JPH04150988A - Regeneration of activated carbon - Google Patents

Regeneration of activated carbon

Info

Publication number
JPH04150988A
JPH04150988A JP27043390A JP27043390A JPH04150988A JP H04150988 A JPH04150988 A JP H04150988A JP 27043390 A JP27043390 A JP 27043390A JP 27043390 A JP27043390 A JP 27043390A JP H04150988 A JPH04150988 A JP H04150988A
Authority
JP
Japan
Prior art keywords
activated carbon
water
regeneration
org
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27043390A
Other languages
Japanese (ja)
Other versions
JP2657712B2 (en
Inventor
Akira Watanabe
昭 渡辺
Masami Kitagawa
政美 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP2270433A priority Critical patent/JP2657712B2/en
Publication of JPH04150988A publication Critical patent/JPH04150988A/en
Application granted granted Critical
Publication of JP2657712B2 publication Critical patent/JP2657712B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)

Abstract

PURPOSE:To stabilize treatment capacity at a low cost over a long period of time by aerobically aerating activated carbon to be regenerated after treatment in water whose concn. of org. matter is lower than that of water to be treated. CONSTITUTION:In a regeneration tank 5, the adsorbed org. matter on the surface of activated carbon is aerated by air along with the saturated adsorbing activated carbon 7 taken out of an activated carbon packed tank 2 or 2' to be subjected to oxidative decomposition by the action of bacteria. The regenerated activated carbon 8 is returned to the activated carbon packed tank 2 or 2' and the treated water 4 used in the regeneration tank 5 is returned to the activated carbon-packed tank 2 along with water 1 to be treated as a withdrawing liquid 6 or discharged out of the system as it is. When the org. matter adsorbed on activated carbon is not desorbed according to the kind thereof by the concn. gradient of the org. matter, said org. matter can be desorbed by auxiliarily using an inorg. acid such as hydrochloric acid or sulfuric acid, alkali such as NaOH or Ca(OH)3 or org. solvent such as methanol or ethanol.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、活性炭の再生方法に係り、特に、被処理水中
の有機物を活性炭により吸着除去した際の処理後の活性
炭の再生方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for regenerating activated carbon, and particularly to a method for regenerating activated carbon after treatment when organic matter in water to be treated is adsorbed and removed by activated carbon.

〔従来の技術〕[Conventional technology]

従来、活性炭の再生方法としては、乾式あるいは湿式の
加熱再生法が広く行われている。また、苛性ソーダなど
の薬剤を用いた薬品再生法も再生装置の設備投資が少な
くてすみ、運転も容易であることなどの理由から行われ
ている。
Conventionally, dry or wet heating regeneration methods have been widely used as methods for regenerating activated carbon. In addition, chemical regeneration methods using chemicals such as caustic soda are also used because they require less investment in equipment for regeneration equipment and are easy to operate.

さらに、活性炭表面の吸着有機物を微生物の働きにより
分解する生物再生法も知られている。
Furthermore, a biological regeneration method is also known in which the organic matter adsorbed on the surface of activated carbon is decomposed by the action of microorganisms.

しかしながら、加熱再生法の場合、■−回の再生で活性
炭損失が3−10%と比較的大きいこと、■高温で操作
するので炉内材質の消耗が激しい、■温度、ガス条件を
厳密に制限する必要があり、■装置が高価なことなどの
欠点がある。薬品再生法は、加熱炉のような特別な装置
を要しないものの、薬品や脱着再生液の後処理にコスト
がかかる等の問題点がある。一方、生物再生法は、特殊
な装置あるいは薬品などを必要としない長所があるが、
再生に長時間を要し、吸着性能の回復程度にも限界があ
る。
However, in the case of the thermal regeneration method, ■ the activated carbon loss is relatively large at 3-10% after regeneration times, ■ the material inside the furnace is consumed rapidly because it is operated at high temperatures, and ■ the temperature and gas conditions are strictly limited. ■There are disadvantages such as expensive equipment. Although the chemical regeneration method does not require special equipment such as a heating furnace, there are problems such as high costs for post-processing of the chemicals and desorption/regeneration liquid. On the other hand, biological regeneration methods have the advantage of not requiring special equipment or chemicals;
Regeneration takes a long time, and there is a limit to the extent to which adsorption performance can be recovered.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、前記のような従来技術の問題点を解決し、水
処理用として用いられた活性炭を、低コストで効率的に
再生する方法を提供することを目的とする。
An object of the present invention is to solve the problems of the prior art as described above and to provide a method for efficiently regenerating activated carbon used for water treatment at low cost.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するた約に、本発明では、活性炭による
被処理水中の有機物の吸着除去処理において、処理後の
再生すべき活性炭を、被処理水より有機物濃度の低い水
中下で、好気的に曝気することを特徴とする活性炭の再
生方法としたものである。
In order to achieve the above object, in the present invention, in the adsorption and removal treatment of organic matter in water to be treated using activated carbon, the activated carbon to be regenerated after treatment is aerobically heated in water with a lower concentration of organic matter than the water to be treated. This is a method for regenerating activated carbon, which is characterized by aeration.

次に、本発明を図面を参照して詳細に説明する。Next, the present invention will be explained in detail with reference to the drawings.

第1図は、本発明の一例を示すフロー概略図である。第
1図において、被処理水1は、活性炭3及び3′の充填
した活性炭充填槽2及び2′に流入し、処理水4として
放流される。ここで処理水4の一部は再生槽5に導かれ
る。再生槽5では、活性炭充填槽2又は2′から取り出
された飽和吸着活性炭7とともに、空気により曝気され
て、活性炭表面の吸着有機物が微生物の働きにより酸化
分解する。この時、活性汚泥などの好気性微生物を再生
槽5に別途添加してもよいが、下廃水あるいは上水の処
理で使われている活性炭のように、微生物がその表面に
付着、増殖しているような場合、必ずしも好気性微生物
を別途添加する必要はない。
FIG. 1 is a schematic flow diagram showing an example of the present invention. In FIG. 1, treated water 1 flows into activated carbon filling tanks 2 and 2' filled with activated carbon 3 and 3', and is discharged as treated water 4. Here, a part of the treated water 4 is guided to the regeneration tank 5. In the regeneration tank 5, the saturated adsorbed activated carbon 7 taken out from the activated carbon filling tank 2 or 2' is aerated with air, and the adsorbed organic matter on the surface of the activated carbon is oxidized and decomposed by the action of microorganisms. At this time, aerobic microorganisms such as activated sludge may be separately added to the regeneration tank 5, but microorganisms may adhere to and proliferate on the surface of activated carbon used in the treatment of sewage or tap water. In such cases, it is not necessarily necessary to separately add aerobic microorganisms.

再生された活性炭8は活性炭充填槽2または2′に戻さ
れ、再生槽5で用いた処理水4は弓き抜き液6として被
処理水1とともに活性炭充填槽2に戻すか、そのまま系
外に排出する。
The regenerated activated carbon 8 is returned to the activated carbon filling tank 2 or 2', and the treated water 4 used in the regeneration tank 5 is returned to the activated carbon filling tank 2 together with the water to be treated 1 as a bowing liquid 6, or it is directly removed from the system. Discharge.

本発明は、活性炭表面に濃縮された有機物を再生槽にお
いて溶出させ、溶出した有機物を微生物の作用により酸
化分解することを特徴とする活性炭の再生方法である。
The present invention is a method for regenerating activated carbon, which is characterized in that organic matter concentrated on the surface of activated carbon is eluted in a regeneration tank, and the eluted organic matter is oxidized and decomposed by the action of microorganisms.

従って、活性炭に吸着された有機物の種類によっては有
機物の濃度勾配のみでは淡側に脱着されない場合もある
Therefore, depending on the type of organic matter adsorbed on activated carbon, the organic matter may not be desorbed to the lighter side only by the concentration gradient.

そのような場合には、塩酸、硫酸などの無機酸、Na0
)1 、 Ca(DH)aなどのアルカリ、メタノール
、エタノールなどの有機溶媒あるいは被処理水中の有機
物より親和力の大きい他の物質例えばフェノール、安息
香酸などを補助的に使用して脱着させることも可能であ
る。
In such cases, inorganic acids such as hydrochloric acid and sulfuric acid, Na0
)1, it is also possible to desorb using an auxiliary alkali such as Ca(DH)a, an organic solvent such as methanol or ethanol, or other substances with a higher affinity than the organic matter in the water to be treated, such as phenol or benzoic acid. It is.

この場合、再生槽5に活性炭充填槽から、部の活性炭を
取り出して投入し、酸、アルカリ、有機溶剤等が脱着を
進行させた後、さらに別の活性炭と処理水を投入し、空
気を送り曝気再生する。また、前述のごとく脱着操作と
再生操作を別途行うことなく、活性炭および処理水を投
入した再生槽5において、酸、アルカリ、有機溶剤等を
添加しながら再生しても良い。酸あるいはアルカリを添
加して再生を行う際、pHは4、0−10.0に維持す
るのが良い。なお、再生槽5での再生操作は数回行った
方が効果的であり、処理水4の代わりに水道水、井戸水
、河ノ水などの天然水を用いても良い。
In this case, a certain amount of activated carbon is taken out from the activated carbon filling tank and put into the regeneration tank 5, and after desorption of acids, alkalis, organic solvents, etc. proceed, another activated carbon and treated water are put in, and air is supplied. Aerate and regenerate. Furthermore, without separately performing the desorption operation and the regeneration operation as described above, the regeneration may be performed while adding acid, alkali, organic solvent, etc. in the regeneration tank 5 into which activated carbon and treated water are input. When performing regeneration by adding acid or alkali, the pH is preferably maintained at 4.0-10.0. Note that it is more effective to perform the regeneration operation in the regeneration tank 5 several times, and natural water such as tap water, well water, river water, etc. may be used instead of the treated water 4.

〔作用〕[Effect]

一般に、水中の有機物に対する活性炭の吸着力は、温度
、pH,共存物質、その他の条件によって大きく変化す
る。従って、被処理水中の有機物の性状と前記の諸条件
を検討することで、活性炭に吸着した有機物を淡側に脱
着させることができる。また、有機物の種類によっては
、平衡吸着濃度を低下させることで容易に脱着させるこ
ともできる。本発明は、吸着有機物の活性炭からの脱着
操作を積極的に利用したものであり、脱着された有機物
は再生槽内の微生物により急速に酸化分解される。その
ため、従来の原水(被処理水)を再生槽に導いて行う生
物再生法あるいはBOD、窒素、リンなどの栄養源を別
途添加して行う方法に較べて、短時間にかつ効率的に再
生される。
Generally, the adsorption power of activated carbon for organic matter in water varies greatly depending on temperature, pH, coexisting substances, and other conditions. Therefore, by considering the properties of the organic matter in the water to be treated and the above-mentioned conditions, it is possible to desorb the organic matter adsorbed on the activated carbon to the lighter side. Furthermore, depending on the type of organic substance, it can be easily desorbed by lowering the equilibrium adsorption concentration. The present invention actively utilizes the desorption operation of adsorbed organic matter from activated carbon, and the desorbed organic matter is rapidly oxidized and decomposed by microorganisms in the regeneration tank. Therefore, compared to the conventional biological regeneration method in which raw water (water to be treated) is led to a regeneration tank, or the method in which nutrients such as BOD, nitrogen, and phosphorus are added separately, regeneration can be performed in a shorter time and more efficiently. Ru.

第2図は、活性炭吸着有機物の生物分解特性を調べるた
tに、クロル安息香酸(0−CIBa)とその分解菌を
用いて検討したものである。表1の培地200−に所定
量の粒状炭を添加し、72時間振とうし、平衡吸着状態
にならしめる。
FIG. 2 shows an investigation using chlorbenzoic acid (0-CIBa) and its degrading bacteria to investigate the biodegradation characteristics of organic matter adsorbed on activated carbon. A predetermined amount of granular charcoal was added to the medium 200- in Table 1, and the mixture was shaken for 72 hours to reach an equilibrium adsorption state.

その結果を表−2に示す。The results are shown in Table-2.

表 基本培地の組成 <g/l) a : 0゜ Na0)1に溶解 Og/矛) 0rn!添加 O倍濃度で調整、 別々に滅菌する 表−2 実験系の設定 ” Thcl−:淡側に残存した。−CIBaから遊離
するcl−の理論値 その後、クロル安息香酸分解菌を添加して、淡側のクロ
ル安息香酸濃度と生物分解により遊離する塩素イオン濃
度を経時的に測定した。第2図中、破線で示したThc
ドは、活性炭添加後、淡側に残存したクロル安息香酸(
o−CIBa)が完全に生物分解された場合に遊離され
る塩素イオンの濃度を示したものである。
Table: Composition of basic medium <g/l) a: Dissolved in 0°Na0)1 Og/l) 0rn! Adjust the concentration by adding O times and sterilize separately Table-2 Experimental system settings "Thcl-: Remained on the pale side. - Theoretical value of Cl- released from CIBa. After that, chlorbenzoic acid-degrading bacteria were added, The concentration of chlorbenzoic acid on the light side and the concentration of chlorine ions liberated by biodegradation were measured over time.Thc indicated by the broken line in Figure 2
The chlorbenzoic acid (chlorbenzoic acid) remaining on the light side after the addition of activated carbon
This figure shows the concentration of chloride ions liberated when o-CIBa) is completely biodegraded.

図より、淡側のクロル安息香酸は、分解菌添加後急速に
分解され、それに伴って塩素イオンが遊離された。しか
しながら、淡側に遊離される塩素イオンは、いずれの実
験系においても理論値(Thcl−)以上に遊離された
。このことは、活性炭に予め吸着されていたクロル安息
香酸が分解されたことを示すものである。ただし、本実
験結果は回分系での現象であるた約に淡側のクロル安息
香酸は一定ではなく、分解菌による消費に伴い低下する
。すなわち、活性炭に吸着されたクロル安息香酸は、平
衡吸着濃度の低下により脱着されやすい条件となり、淡
側に脱着された結果、分解されたことが考えられる。
The figure shows that the chlorbenzoic acid on the lighter side was rapidly decomposed after the addition of the degrading bacteria, and chloride ions were liberated accordingly. However, the amount of chlorine ions released to the light side was greater than the theoretical value (Thcl-) in all experimental systems. This indicates that the chlorbenzoic acid previously adsorbed on the activated carbon was decomposed. However, the results of this experiment show that the amount of chlorbenzoic acid on the light side is not constant, as it is a phenomenon in a batch system, but decreases as it is consumed by degrading bacteria. That is, it is considered that the chlorbenzoic acid adsorbed on the activated carbon was decomposed as a result of conditions in which it was easily desorbed due to a decrease in the equilibrium adsorption concentration and was desorbed to the lighter side.

また、活性炭添加濃度5000■/1の実験系では、初
期平衡吸収濃度が低いためにクロル安息香酸の脱着速度
が遅く、そのために、塩素イオンの遊離に時間を要した
ことが考えられる。
Furthermore, in the experimental system where the activated carbon concentration was 5000/1, the desorption rate of chlorbenzoic acid was slow due to the low initial equilibrium absorption concentration, and it is thought that this is why it took time to liberate chlorine ions.

以上の結果より、活性炭に吸着された有機物は、微生物
により分解され、その際、活性炭からの脱着性が吸着有
機物の生物分解性を支配する重要な因子であることが明
らかとなった。
From the above results, it has become clear that the organic matter adsorbed on activated carbon is decomposed by microorganisms, and in this case, the ability to desorb from the activated carbon is an important factor governing the biodegradability of the adsorbed organic matter.

第3図は、クロル安息香酸の脱着性を調べた結果である
。600■/1のクロル安息香酸溶液に5000■/1
の活性炭を加えて、40時間、28℃の条件で振とうし
く平衡吸着濃度は200mg/j!となる)、所定量の
純水により溶液の濃度を変化させて、淡側に溶出するク
ロル安息香酸濃度を経時的に測定した。図から明らかな
ように、平衡吸着濃度を200mg/iからOmg /
 1に変化させた系が最も高い脱着性を示し、変化量が
少ない程、脱着量も少ない結果となった。従って、第2
図および第3図の結果より、クロル安息香酸の場合、平
衡吸着濃度の変化のみで活性炭から脱着させることが可
能であり、その際、平衡吸着濃度との濃度差が大きい程
再生効果も大きいことが胡らかとt!った。
FIG. 3 shows the results of investigating the desorption properties of chlorbenzoic acid. 600■/1 chlorbenzoic acid solution to 5000■/1
of activated carbon and shaking at 28°C for 40 hours, the equilibrium adsorption concentration was 200 mg/j! ), the concentration of the solution was varied with a predetermined amount of pure water, and the concentration of chlorbenzoic acid eluted on the lighter side was measured over time. As is clear from the figure, the equilibrium adsorption concentration was changed from 200 mg/i to Omg/i.
The system changed to 1 showed the highest desorption performance, and the smaller the amount of change, the smaller the amount of desorption. Therefore, the second
From the results shown in Figures and Figure 3, in the case of chlorbenzoic acid, it is possible to desorb it from activated carbon simply by changing the equilibrium adsorption concentration, and in this case, the greater the difference in concentration from the equilibrium adsorption concentration, the greater the regeneration effect. But it's hurakato! It was.

表−3は、下水の高度処理で使用されている活性炭を、
昇こうにより処理し、表面に付着した微生物を死滅させ
た後、各種の水に浸せきして、溶出してくるTOP量を
測定した結果である。
Table 3 shows activated carbon used in advanced treatment of sewage.
These are the results of measuring the amount of TOP eluted by immersion in various types of water after treating it by steaming to kill microorganisms attached to the surface.

表−3 活性炭から溶出したTOC量 :24時間浸せき抜液側に溶出した TOC量 Oo Na叶で調整 表3より被処理水よりは処理水の方が、またp)lは高
い方が溶出してくるTOC量は多いという結果になった
。このように、下水のような多成分の有機物を含む水の
場合、前記のクロル安息香酸の例のように、濃度勾配の
みでは顕著な脱着効果は認袷られず、アルカリ条件に保
つことが効果的であった。これは、下水中にはフミン質
などの物質が比較的多く含まれており、これらは一般に
濃度勾配のみでは脱着されにくく、陰性に荷電している
た杓にアルカリ条件で脱tさせることが有効になってい
るものと考えられる。
Table 3 Amount of TOC eluted from activated carbon: Amount of TOC eluted to the drained liquid side after immersion for 24 hours Adjusted with Oo Na leaf From Table 3, it is found that the amount of TOC eluted is higher in the treated water than in the treated water, and that p)l is higher. The result was that the amount of TOC produced was large. In this way, in the case of water containing multi-component organic substances such as sewage, as in the example of chlorbenzoic acid mentioned above, a significant desorption effect cannot be observed with only a concentration gradient, and it is effective to maintain the water under alkaline conditions. It was a target. This is because sewage contains a relatively large amount of substances such as humic substances, which are generally difficult to be desorbed by concentration gradients alone, and it is effective to remove tate using a negatively charged ladle under alkaline conditions. It is thought that it has become .

従って、再生槽において、活性炭に吸着した有機物を分
解、除去するためには、吸着有機物の吸着性を十分検討
したうえで、再生槽の条件を設定することが必要となる
Therefore, in order to decompose and remove organic matter adsorbed on activated carbon in a regeneration tank, it is necessary to set the conditions of the regeneration tank after fully considering the adsorption properties of the adsorbed organic matter.

〔実施例〕〔Example〕

以下に、本発明を実施例により具体的に説明するが、本
発明はこれらの実施例に限定されない。
EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to these Examples.

実施例−1 本発明の1実施例について、フェノール廃水(人工廃水
)を用いた場合について説明する。
Example-1 An example of the present invention will be described in which phenol wastewater (artificial wastewater) is used.

活性炭の再生は、第1図において、活性炭充填槽2の上
部から順に活性炭を引き抜き、処理水を導いた再生槽5
に活性炭7を投入して空気で曝気した。実施の条件は次
のとおりである。
The activated carbon is regenerated as shown in Fig. 1, where the activated carbon is sequentially pulled out from the top of the activated carbon filling tank 2 and the treated water is introduced into the regeneration tank 5.
Activated carbon 7 was added to the tank and aerated with air. The conditions for implementation are as follows.

(1)原水  フェノール人工廃水 水道水11に対して以下の薬品を溶 解した。(1) Raw water Phenol artificial wastewater Dissolve the following chemicals in tap water 11. I understand.

フェノール100mg、硫酸アンモニ ウム20■、リン酸第二カリウム5 ■ (2)活性炭充填槽 直径100−1高さ1500 mm 活性炭層厚 700〜800mm 5V  1.50hr−(LV  50m/d)通水開
始前に、フェノールで馴致し た活性汚泥を添加し、フェノール分 解菌を活性炭表面に付着させた。
100 mg of phenol, 20 ■ of ammonium sulfate, 5 ■ of potassium phosphate (2) Activated carbon filled tank diameter: 100-1 height: 1500 mm Activated carbon layer thickness: 700-800 mm 5V 1.50hr-(LV 50m/d) Before starting water flow Activated sludge enriched with phenol was added to allow phenol-degrading bacteria to adhere to the activated carbon surface.

(3)再生槽 直径300 mm、高さ600Ill1
m水張り容量 0.03m3 回分的に8時間曝気し、その後、水 を引き抜き再度処理水を導き8時間 曝気する。再生された活性炭は活性 炭充填槽下部に戻す。
(3) Regeneration tank diameter 300 mm, height 600Ill1
mWater filling capacity: 0.03 m3 Aeration is carried out in batches for 8 hours, after which water is withdrawn and treated water is introduced again for 8 hours of aeration. The recycled activated carbon is returned to the bottom of the activated carbon filling tank.

なお、対照区として再生槽を設けない同型、同条件の実
験装置を設けた。
As a control, an experimental device of the same type and under the same conditions without a regeneration tank was set up.

実施結果を第4図に示す。対照区では、活性炭処理水質
が徐々に悪化してきたのに対して、再生槽を設けた実験
区では、120日の実験期間中、処理水質にほとんど変
化なく、再生処理の効果は顕著であった。
The implementation results are shown in Figure 4. In the control area, the quality of activated carbon-treated water gradually deteriorated, whereas in the experimental area where a regeneration tank was installed, there was almost no change in the quality of treated water during the 120-day experimental period, and the effect of the regeneration treatment was remarkable. .

実施例−2 本発明の他の実施例について説明する。第1図において
、活性炭充填槽2の上部から順に活性炭7を引き抜き、
処理水を導いた再生槽5に活性炭を投入して空気で曝気
した。再生槽のpl−1は8.5に調整した。実施の条
件は次のとおりである。
Example-2 Another example of the present invention will be described. In FIG. 1, the activated carbon 7 is sequentially pulled out from the top of the activated carbon filling tank 2.
Activated carbon was introduced into the regeneration tank 5 into which the treated water was introduced, and aerated with air. The pl-1 of the regeneration tank was adjusted to 8.5. The conditions for implementation are as follows.

(1)原水(被処理水) K$に重下水処理場 二次処理水 平均水質:BOD  14■/1、 COD  13mg/j!、 TOC11■/β、 SS   5!l1g/l、 pH6,8 (2)活性炭充填槽 平均水質:BOD  3mg/A!、 COD  6mg/A。(1) Raw water (water to be treated) Heavy sewage treatment plant secondary treated water in K$ Average water quality: BOD 14■/1, COD 13mg/j! , TOC11■/β, SS 5! l1g/l, pH6,8 (2) Activated carbon filling tank Average water quality: BOD 3mg/A! , COD 6mg/A.

TOC5■/1、 SS   1mg/l、 pH6,5 (3)pH調整用薬剤  NaOH溶液(4)活性炭充
填槽 直径200 mm、高さ2500 nun活性炭層厚 
1000−120011IIIISV  1.50hr
  (LV  50m/d)(5)再生槽 直径500
+n+n、高さ1000 mm水張り容量 0.1m’ 回分的に12時間陽気し、その後、 水を引き抜き再度処理水を導き12 時間陽気する。再生された活性炭は 活性炭充填槽下部に戻す。
TOC5■/1, SS 1mg/l, pH6.5 (3) pH adjusting agent NaOH solution (4) Activated carbon filling tank diameter 200 mm, height 2500 nun activated carbon layer thickness
1000-120011IIISV 1.50hr
(LV 50m/d) (5) Regeneration tank diameter 500
+n+n, height 1000 mm, water filling capacity 0.1 m' Aerate for 12 hours in batches, then drain the water, introduce treated water again, and aerate for 12 hours. The recycled activated carbon is returned to the bottom of the activated carbon filling tank.

なお、対照区として再生槽を設けない同型、同条件の実
験装置を設けた。
As a control, an experimental device of the same type and under the same conditions without a regeneration tank was set up.

実施結果を第5図に示す。対照区では、活性炭処理水質
が徐々に悪化してきたのに対して、再生槽を設けた実験
区では、400日の実験期間中、処理水質にほとんど変
化なく、新炭補充の必要もなく処理できた。
The implementation results are shown in Figure 5. In the control area, the quality of activated carbon-treated water gradually deteriorated, whereas in the experimental area with a regeneration tank, there was almost no change in the quality of the treated water during the 400-day experimental period, and treatment was possible without the need to replenish fresh charcoal. Ta.

実施例−3 第1図において、原水を再生槽に導く実験系(対照区)
を設けて、処理水を導いて再生を行った場合との、再生
能の比較を行った。その他は、実施例−2と同様の条件
で行った。
Example-3 In Figure 1, the experimental system that leads raw water to the regeneration tank (control area)
The regeneration ability was compared with the case where a system was installed and the treated water was introduced for regeneration. Other conditions were the same as in Example-2.

実施結果を第6図に示す。運転開始250日目に各実験
系ともに再生をおこなったが、原水を再生槽に導いた系
においては、その再生効果は不十分であり、処理水のT
OC濃度は約7 mg/βに上昇した。一方、処理水を
用いた系では、400日の運転期間中、処理水のTOC
濃度は常に4mg/f前後と安定していた。
The implementation results are shown in Figure 6. Although each experimental system was regenerated on the 250th day after the start of operation, the regeneration effect was insufficient in the system where raw water was introduced into the regeneration tank, and the T of the treated water was
The OC concentration increased to approximately 7 mg/β. On the other hand, in a system using treated water, the TOC of the treated water was
The concentration was always stable at around 4 mg/f.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明により活性炭の再生方法を次のよ
うに改良することができる。
As described above, according to the present invention, the method for regenerating activated carbon can be improved as follows.

(1)特殊な装置を必要とせず、オンサイトでの再生が
可能なため低コストでかつ処理性能も長期的に安定する
(1) Since on-site regeneration is possible without the need for special equipment, costs are low and processing performance is stable over the long term.

(2)活性炭に吸着した有機物を、積極的に脱着させる
条件下で再生するため、従来の生物再生法に比べて効率
よく短時間に再生できる。
(2) Organic matter adsorbed on activated carbon is regenerated under conditions that actively desorb it, so it can be regenerated more efficiently and in a shorter time than conventional biological regeneration methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一例を示すフロー概略図であり、第
2図は活性炭吸着有機物の生物分解特性を調べるたtに
、クロル安息香酸とその分解菌を用いて、淡側のクロル
安息香酸濃度と生物分解により遊離する塩素イオン濃度
を経時的に測定したグラフであり、第3図は、クロル安
息香酸の脱着性を調べたグラフであり、第4図、第5図
及び第6図は実施例1〜3の実施結果を示すグラフであ
る。 1:原水(被処理水)、2.2’:活性炭充填槽、3.
3’  :活性炭、4:処理水、5:再生槽、6:引き
抜き液、7:飽和吸着活性炭、8:再生活性炭、9:散
気板、10:薬品添加、11:pl(コントローラー 特許出願人  荏原インフィルコ株式会社同    株
式会社荏原総合研究所 代  理  人     吉   嶺       柱
間        松   1)      大第1図 茅 5図 脱蒐 時開 (分) ・v@a、vt度2■−$/ F” I 5Chl /
 L 6 %伊吸11/l 200z> /R→l O
Og / PC早轍吸旭遭烹EDtl/f→鞄9/支O
半衡吸1諜崖2■伽2ノ!→ O*>/ 1第4図 O ■ 4o    ω   eK)1ω 1十0は色日数 (日) 2C1 罎E転社辿日、4り、(日)
FIG. 1 is a flow diagram showing an example of the present invention, and FIG. 2 is a flowchart showing an example of the present invention. This is a graph obtained by measuring acid concentration and chlorine ion concentration liberated by biodegradation over time. Fig. 3 is a graph in which the desorbability of chlorbenzoic acid was investigated; Figs. 4, 5, and 6. is a graph showing the results of Examples 1 to 3. 1: Raw water (water to be treated), 2.2': Activated carbon filling tank, 3.
3': activated carbon, 4: treated water, 5: regeneration tank, 6: withdrawal liquid, 7: saturated adsorption activated carbon, 8: regenerated activated carbon, 9: diffuser plate, 10: chemical addition, 11: pl (controller patent applicant Ebara Infilco Co., Ltd. Ebara Research Institute Co., Ltd. Director Yoshimine Matsu Hashirama 1) Large 1st figure 5th figure removed Time opening (minutes) ・v@a, vt degree 2■-$/F" I 5Chl/
L 6 %Isu 11/l 200z> /R→l O
Og / PC early rut absorption Asahi encounter EDtl/f → bag 9/branch O
Half-equal suction 1 spooky cliff 2 ■ 佽 2 no! → O*>/ 1 Figure 4 O ■ 4o ω eK) 1ω 100 is the number of colored days (days) 2C1 罎E 入社入日, 4ri, (days)

Claims (1)

【特許請求の範囲】 1、活性炭による被処理水中の有機物の吸着除去処理に
おいて、処理後の再生すべき活性炭を、被処理水より有
機物濃度の低い水中下で、好気的に曝気することを特徴
とする活性炭の再生方法。 2、好気的曝気は、酸、アルカリ、有機溶剤又は被処理
水中の有機物より親和力の大きな物質を添加して行うこ
とを特徴とする請求項1記載の活性炭の再生方法。
[Claims] 1. In the adsorption and removal treatment of organic matter in water to be treated using activated carbon, the activated carbon to be regenerated after treatment is aerobically aerated in water with a lower concentration of organic matter than the water to be treated. Characteristic activated carbon regeneration method. 2. The method for regenerating activated carbon according to claim 1, wherein the aerobic aeration is performed by adding an acid, an alkali, an organic solvent, or a substance having a higher affinity than the organic matter in the water to be treated.
JP2270433A 1990-10-11 1990-10-11 How to regenerate activated carbon Expired - Lifetime JP2657712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2270433A JP2657712B2 (en) 1990-10-11 1990-10-11 How to regenerate activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2270433A JP2657712B2 (en) 1990-10-11 1990-10-11 How to regenerate activated carbon

Publications (2)

Publication Number Publication Date
JPH04150988A true JPH04150988A (en) 1992-05-25
JP2657712B2 JP2657712B2 (en) 1997-09-24

Family

ID=17486214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2270433A Expired - Lifetime JP2657712B2 (en) 1990-10-11 1990-10-11 How to regenerate activated carbon

Country Status (1)

Country Link
JP (1) JP2657712B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115569644A (en) * 2022-09-09 2023-01-06 昆明理工大学 Biochar mixed desorption and harmless treatment method and system
CN117160184A (en) * 2023-08-17 2023-12-05 清远市富盈电子有限公司 Processing device and processing method for VOCs (volatile organic compounds) during PCB production

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839394A (en) * 1971-09-23 1973-06-09
JPS5134876A (en) * 1974-09-18 1976-03-24 Suido Kiko Kk Katsuseitannyoru ryudosetsushokushoriho
JPS5399096A (en) * 1977-02-10 1978-08-30 Ebara Infilco Co Ltd Activated carbon regenerating method
JPS63178887A (en) * 1987-01-20 1988-07-22 Nec Kansai Ltd Method for regenerating active carbon for water treatment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839394A (en) * 1971-09-23 1973-06-09
JPS5134876A (en) * 1974-09-18 1976-03-24 Suido Kiko Kk Katsuseitannyoru ryudosetsushokushoriho
JPS5399096A (en) * 1977-02-10 1978-08-30 Ebara Infilco Co Ltd Activated carbon regenerating method
JPS63178887A (en) * 1987-01-20 1988-07-22 Nec Kansai Ltd Method for regenerating active carbon for water treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115569644A (en) * 2022-09-09 2023-01-06 昆明理工大学 Biochar mixed desorption and harmless treatment method and system
CN117160184A (en) * 2023-08-17 2023-12-05 清远市富盈电子有限公司 Processing device and processing method for VOCs (volatile organic compounds) during PCB production

Also Published As

Publication number Publication date
JP2657712B2 (en) 1997-09-24

Similar Documents

Publication Publication Date Title
BRPI0708661A2 (en) sewage treatment system and method
JPH09314163A (en) Method and apparatus for treating waste water
US8828230B2 (en) Wastewater treatment method for increasing denitrification rates
JPH11114596A (en) Production of ultrapure water and ultrapure water producing device
CA1141489A (en) Process for reabsorption and retention of phosphorous by activated biomass
JPH09108690A (en) Treatment of phosphorus containing sewage
JPH10323694A (en) Method for removing nitrogen in water containing nitrate and denitrification bioreactor
JP2015077551A (en) Phosphorus elimination-type wastewater treatment process, and phosphorus elimination-type wastewater treatment system
JPH05169090A (en) Device for supplying nitrification bacteria in biological activated carbon treatment tower
JP3477187B2 (en) Method and apparatus for decolorizing wastewater
JPH049119B2 (en)
EP0952116B1 (en) Process for decomposition and removal of dioxins contained in sludge
JP3477161B2 (en) Wastewater treatment method and apparatus
JPH04150988A (en) Regeneration of activated carbon
JPH07102356B2 (en) Wastewater treatment equipment using ultrafiltration membrane
JP3461514B2 (en) Advanced water treatment system and method of starting advanced water treatment system
JPH07323297A (en) Biological treatment of organic sewage
JPH0342099A (en) High degree treatment of organic sewage
JPS61178092A (en) Treatment of sewage
JP3380002B2 (en) Sewage treatment method
KR100273856B1 (en) Sequencing batch reactor containing zeolite
JP3222015B2 (en) Biological water treatment method for wastewater containing ammonia nitrogen
JPH03118891A (en) Treatment of organic sewage
JP2003170189A (en) Treatment equipment
JPH0966293A (en) Low load sewage treatment apparatus