas atmosphere, 0.5 kg
/cm2 of argon gas was pressurized to the molten metal to create an inner diameter of 0.5m.
The mixture was injected from a quartz nozzle of 300 mm onto a copper rotating roll with a diameter of 160 mm rotating at a circumferential speed of about 42 m/s, and rapidly cooled and solidified to create a ribbon. The ribbon obtained in this way was heat-treated, and a maximum magnetic field of 18
Magnetic properties were measured in the kOe range. When we investigated the relationship between coercive force and heat treatment temperature for these samples, we found that when heat treated at a temperature of 700°C or higher, as shown in Figure 1,
It was found that it exhibited the highest coercive cuff kOe. Even when the heat treatment time was extended from 1 hour to 30 hours, no change in coercive force was observed. The figure also shows the change in coercive force in the case of the Pr11.8Fe82.3G5.9 alloy to which Dy is not added, and it can be seen that the coercive force is small and the addition of Dy is effective in generating coercive force. . On the other hand, the sample cut from the ingot prepared at the beginning was
Although it was heat-treated at ℃, its coercive force was small at about 2000e. From this, it was confirmed that the present invention is a method that can realize a high coercive force of an R-Fe-C alloy.

(実施例−2) 合金組成はGd4.7Nd7.lFe76.4A15.
9G、9(原子百分率)であり、製造方法は(実施例−
1)と同じである。この試料は、第2図に示すJうに、
900℃の熱処理で最も高い保磁力8kCeを示す。ま
た、インゴットから切り出した試りは、900℃の熱処
理を行っても、2000efi度であり、本発明の有効
性を確認できた。
(Example-2) The alloy composition is Gd4.7Nd7. lFe76.4A15.
9G, 9 (atomic percentage), and the manufacturing method is (Example-
Same as 1). This sample is as shown in Figure 2.
It shows the highest coercive force of 8 kCe after heat treatment at 900°C. In addition, even when the sample cut out from the ingot was subjected to heat treatment at 900° C., the efi was 2000 degrees, confirming the effectiveness of the present invention.

(実施例−3) 合金組成はDy4.7P r7.lFe66、l’l;
olo、Osi 2.9M n3.OG5.9 (原子
百分率)であり、製造方法は(実施例−1)と同じであ
る。この試料は、第3図に示すように、900℃の熱処
理で最も高い保磁力6kOeを示す。また、インゴット
から切り出した試料は、900℃の熱処理を行っても、
2000e程度であり、本発明の有効性を確認できた。
(Example-3) The alloy composition was Dy4.7P r7. lFe66, l'l;
olo, Osi 2.9M n3. OG5.9 (atomic percentage), and the manufacturing method is the same as (Example-1). As shown in FIG. 3, this sample exhibits the highest coercive force of 6 kOe after heat treatment at 900°C. In addition, even if the sample cut from the ingot was heat-treated at 900°C,
It was approximately 2000e, confirming the effectiveness of the present invention.

実施例1〜3の結果から、熱処理温度は700〜900
℃が適当である。
From the results of Examples 1 to 3, the heat treatment temperature was 700 to 900.
°C is appropriate.

(実施例−4) 実施例−1と同様にして第1表に示す種々の添加元素M
についても本発明の効果を確認した。
(Example-4) Various additive elements M shown in Table 1 were added in the same manner as in Example-1.
The effects of the present invention were also confirmed for these cases.

[発明の効果〕 本発明によれば、R−Fe−C系に元素Mを所定量加え
、液体急冷法で非晶質薄帯を作成し、これを適切な温度
で熱処理することにより、R2(Fe、M)100化合
物を安定に生成させると同時に保磁力の発生に適した金
属組織を実現することができ、高い保磁力ひいては大き
な最大エネルギー積((B H) wax)を有する永
久磁石が得られる。
[Effects of the Invention] According to the present invention, by adding a predetermined amount of element M to the R-Fe-C system, creating an amorphous ribbon using a liquid quenching method, and heat-treating this at an appropriate temperature, R2 It is possible to stably generate a (Fe, M)100 compound and at the same time realize a metal structure suitable for generating coercive force, and a permanent magnet with a high coercive force and a large maximum energy product ((B H) wax) can be created. can get.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明に係る希土類磁石の熱処理温度
と保磁力の関係を示す図である。 第 図 液体急冷後 熱処理温度 (C) 第 図 液体急玲後 熱処理温度(°C) 第 図
1 to 3 are diagrams showing the relationship between heat treatment temperature and coercive force of rare earth magnets according to the present invention. Fig. Heat treatment temperature after liquid quenching (C) Fig. Heat treatment temperature after liquid quenching (°C) Fig.

Claims (3)

【特許請求の範囲】[Claims] (1)組成式:(R’_1_0_0_−_aR_a)_
xFe_1_0_0_−_x_−_y_−_zM_yC
_z(ただし、Rは軽希土類元素の1種または2種以上
、R’は重希土類元素の1種または2種以上、MはAl
、Si、P、Cr、V、Ti、Mn、Ga、Ge、In
、Sn、Ni、Nの少なくとも1種以上であり、原子百
分率で xは10〜15% yは1〜12% zは4〜10% aは50%以上 で表されることを特徴にする希土類永久磁石。
(1) Composition formula: (R'_1_0_0_-_aR_a)_
xFe_1_0_0_-_x_-_y_-_zM_yC
__z (However, R is one or more types of light rare earth elements, R' is one or more types of heavy rare earth elements, M is Al
, Si, P, Cr, V, Ti, Mn, Ga, Ge, In
, Sn, Ni, and N, and is characterized in that x is 10 to 15%, y is 1 to 12%, z is 4 to 10%, and a is 50% or more in atomic percentage. permanent magnet.
(2)請求項1に記載の組成の合金溶湯を超急冷法によ
って薄帯とし、前記薄帯を熱処理することを特徴にする
希土類永久磁石の製造方法。
(2) A method for producing a rare earth permanent magnet, which comprises forming a molten alloy having the composition according to claim 1 into a ribbon by an ultra-quench cooling method, and heat-treating the ribbon.
(3)熱処理を700〜900℃で行うことを特徴にす
る請求項2に記載の希土類磁石の製造方法。
(3) The method for manufacturing a rare earth magnet according to claim 2, wherein the heat treatment is performed at a temperature of 700 to 900°C.
JP2277065A 1990-10-16 1990-10-16 Rare earth permanent magnet Pending JPH04152503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2277065A JPH04152503A (en) 1990-10-16 1990-10-16 Rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2277065A JPH04152503A (en) 1990-10-16 1990-10-16 Rare earth permanent magnet

Publications (1)

Publication Number Publication Date
JPH04152503A true JPH04152503A (en) 1992-05-26

Family

ID=17578299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2277065A Pending JPH04152503A (en) 1990-10-16 1990-10-16 Rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JPH04152503A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319336B1 (en) 1998-07-29 2001-11-20 Dowa Mining Co., Ltd. Permanent magnet alloy having improved heat resistance and process for production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319336B1 (en) 1998-07-29 2001-11-20 Dowa Mining Co., Ltd. Permanent magnet alloy having improved heat resistance and process for production thereof

Similar Documents

Publication Publication Date Title
JP4596645B2 (en) High performance iron-rare earth-boron-refractory-cobalt nanocomposites
JP4376453B2 (en) Iron-rare earth-boron / refractory metal magnetic composite
JPS609852A (en) High energy stored rare earth-iron magnetic alloy
JPH03227502A (en) Heat-resisting bond magnet and its manufacture and pm motor
KR950020781A (en) Iron permanent magnet, manufacturing method thereof and iron permanent magnet alloy powder and iron bond magnet for permanent bond magnet
JPH0366105A (en) Rare earth anisotropic powder and magnet, and manufacture thereof
JP2774372B2 (en) Permanent magnet powder
US4854979A (en) Method for the manufacture of an anisotropic magnet material on the basis of Fe, B and a rare-earth metal
JPS62177101A (en) Production of permanent magnet material
JPH07263210A (en) Permanent magnet, alloy powder for permanent magnet and their production
US4116726A (en) As-cast permanent magnet Sm-Co-Cu material with iron, produced by annealing and rapid quenching
JPH01100242A (en) Permanent magnetic material
JPH04152503A (en) Rare earth permanent magnet
KR20210076311A (en) MAGNETIC SUBSTANCES BASED ON Mn-Bi-Sb AND FABRICATION METHOD THEREOF
US4969961A (en) Sm-Fe-V magnet alloy and method of making same
JPH04147603A (en) Rare earth permanent magnet
JPS62281403A (en) Permanent magnet
JPH02294447A (en) Permanent magnet material and its production
JPH04147602A (en) Rare earth permanent magnet
Kang et al. Microstructural and magnetic properties of low-energy ball milled LTP-MnBi powders via melt-spinning and gas-atomization
JP2809946B2 (en) Iron-rare earth-nitrogen permanent magnet powder
Saito et al. Structures and magnetic properties of Nd–Fe–Ti alloys produced by melt-spinning technique
JPH024941A (en) Iron-neodymium-boron base permanent magnetic alloy containing hafnium diboride and its manufacture
JPH02101710A (en) Permanent magnet and manufacture thereof
JPH0448004A (en) Fe base soft magnetic alloy powder and manufacture thereof and powder compact magnetic core with the same