JPH04151451A - Controlling method of hot water supply of combination type tap-controlled water heater - Google Patents

Controlling method of hot water supply of combination type tap-controlled water heater

Info

Publication number
JPH04151451A
JPH04151451A JP27369390A JP27369390A JPH04151451A JP H04151451 A JPH04151451 A JP H04151451A JP 27369390 A JP27369390 A JP 27369390A JP 27369390 A JP27369390 A JP 27369390A JP H04151451 A JPH04151451 A JP H04151451A
Authority
JP
Japan
Prior art keywords
hot water
temperature
water
error
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27369390A
Other languages
Japanese (ja)
Inventor
Takanori Yamamoto
山本 孝徳
Hiroshi Ichikawa
浩 市川
Masakazu Kubota
久保田 雅収
Noritaka Morinaka
森中 宣隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takagi Industrial Co Ltd
Original Assignee
Takagi Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takagi Industrial Co Ltd filed Critical Takagi Industrial Co Ltd
Priority to JP27369390A priority Critical patent/JPH04151451A/en
Publication of JPH04151451A publication Critical patent/JPH04151451A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Abstract

PURPOSE:To lessen an error of the temperature of hot water supply from a set temperature of hot water supply by a method wherein the error of the temperature of hot water supply from the set temperature of hot water supply is led out on the basis of a stored correspondence to a measured temperature of tap water and thereby the amount of operation of an operating mechanism is corrected. CONSTITUTION:A control means 13 stores the correspondence of an error of the temperature of hot water supply from a set temperature of hot water supply in relation to the deviation of tap water from a reference temperature, leads out the error of the temperature of hot water supply from the set temperature of hot water supply on the basis of the correspondence to a measured temperature of the tap water, and corrects the amount of operation of an operating mechanism 9. When a hot water supply is executed with a desired set temperature of hot water set, according to this constitution, and when the temperature of the tap water deviates from the reference temperature, the control means 13 leads out the error of the temperature of hot water from the set temperature of hot water in relation to the deviation on the basis of the correspondence of the error of the temperature of hot water to the set temperature of hot water stored beforehand, and corrects the amount of operation of the operating mechanism 9 so that this error be minimum. Therefore the error of the temperature of hot water from the set temperature of hot water can be diminished.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は湯水混合式瞬間湯沸器の給湯制御方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a hot water supply control method for a hot water mixing type instantaneous water heater.

(従来の技術) 上水を単に熱交換器に於いて加熱してそのまま出湯する
従来の通常の瞬間湯沸器に対して、近来、この熱交換器
からの湯と上水とを混合して所望の温度の湯を供給し得
るようにした瞬間湯沸器が提供されつつある。前者は熱
交換器を加熱するバーナ等の加熱手段の発生熱量の範囲
の関係上、夏期に於ける小流量での適温の給湯が困難で
ある等の課題を有するのに対して、後者はこのような課
題を解決することができる。例えば、後者の従来例とし
では特開平2−183733号公報に開示されるものが
ある。
(Prior art) In contrast to conventional instantaneous water heaters that simply heat tap water in a heat exchanger and dispense the hot water as is, in recent years, water heaters that mix the hot water from the heat exchanger with tap water have been developed. Instantaneous water heaters that can supply hot water at a desired temperature are becoming available. The former has problems such as difficulty in supplying hot water at an appropriate temperature at a small flow rate in summer due to the range of heat generated by the heating means such as a burner that heats the heat exchanger, whereas the latter It is possible to solve problems such as: For example, a conventional example of the latter is disclosed in Japanese Patent Laid-Open No. 2-183733.

本出願人は先に、このように熱交換器からの湯と上水を
合流させ、混合して所望の温度の湯を供給し得る瞬間湯
沸器に於いて、かかる湯と上水の混合を、合流路中に設
けた熱応動素子により弁体を移動させて流量比率を変化
自在な混合弁により行う給湯機構を提案した。(例えば
特願平1−344752号の願書に添付した明細書及び
図面参照) 第1図、第2図を参照して説明すると、この給湯機構は
、バーナ12を設けた熱交換器3を通る湯経路1と並列
に、該熱交換器3の上流側で分岐させ、下流側で混合弁
4を介して合流させる水経路5を設けると共に、該混合
弁4は合流路6中に設けた熱応動素子7により弁体を移
動させて前記水経路5と湯経路1の流量比率を変化させ
る構成とし、そして該熱応動素子7を出湯温度設定器1
4の出湯設定温度に対応じて作動機構9によりバイアス
させる構成とすると共に、前記バーナ12を前記熱交換
器3の下流側に設けた温度センサ15を用いて制御手段
13により制御して、該下流側の湯温を所定温度に調節
する構成としている。
The applicant has previously proposed that hot water from a heat exchanger and tap water can be combined and mixed to supply hot water at a desired temperature in an instantaneous water heater. We proposed a hot water supply mechanism that uses a mixing valve that can freely change the flow rate ratio by moving the valve body using a thermally responsive element installed in the merging channel. (For example, refer to the specification and drawings attached to the application of Japanese Patent Application No. 1-344752.) To explain with reference to FIGS. 1 and 2, this hot water supply mechanism passes through a heat exchanger 3 provided with a burner 12. A water path 5 is provided in parallel with the hot water path 1, which is branched on the upstream side of the heat exchanger 3 and merged through the mixing valve 4 on the downstream side. The valve body is moved by a responsive element 7 to change the flow rate ratio between the water path 5 and the hot water path 1, and the thermally responsive element 7 is connected to the hot water outlet temperature setting device 1.
In addition, the burner 12 is controlled by the control means 13 using a temperature sensor 15 provided on the downstream side of the heat exchanger 3, and The water temperature on the downstream side is adjusted to a predetermined temperature.

かかる構成に於いてバーナ12の燃焼により熱交換器3
で昇温され、製経路1を流れた湯は、混合弁4に於いて
水経路5を流れてきた上水と混合して温度が低下し、合
流路6を流れて出湯口19から出湯される。この際、制
御手段13は温度センサ15の測定値に基づいてバーナ
12をフィードバック制御することにより、熱交換器3
の下流側の湯を所定の温度、例えば80℃に調節され、
そして合流路6中に設けた熱応動素子7は、該合流路6
中の湯温に応動じて弁体8を移動させて前記水経路5と
製経路lの流量比率を変化させ、こうして合流路6中の
湯温を、熱応動素子7のバイアス量に応じた値に調節す
ることができる。そしてこのバイアス量は出湯温度設定
器14の出湯設定温度に対応じて作動機構9により変化
させることができ、こうして出湯設定温度に調節した湯
を供給することができるのである。この作動機構9は、
例えばモーターと回転−直線運動変換機構を用いた機構
と、その位置を検出するポテンショメータ等とから構成
することができる。そして、このような構成に於いて、
熱応動素子7のバイアス量は、例えば上水の温度15℃
及び熱交換器3の下流側の湯温80℃を夫々基準温度と
して設定する。即ち、制御手段13には、例えば第3図
に示すように、前記基準温度の状態に於ける出湯温度と
前記バイアス量に対応するポテンショメータの電圧値等
の対応関係を予め記憶設定し、この対応関係に基づいて
前記バイアス量を設定している。
In such a configuration, the combustion of the burner 12 causes the heat exchanger 3 to
The hot water that has been heated up and flowed through the production path 1 is mixed with the tap water that has flowed through the water path 5 at the mixing valve 4, the temperature of which is lowered, and the hot water flows through the confluence path 6 and is discharged from the hot water outlet 19. Ru. At this time, the control means 13 performs feedback control of the burner 12 based on the measured value of the temperature sensor 15, thereby controlling the heat exchanger 3.
The hot water on the downstream side of is adjusted to a predetermined temperature, for example 80°C,
The thermally responsive element 7 provided in the merging path 6
The valve body 8 is moved in response to the temperature of the hot water inside to change the flow rate ratio of the water path 5 and the production path 1, and thus the temperature of the hot water in the confluence path 6 is adjusted according to the bias amount of the thermally responsive element 7. The value can be adjusted. This bias amount can be changed by the actuating mechanism 9 in accordance with the hot water setting temperature of the hot water tap temperature setting device 14, thereby making it possible to supply hot water adjusted to the hot water tap temperature setting. This operating mechanism 9 is
For example, it can be constructed from a mechanism using a motor, a rotational-linear motion conversion mechanism, and a potentiometer for detecting the position thereof. And in such a configuration,
The bias amount of the thermally responsive element 7 is, for example, when the water temperature is 15°C.
and a water temperature of 80° C. on the downstream side of the heat exchanger 3, respectively, are set as reference temperatures. That is, as shown in FIG. 3, for example, the control means 13 stores and sets in advance the correspondence between the tapping temperature at the reference temperature and the voltage value of the potentiometer corresponding to the bias amount, and the correspondence is set in advance. The bias amount is set based on the relationship.

(発明が解決しようとする課題) 従来は、制御手段13においてバイアス量の設定に利用
する前述の対応関係は、上記基準温度についてのみであ
ったので、例えば第4図(a)に示すように上水温度が
基準温度よりも上昇すると出湯温度は出湯設定温度より
も上昇して誤差となり、また第4図(b)に示すように
熱交換器3の下流側の湯温か下降すると出湯温度は出湯
設定温度よりも下降して誤差となり、これら上水温度及
び該下流側湯温が上述と逆方向に変化すると、出湯温度
は夫々上述と逆方向に出湯設定温度からずれて誤差とな
っていた。
(Problem to be Solved by the Invention) Conventionally, the above-mentioned correspondence relationship used for setting the bias amount in the control means 13 was only for the reference temperature, so for example, as shown in FIG. 4(a), When the tap water temperature rises above the reference temperature, the hot water outlet temperature rises above the set hot water outlet temperature, resulting in an error. Also, as shown in FIG. 4(b), when the hot water temperature on the downstream side of the heat exchanger 3 decreases, the outlet hot water temperature If the tap water temperature and the downstream hot water temperature change in the opposite direction to the above-mentioned direction, the tap water temperature will deviate from the hot water set point temperature in the opposite direction to the above-mentioned direction, resulting in an error. .

本発明はかかる課題を解決することを目的とするもので
ある。
The present invention aims to solve this problem.

(課題を解決するための手段) 上述した課題を解決するための手段を、添付図面を参照
して説明すると、本発明の給湯制御方法の、まず第一の
構成は、加熱手段12を設けた熱交換器3を通る製経路
1と並列に、該熱交換器3の上流側で分岐させ、下流側
で混合弁4を介して合流させる水経路5を設けると共に
、該混合弁4は合流路6中に設けた熱応動素子7により
弁体8を移動させて前記水経路5と製経路1の流量比率
を変化させる構成とし、そして該熱応動素子7を出湯温
度設定器】4の出湯設定温度に対応じて作動機構9によ
りバイアスさせる構成とすると共に、前記加熱手段12
を前記熱交換器3の下流側に設けた温度センサ15を用
いて制御手段13により制御して、該下流側の湯温を所
定温度に11節する構成とした湯水混合式瞬間湯沸器に
於いて、前記制御手段13は上水の基準温度からの偏差
に対する出湯設定温度と出湯温度の誤差の対応関係を記
憶し、測定した上水温度に対して、前記対応関係により
出湯設定温度からの出湯温度の誤差を導出して前記作動
機構9の作動量を補正することを要旨とするものである
(Means for Solving the Problems) Means for solving the above-mentioned problems will be explained with reference to the attached drawings.The first configuration of the hot water supply control method of the present invention is that a heating means 12 is provided. In parallel with the production route 1 passing through the heat exchanger 3, a water route 5 is provided which is branched on the upstream side of the heat exchanger 3 and merged via the mixing valve 4 on the downstream side, and the mixing valve 4 is a merging route. The configuration is such that a valve body 8 is moved by a thermally responsive element 7 provided in the hot water outlet temperature setting device 6 to change the flow rate ratio of the water path 5 and the production path 1, and the thermally responsive element 7 is used to set the hot water outlet temperature setting device 4. The heating means 12 is configured to be biased by the operating mechanism 9 in accordance with the temperature.
is controlled by a control means 13 using a temperature sensor 15 provided on the downstream side of the heat exchanger 3, and the water temperature on the downstream side is controlled to a predetermined temperature in 11 steps. In this case, the control means 13 stores the correspondence relationship between the set hot water temperature and the error in the hot water temperature with respect to the deviation from the reference temperature of the tap water, and calculates the difference from the set hot water temperature with respect to the measured tap water temperature based on the correspondence relationship. The gist is to correct the operating amount of the operating mechanism 9 by deriving the error in the hot water temperature.

また第二の構成は、加熱手段〕2を設けた熱交換器3を
通る製経路lと並列に、該熱交換器3の上流側で分岐さ
せ、下流側で混合弁4を介して合流させる水経路5を設
けると共に、該混合弁4は合流路6中に設けた熱応動素
子7ζこより弁体8を移動させて前記水経路5と製経路
1の流量比率を変化させる構成とし、そして該熱応動素
子7を出湯温度設定器14の出湯設定温度に対応じて作
動機構9によりバイアスさせる構成とすると共に、前記
加熱手段12を前記熱交換器3の下流側に設けた温度セ
ンサ15を用いて制御手段13により制御して、該下流
側の湯温を所定温度に調節する構成とした湯水混合式瞬
間湯沸器に於いて、前記制御手段】3は前記熱交換器3
の下流側の湯温の基準温度からの偏差に対する出湯設定
温度と出湯温度の誤差の対応関係を記憶し、測定した前
記下流側の湯温に対して、前記対応関係により出湯設定
温度からの出湯温度の誤差を導出して前記作動機構9の
作動量を補正することを要旨とするものである。
In addition, the second configuration is such that, in parallel with the production route 1 passing through the heat exchanger 3 provided with the heating means [2], it is branched on the upstream side of the heat exchanger 3 and merged via the mixing valve 4 on the downstream side. In addition to providing a water path 5, the mixing valve 4 is configured to move a valve body 8 through a thermally responsive element 7ζ provided in a confluence path 6 to change the flow rate ratio between the water path 5 and the manufacturing path 1. The thermally responsive element 7 is configured to be biased by the operating mechanism 9 in accordance with the hot water setting temperature of the hot water tap temperature setting device 14, and the heating means 12 is provided using a temperature sensor 15 provided on the downstream side of the heat exchanger 3. In the hot water mixing type instantaneous water heater configured to control the water temperature on the downstream side to a predetermined temperature by controlling the temperature of the water on the downstream side by a control means 13, the control means 3 is the heat exchanger 3.
The correspondence relationship between the hot water temperature setting and the error in the hot water tap temperature relative to the deviation of the downstream hot water temperature from the standard temperature is stored, and the hot water output from the hot water tap temperature setting is determined based on the correspondence relationship for the measured downstream hot water temperature. The gist is to correct the operating amount of the operating mechanism 9 by deriving the temperature error.

そして更に第三の構成は、加熱手段J2を設けた熱交換
器3を通る湯経路lと並列に、該熱交換器3の上流側で
分岐させ、下流側で混合弁4を介して合流させる水経路
5を設けると共に、該混合弁4は合流路6中に設けた熱
応動素子7により弁体8を移動させて前記水経路5と湯
経路1の流量比率を変化させる構成とし、そして該熱応
動素子7を出湯温度設定器]4の出湯設定温度に対応じ
て作動機構9によりバイアスさせる構成とすると共に、
前記加熱手段)2を前記熱交換器3の下流側に設けた温
度センサ15を用いて制御手段13により制御して、該
下流側の湯温を所定温度に調節する構成とした湯水混合
式瞬間湯沸器に於いて、前記制御手段13は上水の基準
温度からの偏差に対する出湯設定温度と出湯温度の誤差
の対応関係と前記熱交換器3の下流側の湯温の基準温度
からの偏差に対する出湯設定温度と出湯温度の誤差の対
応関係を記憶し、測定した上水温度と前記下流側の湯温
に対して、夫々の前記対応関係により出湯設定温度から
の出湯温度の夫々誤差を導出して、それらの代数和によ
り前記作動機構9の作動量を補正することを要旨とする
ものである。
Furthermore, the third configuration is to branch the hot water path upstream of the heat exchanger 3 in parallel with the hot water path l passing through the heat exchanger 3 provided with the heating means J2, and to merge the hot water path through the mixing valve 4 on the downstream side. In addition to providing a water path 5, the mixing valve 4 is configured to move a valve body 8 using a thermally responsive element 7 provided in a confluence path 6 to change the flow rate ratio between the water path 5 and the hot water path 1. The thermally responsive element 7 is configured to be biased by the actuating mechanism 9 in accordance with the hot water setting temperature of the hot water tap temperature setting device 4, and
The heating means) 2 is controlled by a control means 13 using a temperature sensor 15 provided downstream of the heat exchanger 3 to adjust the temperature of the water on the downstream side to a predetermined temperature. In the water heater, the control means 13 controls the correspondence between the set hot water temperature and the error in the hot water temperature relative to the deviation from the standard temperature of the tap water, and the deviation from the standard temperature of the water temperature downstream of the heat exchanger 3. The correspondence relationship between the set hot water temperature and the error in the hot water temperature is memorized, and each error in the hot water temperature from the set hot water temperature is derived from the set hot water temperature based on the corresponding relationship for the measured tap water temperature and the downstream hot water temperature. The gist of the present invention is to correct the amount of operation of the actuation mechanism 9 by the algebraic sum of these values.

そして第四の構成は、上記第一の構成に於いて、制御手
段13には、上水の基準温度からの偏差に対する出湯設
定温度と出湯温度の誤差の対応関係に代えて、上水の基
準温度からの偏差に対する補正量の対応関係を記憶して
直接的に制御を行う構成とすることができる。
In the fourth configuration, in the first configuration, the control means 13 is provided with a reference value for the tap water instead of the correspondence relationship between the set hot water temperature and the error in the hot water tap temperature with respect to the deviation from the standard temperature of the tap water. The configuration may be such that the correspondence between the correction amount and the deviation from the temperature is stored and control is performed directly.

また第五の構成は上記第二の発明に於いて、制御手段1
3には、熱交換器3の下流側の湯温の基準温度からの偏
差に対する出湯設定温度と出湯温度の誤差の対応関係に
代えて、上記湯温の基準温度からの偏差に対する補正量
の対応関係を記憶して直接的に制御を行う構成とするこ
とができる。
Further, a fifth configuration is the control means 1 in the second invention.
3 shows the correspondence of the correction amount to the deviation of the hot water temperature from the standard temperature, instead of the correspondence between the hot water set temperature and the error of the hot water tap temperature with respect to the deviation of the hot water temperature on the downstream side of the heat exchanger 3 from the standard temperature. It is possible to have a configuration in which relationships are stored and control is performed directly.

更に第六の構成は上記第三の構成に於いて、制御手段1
3には、上水及び熱交換器3の下流側の湯温の夫々の基
準温度からの偏差に対する出湯設定温度と出湯温度の誤
差の対応関係に代えて、これらの偏差に対する補正量の
対応関係を記憶して直接的に制御を行う構成とすること
ができる。
Furthermore, a sixth configuration is the control means 1 in the third configuration described above.
3, instead of the correspondence between the error in the hot water outlet temperature and the hot water outlet temperature with respect to the deviation from the reference temperature of the water temperature on the downstream side of the water supply and the heat exchanger 3, the correspondence relationship of the correction amount with respect to these deviations is shown. It is possible to have a configuration in which the information is stored and directly controlled.

(作用) まず第一の構成は、所望の出湯設定温度を設定して出湯
を行う場合、上水の温度が基準温度からずれた場合には
、制御手段〕3は予め記憶している出湯設定温度と出湯
温度の誤差の対応関係から、前記偏差に対しての出湯設
定温度からの出湯温度の誤差を導出して、この誤差を極
小とするように作動機構9の作動量を補正するので、出
湯温度と出湯設定温度の誤差を小さくすることができる
(Function) First, when dispensing hot water by setting a desired preset hot water dispensing temperature, if the temperature of tap water deviates from the reference temperature, the control means] 3 sets the pre-stored dispensing hot water temperature. From the correspondence between the temperature and the error in the hot water outlet temperature, the error in the outlet temperature from the set outlet temperature for the deviation is derived, and the operating amount of the actuating mechanism 9 is corrected so as to minimize this error. It is possible to reduce the error between the hot water temperature and the hot water setting temperature.

また第二の構成は、熱交換器3の下流側の湯温が基準温
度からずれた場合には、制御手段13は予め記憶してい
る出湯設定温度と出湯温度の誤差の対応関併から、前記
偏差に対しての出湯設定温度からの出湯温度の誤差を導
出して、この誤差を極小とするように作動機#19の作
動量を補正するので、出湯温度と出湯設定温度の誤差を
小さくすることができる。
In addition, in the second configuration, when the hot water temperature on the downstream side of the heat exchanger 3 deviates from the reference temperature, the control means 13 uses the correspondence relationship between the pre-stored hot water tap temperature and the error between the hot water tap temperature and the hot water tap temperature. Since the error in the hot water outlet temperature from the hot water outlet temperature set point with respect to the deviation is derived and the operating amount of actuator #19 is corrected so as to minimize this error, the error between the outlet hot water temperature and the hot water outlet set temperature is reduced. can do.

そして第三の構成は、上述と同様に上水の温度が基準温
度からずれた場合でも、熱交換器3の下流側の湯温が基
準温度からずれた場合でも、出湯温度と出湯設定温度の
誤差を小さくすることができる。
And the third configuration is similar to the above, even if the temperature of the tap water deviates from the reference temperature or even if the temperature of the hot water on the downstream side of the heat exchanger 3 deviates from the reference temperature, the hot water temperature and the set hot water temperature can be adjusted. The error can be reduced.

また、第四〜第六の構成では、上記第一〜第三の制御を
、より直接的に行うことができる。
Moreover, in the fourth to sixth configurations, the first to third controls described above can be performed more directly.

(実施例) 次に本発明の実施例を図について説明する。(Example) Next, embodiments of the present invention will be described with reference to the drawings.

まず、第】図は本発明を適用する湯水混合式瞬間湯沸器
の一例の全体構成を表したもので、符号lは湯沸器2の
熱交換器3を通る湯経路であiノ、この湯経路lと並列
に、該熱交換器3の上流側で分岐させ、下流側で混合弁
4を介して合流させる水経路5を設けている。混合弁4
は、第2図に示すように、合流路6中に設けた熱応動素
子7により弁体8を移動させて前記水経路5と製経路1
の流量比率を変化させる構成とすると共に前記熱応動素
子7をバイアスさせる作動機構9を設けている。この作
動機構9は、例えばモーターと回転−直線運動変換機構
と、その位置を検出するポテンショメータ等とから構成
することができる。また前記熱応動素子7は、例えばワ
ックスを封入して熱膨張、収縮する構成とし、熱膨張に
よる弁体8の移動方向が製経路1の湯量を少なくすると
共に水経路5の水量を多くする方向としている。この熱
応動素子7は、バイアスばね10を介して作動体11に
よりバイアス量を調節する構成としており、この作動体
11は前述した通り作動機構9により作動して図中上下
方向に移動させる構成としている。以上の構成に於いて
、第3図(a)は製経路1の湯量が多い状態を表してお
り、この状態に於いてワックスが膨張して第3図(b)
に示すように熱応動素子7が熱膨張すると、弁体8を下
方に移動して製経路lの湯量を少なくすると共に、水経
路5の水量を多くして合流路6中の湯温が低下し、逆に
湯温が低下し過ぎて熱応動素子7が収縮すると、弁体8
を上方に移動して水経路5の水量を少なくすると共に、
製経路1の湯量を多くして合流路6中の湯温を上昇させ
、こうして合流路6を流れる湯温を制御することができ
る。そして、作動機構9により熱応動素子7を下方にバ
イアスさせると、設定湯温を低下させることができ、逆
に上方にバイアスさせると設定湯温を上昇させることが
できる。
First, Figure 1 shows the overall configuration of an example of a hot water mixing type instantaneous water heater to which the present invention is applied. A water path 5 is provided in parallel with this hot water path 1, which is branched on the upstream side of the heat exchanger 3 and merged through the mixing valve 4 on the downstream side. Mixing valve 4
As shown in FIG.
It is configured to change the flow rate ratio of , and is provided with an actuation mechanism 9 that biases the thermally responsive element 7 . The actuation mechanism 9 can be composed of, for example, a motor, a rotational-linear motion conversion mechanism, a potentiometer for detecting the position thereof, and the like. Further, the thermally responsive element 7 is configured to thermally expand and contract by enclosing wax, for example, so that the movement direction of the valve body 8 due to thermal expansion is a direction that decreases the amount of hot water in the production path 1 and increases the amount of water in the water path 5. It is said that The thermally responsive element 7 has a structure in which the amount of bias is adjusted by an actuating body 11 via a bias spring 10, and this actuating body 11 is actuated by the actuating mechanism 9 as described above to move it in the vertical direction in the figure. There is. In the above configuration, Fig. 3(a) shows a state where the amount of hot water in the production path 1 is large, and in this state, the wax expands and Fig. 3(b)
When the thermally responsive element 7 thermally expands as shown in FIG. However, if the water temperature drops too much and the thermally responsive element 7 contracts, the valve body 8
is moved upward to reduce the amount of water in the water path 5, and
By increasing the amount of hot water in the production path 1 to raise the temperature of the hot water in the merging path 6, the temperature of the hot water flowing through the merging path 6 can be controlled. When the thermally responsive element 7 is biased downward by the operating mechanism 9, the set hot water temperature can be lowered, and conversely, when the thermally responsive element 7 is biased upward, the set hot water temperature can be increased.

符号12は熱交換器3を加熱するための加熱手段であり
、図示例では、二の加熱手段12はバーナ12としてい
るが、バーナ12以外に電気ヒータ等を用いることもで
きる。符号13は制御手段、14は出湯温度設定器であ
り、この制御手段】3は、まず出湯温度設定器14の設
定湯温と、熱交換器3の下流側に設けたサーミスタ等の
温度センサ15からの湯温を基に、前記熱交換器3の下
流側の湯温を所定の目標温度とするように前記バーナ1
2の燃焼量をフィードバック制御する。制御手段13は
、このフィードバック制御に加λ、製経路lの流量を測
定する流量測定手段16と上水の温度を測定する温度セ
ンサ17の測定値と、前記目標温度とから行うフィード
フォワード制御を併用する構成としている。更に制御手
段13は、バーナ12の0N−OFF制御を併用する構
成とすることもできる。
Reference numeral 12 denotes heating means for heating the heat exchanger 3. In the illustrated example, the second heating means 12 is a burner 12, but an electric heater or the like may be used in addition to the burner 12. Reference numeral 13 denotes a control means, and 14 a hot water outlet temperature setter. Based on the temperature of the hot water from the
The combustion amount of No. 2 is feedback controlled. The control means 13 adds λ to this feedback control, and performs feedforward control based on the measured value of the flow rate measuring means 16 that measures the flow rate of the manufacturing path l, the temperature sensor 17 that measures the temperature of the tap water, and the target temperature. The configuration is such that they can be used together. Furthermore, the control means 13 can also be configured to also perform ON-OFF control of the burner 12.

また前記制御手段13は、前記作動機構9を作動して熱
応動素子7に上記のバイアスを設定するように構成して
いる。即ち、制御手段13は例えば上水の温度15℃及
び熱交換器3の下流側の湯温80℃を夫々基準温度とし
て、例えば第3図の実線に示すように、該基準温度の状
態に於ける出湯温度と前記バイアス量に対応するポテン
ショメータの電圧値等の対応関係を予め記憶設定すると
共に、上水の基準温度からの偏差に対する出湯設定温度
と出湯温度の誤差の対応関係及び前記熱交換器3の下流
側の湯温の基準温度からの偏差に対する出湯設定温度と
出湯温度の誤差の対応関係を記憶している。これらの対
応関係は、関数式やデータテーブルとして記憶設定する
ことができる。
Further, the control means 13 is configured to operate the actuation mechanism 9 to set the bias to the thermally responsive element 7 . That is, the control means 13 sets, for example, the temperature of the tap water at 15° C. and the temperature of the hot water on the downstream side of the heat exchanger 3 at 80° C. as reference temperatures, respectively, and maintains the state at the reference temperatures as shown by the solid line in FIG. 3, for example. The correspondence relationship between the hot water outlet temperature and the voltage value of the potentiometer corresponding to the bias amount is stored and set in advance, and the correspondence relationship between the hot water set temperature and the error between the hot water outlet temperature and the deviation from the reference temperature of the tap water and the heat exchanger. The correspondence relationship between the set hot water temperature and the error in the hot water temperature with respect to the deviation of the hot water temperature on the downstream side of No. 3 from the reference temperature is stored. These correspondence relationships can be stored and set as a function formula or a data table.

上述した゛ように、制御手段13はこれらの対応関係の
いずれか一方を記憶設定して制御を行うようにしたり、
両者を記憶設定して制御を行うようにする二とができる
。後者の場合には、夫々の対応関係から導出した誤差の
加算手段を設け、この加算手段により加算により得られ
る代数和を、補正量に対応する誤差とする。
As mentioned above, the control means 13 stores and sets one of these correspondence relationships to perform control,
It is possible to memorize and set both to perform control. In the latter case, a means for adding errors derived from the respective correspondence relationships is provided, and the algebraic sum obtained by addition by this adding means is used as the error corresponding to the correction amount.

以上の構成に於いて、バーナ12の燃焼により熱交換器
3で上記基準温度に昇温され製経路1を流れて混合弁4
に至った湯は、この混合弁4に於いて水経路5を流れて
きた基準温度の上水と混合して温度が低下し、合流路6
を流れて出湯口19から出湯される。この際、合流路6
中に設けた熱応動素子7は、該合流路6中の湯温に応動
して弁体8を移動させるので、前記水経路5と製経路1
の流量比率が変化し、こうして合流路6中の湯温を、熱
応動素子7のバイアス量に応じた値に調節することがで
きる。そしてこのバイアス量は、第3図の実線に示すよ
うに、該基準温度の状態に於ける出湯温度と前記バイア
ス量に対応するボテンショメータの電圧値等の対応関係
から、出湯温度設定器14に設定された温度に応じて決
定される。
In the above configuration, the temperature is raised to the above reference temperature in the heat exchanger 3 by combustion in the burner 12, flows through the manufacturing path 1, and is passed through the mixing valve 4.
The hot water that has reached this temperature is mixed with the standard temperature tap water that has flowed through the water path 5 in this mixing valve 4, and its temperature is lowered.
The hot water flows through the hot water and is discharged from the hot water outlet 19. At this time, confluence route 6
The heat-responsive element 7 provided therein moves the valve body 8 in response to the temperature of the water in the merging channel 6, so that the water channel 5 and the production channel 1
The flow rate ratio changes, and thus the temperature of the hot water in the confluence channel 6 can be adjusted to a value corresponding to the bias amount of the thermally responsive element 7. As shown by the solid line in FIG. 3, this bias amount is determined by the tapping temperature setter 14 based on the correspondence between the tapping temperature at the reference temperature and the voltage value of the potentiometer corresponding to the bias amount. Determined according to the temperature set.

このように、上水温度並びに熱交換器3の下流側の湯温
のいずれもが基準温度の場合には、出湯設定温度と出湯
温度に誤差がないので、第3図の実線に示す対応関係に
基づき、例えば出湯設定温度が50℃の場合には、ポテ
ンショメータ電圧が3(V)となるように作動機構9を
作動すれば、50℃の出湯温度が得られる。
In this way, when both the tap water temperature and the hot water temperature on the downstream side of the heat exchanger 3 are at the reference temperature, there is no error between the hot water outlet temperature and the hot water outlet temperature, so the correspondence relationship shown by the solid line in Fig. 3 is established. Based on this, for example, when the hot water tap temperature is 50° C., if the operating mechanism 9 is operated so that the potentiometer voltage becomes 3 (V), a hot water tap temperature of 50° C. can be obtained.

このような制御に於いては、熱交換器3でバーナ12に
より昇温した湯を上水で冷まして出湯口]9から出湯す
ることができるので、バーナ12の最小燃焼量が比較的
大きい場合にも小流量で低い温度の給湯を行うことがで
きる。また比較的短い時間間隔での間欠的使用に於いて
、湯経路1内の湯には、熱交換器3内の後沸きによる高
温出湯(オーバーシュート)やバーナ12の点火遅れに
よる冷水の混入(アンダーシュート)等があっても、合
流路6の湯には伝達しない。
In this kind of control, the hot water heated by the burner 12 in the heat exchanger 3 can be cooled with tap water and then discharged from the hot water outlet]9, so if the minimum combustion amount of the burner 12 is relatively large, It is also possible to supply hot water at a low temperature with a small flow rate. In addition, when used intermittently at relatively short time intervals, the hot water in the hot water path 1 may be contaminated with hot water (overshoot) due to after-boiling in the heat exchanger 3 or cold water due to the ignition delay of the burner 12. Even if there is an undershoot, etc., it will not be transmitted to the hot water in the confluence channel 6.

以上の動作番ニ於いて、いま上水の温度のみが基準温度
よりも上昇したと仮定すると、熱応動素子7のバイアス
量がそのままでは、出湯温度は第4図(a)に示すよう
に上水の温度の上昇に応じて上昇してしまう。即ち、上
水の温度が基準温度よりも上昇すると、出湯温度とポテ
ンショメータの電圧値との対応関係は、第3図中の一点
鎖線のように基準の対応関係よりも上方にシフトする。
In the above operation sequence, assuming that only the temperature of the tap water has risen above the reference temperature, if the bias amount of the thermally responsive element 7 remains unchanged, the tapped water temperature will rise as shown in Fig. 4(a). It rises as the water temperature rises. That is, when the temperature of the tap water rises above the reference temperature, the correspondence relationship between the hot water temperature and the voltage value of the potentiometer shifts upward from the reference correspondence relationship, as indicated by the dashed-dotted line in FIG.

即ち、同一のポテンショメータの電圧では、出湯温度が
上昇してしまう。そこで、制御手段13は上水の基準温
度からの偏差に対する出湯設定温度と出湯温度の誤差e
との対応関係から、所定の出湯温度50℃を得るための
補正電圧■を導出し、この補正電圧Vを前記3(■)に
加えた電圧、即ち3+v(V)がポテンショメータの電
圧となるように制御することにより、所定の出湯温度を
得ることができる。尚、上記補正電圧■は符号を含むも
のであり、上述の例では補正電圧Vは、前記3(V)か
ら減するものである。以上と逆に上水の電圧が基準温度
から下降すると、出湯温度とポテンショメータの電圧値
との対応関係は、第3図中の二点鎖線のように基準の対
応関係よりも下方にシフトし、この場合も前述と同様に
、補正電圧を導出して、ポテンショメータの電圧を補正
することにより所定の出湯温度が得られる。
That is, with the same potentiometer voltage, the tapped water temperature will increase. Therefore, the control means 13 controls the error e between the hot water setting temperature and the hot water temperature with respect to the deviation from the standard temperature of the tap water.
From the correspondence relationship, derive a correction voltage (■) to obtain a predetermined hot water temperature of 50°C, and add this correction voltage V to the above 3 (■), that is, 3 + v (V) so that it becomes the voltage of the potentiometer. By controlling the temperature, a predetermined hot water temperature can be obtained. Note that the above-mentioned correction voltage (■) includes a sign, and in the above example, the correction voltage V is subtracted from the above-mentioned 3 (V). Contrary to the above, when the water voltage drops from the standard temperature, the correspondence between the hot water temperature and the voltage value of the potentiometer shifts downward from the standard correspondence, as shown by the two-dot chain line in Figure 3. In this case as well, a predetermined tapping temperature can be obtained by deriving a correction voltage and correcting the voltage of the potentiometer, as described above.

次に、出湯量その他の条件に席じて熱交換器3の下流側
の湯温の制御の目標値を変更した場合等に於いて、この
湯温が下降すると、熱応動素子7のバイアス量がそのま
までは、出湯温度は第4図(b)に示すように二の湯温
の下降に応じて下降してしまう。aち、この湯温が基準
温度よりも下降すると、出湯温度とポテンショメータの
電圧値との対応関係は、第3図中の二点鎖線のように基
準の対応関係よりも下方にシフトする。そこで、制御手
段13はこの湯温の基準温度からの偏差に対する出湯設
定温度と出i温度の誤差eとの対応関係から、所定の出
湯温度50℃を得るための補正電圧Vを導出し、前述と
同様にポテンショメタの電圧を補正することにより所定
の出湯温度が得られる。
Next, when the target value for controlling the hot water temperature on the downstream side of the heat exchanger 3 is changed depending on the hot water output amount and other conditions, when the hot water temperature decreases, the bias amount of the thermally responsive element 7 is changed. If left as is, the temperature of the outlet hot water will drop in accordance with the drop in the second hot water temperature, as shown in FIG. 4(b). First, when the hot water temperature falls below the reference temperature, the correspondence between the outlet hot water temperature and the voltage value of the potentiometer shifts downward from the standard correspondence, as indicated by the two-dot chain line in FIG. Therefore, the control means 13 derives a correction voltage V for obtaining a predetermined hot water tap temperature of 50°C from the correspondence relationship between the hot water set temperature and the error e of the hot water tap temperature with respect to the deviation of the hot water temperature from the reference temperature, and Similarly, by correcting the voltage of the potentiometer, a predetermined hot water temperature can be obtained.

上述した上水の温度の変化と熱交換器3下流側の湯温の
変化は、独立的に生じるので、それらによる前述した出
湯温度の誤差は代数和となる。従って制御手段13には
、これらの代数和演算を行う加算手段等を設けることに
より、前述と同様にこれらの誤差を解消して所定の出湯
温度を得ることができる。
Since the above-mentioned change in the water temperature and the change in the hot water temperature on the downstream side of the heat exchanger 3 occur independently, the above-mentioned error in the outlet temperature due to these changes becomes an algebraic sum. Therefore, by providing the control means 13 with an addition means or the like that performs these algebraic sum operations, it is possible to eliminate these errors and obtain a predetermined tapping temperature in the same manner as described above.

尚、上述した制御手段13には、上水または熱交換器3
の下流側の湯温の夫々の基準温度からの偏差に対する出
湯設定温度と出湯温度の誤差の対応関係に代えて、これ
らの偏差に対する補正量の対応関係を記憶して直接的に
制御を行う構成とすることができる。
Note that the above-mentioned control means 13 includes water supply or heat exchanger 3.
In place of the correspondence between the hot water setting temperature and the error in the hot water output temperature with respect to the deviation of the hot water temperature on the downstream side from the respective reference temperature, the correspondence of the correction amount with respect to these deviations is stored and directly controlled. It can be done.

更に、以上の実施例に於いては、流量測定手段は、総流
量を測定可能な流Ik測定手段18と、湯経路〕の流量
を測定可能な流量測定手段16とを設けているが、湯経
路1の流量は、流量測定手段18によって測定する総流
量と、上水温度、出湯設定温度及び熱交換器下流側の湯
温がら算出することもでき、従って湯経路1の流量を測
定する流量測定手段16は省略が可能である。
Furthermore, in the above embodiment, the flow rate measuring means includes the flow Ik measuring means 18 capable of measuring the total flow rate and the flow rate measuring means 16 capable of measuring the flow rate of the hot water route. The flow rate of route 1 can also be calculated from the total flow rate measured by the flow rate measuring means 18, the tap water temperature, the hot water outlet temperature, and the hot water temperature on the downstream side of the heat exchanger. The measuring means 16 can be omitted.

(発明の効果) 本発明は以上の通り、熱交換器からの湯と上水とを、混
合弁に於いて混合して所望の温度の湯を供給し得るよう
にした湯水混合式瞬間湯沸器に於いて、かかる湯と上水
の混合を、合流路中に設けた熱応動素子により弁体を移
動させて流量比率を変化自在な混合弁により行うものに
おいて、上水の温度や熱交換器の下流側の湯温が、前記
熱応動素子の動作の基準となる基準温度からずれた場合
でも、予め制御手段に記憶している対応関係から出湯温
度の誤差または作動機構の直接的な補正量を導出して、
この誤差を極小とするように作動機構の作動量を補正す
るので、出湯温度と出湯設定温度の誤差を小さくするこ
とができるという効果がある。
(Effects of the Invention) As described above, the present invention provides a hot water/water mixing type instant water heater that mixes hot water from a heat exchanger and tap water in a mixing valve to supply hot water at a desired temperature. In a mixing valve, the hot water and clean water are mixed by a mixing valve that moves a valve body using a heat-responsive element installed in the confluence channel to freely change the flow rate ratio, and the temperature of the clean water and heat exchange are controlled. Even if the water temperature on the downstream side of the vessel deviates from the reference temperature that is the reference temperature for the operation of the thermally responsive element, the error in the hot water temperature or the operating mechanism can be directly corrected based on the correspondence stored in advance in the control means. Derive the quantity and
Since the operating amount of the operating mechanism is corrected so as to minimize this error, there is an effect that the error between the hot water outlet temperature and the hot water outlet set temperature can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用する給湯機構の実施例の全体構成
を表した説明図、第2図(a)、(b)は混合弁の実施
例の構成及び動作を表した説明的断面図である。また第
3図は、出湯温度と、熱応動素子の作動機構を構成する
ポテンショメータの電圧との対応関係を表した説明図、
第4図(a)、(b)は夫々、上水温度、熱交換器下流
側の湯温が変化した場合の従来の出湯特性を表した説明
図である。 符号1・・・湯経路、2・・湯湧器、3・・・熱交換器
、4・・・混合弁、5・・・水経路、6・・合流路、7
・・・熱応動素子、8・・・弁体、9・・・作動機構、
10・・・バイアスばね、11・・・作動体、12・加
熱手段(バーナ)、13・・制御手段、14・・・出湯
温度設定器、15.17・・・温度センサ、16・・流
量測定手段、18・総流量測定手段、19・・・出湯口
、20 戻しばね。 第 図 第3図 第4図(α) 第4図(b) 晴間 哨問
FIG. 1 is an explanatory diagram showing the overall configuration of an embodiment of a hot water supply mechanism to which the present invention is applied, and FIGS. 2 (a) and (b) are explanatory cross-sectional views showing the configuration and operation of an embodiment of a mixing valve. It is. Further, FIG. 3 is an explanatory diagram showing the correspondence relationship between the tapping temperature and the voltage of the potentiometer that constitutes the operating mechanism of the thermally responsive element.
FIGS. 4(a) and 4(b) are explanatory diagrams showing conventional hot water discharge characteristics when the water temperature and the temperature of hot water on the downstream side of the heat exchanger change, respectively. Code 1...Hot water route, 2...Hot water generator, 3...Heat exchanger, 4...Mixing valve, 5...Water route, 6...Merge path, 7
...Thermal response element, 8... Valve body, 9... Actuation mechanism,
DESCRIPTION OF SYMBOLS 10... Bias spring, 11... Working body, 12... Heating means (burner), 13... Control means, 14... Hot water temperature setting device, 15.17... Temperature sensor, 16... Flow rate Measuring means, 18, total flow rate measuring means, 19... tap, 20 return spring. Figure 3 Figure 4 (α) Figure 4 (b) Clear air patrol

Claims (1)

【特許請求の範囲】 (1)加熱手段を設けた熱交換器を通る湯経路と並列に
、該熱交換器の上流側で分岐させ、下流側で混合弁を介
して合流させる水経路を設けると共に、該混合弁は合流
路中に設けた熱応動素子により弁体を移動させて前記水
経路と湯経路の流量比率を変化させる構成とし、そして
該熱応動素子を出湯温度設定器の出湯設定温度に対応し
て作動機構によりバイアスさせる構成とすると共に、前
記加熱手段を前記熱交換器の下流側に設けた温度センサ
を用いて制御手段により制御して、該下流側の湯温を所
定温度に調節する構成とした湯水混合式瞬間湯沸器に於
いて、前記制御手段は上水の基準温度からの偏差に対す
る出湯設定温度と出湯温度の誤差の対応関係を記憶し、
測定した上水温度に対して、前記対応関係により出湯設
定温度からの出湯温度の誤差を導出して前記作動機構の
作動量を補正することを特徴とする湯水混合式瞬間湯沸
器の給湯制御方法 (2)加熱手段を設けた熱交換器を通る湯経路と並列に
、該熱交換器の上流側で分岐させ、下流側で混合弁を介
して合流させる水経路を設けると共に、該混合弁は合流
路中に設けた熱応動素子により弁体を移動させて前記水
経路と湯経路の流量比率を変化させる構成とし、そして
該熱応動素子を出湯温度設定器の出湯設定温度に対応し
て作動機構によりバイアスさせる構成とすると共に、前
記加熱手段を前記熱交換器の下流側に設けた温度センサ
を用いて制御手段により制御して、該下流側の湯温を所
定温度に調節する構成とした湯水混合式瞬間湯沸器に於
いて、前記制御手段は前記熱交換器の下流側の湯温の基
準温度からの偏差に対する出湯設定温度と出湯温度の誤
差の対応関係を記憶し、測定した前記下流側の湯温に対
して、前記対応関係により出湯設定温度からの出湯温度
の誤差を導出して前記作動機構の作動量を補正すること
を特徴とする湯水混合式瞬間湯沸器の給湯制御方法(3
)加熱手段を設けた熱交換器を通る湯経路と並列に、該
熱交換器の上流側で分岐させ、下流側で混合弁を介して
合流させる水経路を設けると共に、該混合弁は合流路中
に設けた熱応動素子により弁体を移動させて前記水経路
と湯経路の流量比率を変化させる構成とし、そして該熱
応動素子を出湯温度設定器の出湯設定温度に対応して作
動機構によりバイアスさせる構成とすると共に、前記加
熱手段を前記熱交換器の下流側に設けた温度センサを用
いて制御手段により制御して、該下流側の湯温を所定温
度に調節する構成とした湯水混合式瞬間湯沸器に於いて
、前記制御手段は上水の基準温度からの偏差に対する出
湯設定温度と出湯温度の誤差の対応関係と前記熱交換器
の下流側の湯温の基準温度からの偏差に対する出湯設定
温度と出湯温度の誤差の対応関係を記憶し、測定した上
水温度と前記下流側の湯温に対して、夫々の前記対応関
係により出湯設定温度からの出湯温度の夫々誤差を導出
して、それらの代数和により前記作動機構の作動量を補
正することを特徴とする湯水混合式瞬間湯沸器の給湯制
御方法 (4)請求項1の制御手段には、上水の基準温度からの
偏差に対する出湯設定温度と出湯温度の誤差の対応関係
に代えて、上水の基準温度からの偏差に対する補正量の
対応関係を記憶して直接的に制御を行う構成としたこと
を特徴とする湯水混合式瞬間湯沸器の給湯制御方法 (5)請求項2の制御手段には、熱交換器の下流側の湯
温の基準温度からの偏差に対する出湯設定温度と出湯温
度の誤差の対応関係に代えて、上記湯温の基準温度から
の偏差に対する補正量の対応関係を記憶して直接的に制
御を行う構成としたことを特徴とする湯水混合式瞬間湯
沸器の給湯制御方法 (6)請求項1の制御手段には、上水及び熱交換器の下
流側の湯温の夫々の基準温度からの偏差に対する出湯設
定温度と出湯温度の誤差の対応関係に代えて、これらの
偏差に対する補正量の対応関係を記憶して直接的に制御
を行う構成としたことを特徴とする湯水混合式瞬間湯沸
器の給湯制御方法 (7)請求項1の加熱手段はバーナであることを特徴と
する湯水混合式瞬間湯沸器の給湯制御方法 (8)請求項1の熱応動素子は、ワックスを内蔵して周
囲の温度に応じて膨張、収縮する構成としたことを特徴
とする湯水混合式瞬間湯沸器の給湯制御方法
[Scope of Claims] (1) In parallel with a hot water route passing through a heat exchanger provided with a heating means, a water route is provided that branches on the upstream side of the heat exchanger and joins through a mixing valve on the downstream side. In addition, the mixing valve is configured to change the flow rate ratio of the water path and the hot water path by moving the valve body using a thermally responsive element provided in the merging path, and the thermally responsive element is used to adjust the hot water output setting of the hot water tap temperature setting device. The heating means is configured to be biased by an operating mechanism in accordance with the temperature, and the heating means is controlled by a control means using a temperature sensor provided downstream of the heat exchanger, so that the temperature of the water on the downstream side is maintained at a predetermined temperature. In the hot water mixing type instantaneous water heater configured to adjust the hot water to the hot water, the control means stores a correspondence relationship between an error in the hot water outlet temperature and an error in the hot water outlet temperature with respect to a deviation from a reference temperature of the tap water;
Hot water supply control for a hot water mixing type instantaneous water heater, characterized in that the error in the hot water outlet temperature from the hot water outlet set temperature is derived from the measured tap water temperature based on the correspondence relationship, and the operating amount of the actuating mechanism is corrected. Method (2) In parallel with the hot water path passing through a heat exchanger provided with a heating means, a water path is provided that branches on the upstream side of the heat exchanger and joins through a mixing valve on the downstream side, and the mixing valve The valve body is moved by a thermally responsive element provided in the merging path to change the flow rate ratio between the water path and the hot water path, and the thermally responsive element is moved in accordance with the hot water setting temperature of the hot water tap temperature setting device. The heating means is biased by an operating mechanism, and the heating means is controlled by a control means using a temperature sensor provided downstream of the heat exchanger to adjust the temperature of the water on the downstream side to a predetermined temperature. In the hot water mixing type instantaneous water heater, the control means stores and measures the correspondence relationship between the hot water outlet temperature setting and the hot water outlet temperature error with respect to the deviation of the hot water temperature on the downstream side of the heat exchanger from the reference temperature. The hot water supply of the hot water mixing type instantaneous water heater is characterized in that the operating amount of the operating mechanism is corrected by deriving an error in the outlet temperature from the outlet hot water set temperature based on the correspondence relationship with respect to the downstream water temperature. Control method (3
) A water path is provided in parallel with the hot water path passing through the heat exchanger provided with the heating means, and is branched on the upstream side of the heat exchanger and merged through the mixing valve on the downstream side, and the mixing valve is connected to the merging path. The valve body is moved by a thermally responsive element provided therein to change the flow rate ratio between the water path and the hot water path, and the thermally responsive element is moved by an operating mechanism in accordance with the hot water setting temperature of the hot water tap temperature setting device. A hot water mixture having a bias configuration and a configuration in which the heating unit is controlled by a control unit using a temperature sensor provided on the downstream side of the heat exchanger to adjust the temperature of the hot water on the downstream side to a predetermined temperature. In the type instantaneous water heater, the control means is configured to control the correspondence between the set hot water temperature and the error in the hot water temperature relative to the deviation from the reference temperature of the tap water, and the deviation from the reference temperature of the water temperature downstream of the heat exchanger. The correspondence relationship between the set hot water temperature and the error in the hot water temperature is memorized, and each error in the hot water temperature from the set hot water temperature is derived from the set hot water temperature based on the corresponding relationship for the measured tap water temperature and the downstream hot water temperature. (4) A hot water supply control method for a hot water mixing type instantaneous water heater, characterized in that the operating amount of the operating mechanism is corrected by the algebraic sum thereof. Instead of the correspondence between the set hot water temperature and the error between the hot water supply temperature and the deviation from the standard temperature, the system stores the correspondence between the correction amount and the deviation from the reference temperature of the tap water, and directly performs control. (5) The control means according to claim 2 includes a method for controlling the hot water supply in a hot water mixing type instantaneous water heater (5), wherein the control means includes a method for dealing with an error between the hot water set temperature and the hot water temperature with respect to the deviation of the hot water temperature on the downstream side of the heat exchanger from the reference temperature. A hot water supply control method for a hot water mixing type instantaneous water heater, characterized in that instead of the relationship, the correspondence of the correction amount to the deviation of the hot water temperature from the reference temperature is stored and directly controlled. 6) In the control means of claim 1, instead of the correspondence between the error of the hot water outlet temperature and the hot water outlet temperature with respect to the deviation from the reference temperature of the water temperature on the downstream side of the tap water and the heat exchanger, these deviations are provided. (7) A hot water supply control method for a hot/cold water mixing type instantaneous water heater, characterized in that the correspondence relationship of the correction amount to the corresponding one is stored and the control is performed directly. Hot water supply control method for a hot water/cold water mixing type instantaneous water heater (8) The thermally responsive element according to claim 1 is characterized in that the thermally responsive element has a built-in wax and is configured to expand and contract according to the surrounding temperature. Hot water supply control method for a mixed instantaneous water heater
JP27369390A 1990-10-12 1990-10-12 Controlling method of hot water supply of combination type tap-controlled water heater Pending JPH04151451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27369390A JPH04151451A (en) 1990-10-12 1990-10-12 Controlling method of hot water supply of combination type tap-controlled water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27369390A JPH04151451A (en) 1990-10-12 1990-10-12 Controlling method of hot water supply of combination type tap-controlled water heater

Publications (1)

Publication Number Publication Date
JPH04151451A true JPH04151451A (en) 1992-05-25

Family

ID=17531241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27369390A Pending JPH04151451A (en) 1990-10-12 1990-10-12 Controlling method of hot water supply of combination type tap-controlled water heater

Country Status (1)

Country Link
JP (1) JPH04151451A (en)

Similar Documents

Publication Publication Date Title
JPS6141823A (en) Setter for charging and interrupting cycle of burner
JPH04151451A (en) Controlling method of hot water supply of combination type tap-controlled water heater
JPS6157529B2 (en)
JPH04151449A (en) Controlling method of hot water supply of hot-cold water combination type tap-controlled water heater
JP6341000B2 (en) Water heater
JPH04151450A (en) Controlling method of hot water feeding of hot-cold water combination type tap-controlled water heater
JP2605153B2 (en) Instant water heater hot water supply mechanism
JP2886319B2 (en) Derivation method of required capacity of heating means in hot water supply control of mixed water heater
JP2611017B2 (en) Instant water heater hot water supply mechanism
JPH09119708A (en) Instantaneous water heater
JPH03204554A (en) Hot water supplying mechanism for instantaneous water heater
US20240230086A1 (en) Fuel Type Recognition and/or Fuel Quantity Control and/or Air Volume Control
JPS5815696B2 (en) Danbo Souchi
JPH03204552A (en) Hot water supplying mechanism for instantaneous water heater
JPH04341675A (en) Hot/cold water combination system
JPS61289266A (en) Flow amount control of hot-water supplier
JPS5818002Y2 (en) Boiler temperature increase control device
SU985599A1 (en) Device for proportioning gas and air flows
RU6872U1 (en) AUTOMATIC GAS WATER HEATER, ROOM TEMPERATURE REGULATOR
JP2988875B2 (en) Instant water heater
JP6848265B2 (en) Hot water temperature control device
JPH0533929A (en) Method for controlling hot water feeder
JPS60207847A (en) Instantaneous water heater
JPH04151452A (en) Controlling method of hot water supply of hot-cold water combination type tap-controlled water heater
JPS6235575B2 (en)