JPH04149175A - Purification of epoxidated (meth)acrylate - Google Patents

Purification of epoxidated (meth)acrylate

Info

Publication number
JPH04149175A
JPH04149175A JP27609990A JP27609990A JPH04149175A JP H04149175 A JPH04149175 A JP H04149175A JP 27609990 A JP27609990 A JP 27609990A JP 27609990 A JP27609990 A JP 27609990A JP H04149175 A JPH04149175 A JP H04149175A
Authority
JP
Japan
Prior art keywords
solvent
acrylate
meth
oxidizing agent
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27609990A
Other languages
Japanese (ja)
Other versions
JP2819061B2 (en
Inventor
Akihiro Kuwana
章博 桑名
Kimiaki Honda
本田 公映
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP27609990A priority Critical patent/JP2819061B2/en
Publication of JPH04149175A publication Critical patent/JPH04149175A/en
Application granted granted Critical
Publication of JP2819061B2 publication Critical patent/JP2819061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Epoxy Compounds (AREA)

Abstract

PURPOSE:To enable purification of epoxidated (meth)acrylate by epoxidating cyclohexenylmethyl (meth)acrylate with an oxidizing agent, lowering the heating temperature and evaporating the solvent at low temperature by two stages. CONSTITUTION:A compound expressed by formula I (R is H or methyl) is subjected to epoxidation reaction using an oxidizing agent (e.g. peracetic acid) in a solvent such as ethyl acetate under a molecular oxygen-containing gas atmosphere at 0-70 deg.C. The solvent is evaporated from the reaction system using a thin film evaporator at a low evaporation temperature of <=100 deg.C to afford a crude liquid having 10-30wt.% solvent concentration. Then the crude liquid is further subjected to the second evaporation at a low evaporation temperature of <=100 deg.C. Thereby, the crude liquid is purified into a liquid having <1wt.% solvent content to provide the compound expressed by formula II. The resultant cyclohexylmethyl (meth)acrylate) is readily polymerizable and useful as ink, coating, adhesive, coating agent, a raw material for molding resin, modifier, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエポキシ化されたシクロヘキシルメチル(メタ
)アクリレートの精製方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for purifying epoxidized cyclohexylmethyl (meth)acrylate.

さらに詳しくは、脱低沸工程を、2段階に分割して実施
することにより製品中の低沸物の低減、さらには重合物
の生成の抑制を可能にするシクロヘキシルメチル(メタ
)アクリレートの精製方法に関するものである。このシ
クロヘキンルメチル(メタ)アクリレート化合物は熱、
紫外線、イオン化放射線、ラジカル重合開始剤の存在下
で容易に単独重合または他の不飽和基化合物と共重合す
ることが可能で、特にポリマーにカチオンによって硬化
する脂環式エポキシ基を導入するのが有効である。また
塗料用樹脂の中間原料としても有用である。(従来の技
術) 従来より各種のアクリル酸エステル類モノマーが知られ
ている。例えば、アクリル酸メチル、アクリル酸エチル
、アクリル酸2−エチルヘキシル等の単官能モノマーお
よびトリメチロールプロパントリアクリレート、ペンタ
エリスリトールトリアクリレート等の多官能モノマーが
一般的に知られている。しかしなから、単官能モノマー
は印刷インキおよび塗料に用いた場合には硬化後の未反
応モノマーの臭気がはなはだ問題となる。
More specifically, a method for purifying cyclohexylmethyl (meth)acrylate that makes it possible to reduce low-boiling substances in the product and further suppress the formation of polymeric products by performing the low-boiling removal step in two stages. It is related to. This cyclohexynylmethyl (meth)acrylate compound is heated,
It can be easily homopolymerized or copolymerized with other unsaturated group compounds in the presence of ultraviolet rays, ionizing radiation, or radical polymerization initiators, and is especially useful for introducing cationically cured alicyclic epoxy groups into polymers. It is valid. It is also useful as an intermediate raw material for paint resins. (Prior Art) Various acrylic acid ester monomers have been known. For example, monofunctional monomers such as methyl acrylate, ethyl acrylate, and 2-ethylhexyl acrylate, and polyfunctional monomers such as trimethylolpropane triacrylate and pentaerythritol triacrylate are generally known. However, when monofunctional monomers are used in printing inks and paints, the odor of unreacted monomers after curing poses a serious problem.

また多官能モノマーは塗料および印刷インキの希釈剤と
して用いる場合には、樹脂に対して多量に使用する必要
かあり、したがって樹脂か有する特性が失われるという
欠点を有している。
Furthermore, when polyfunctional monomers are used as diluents for paints and printing inks, they have to be used in large amounts relative to the resin, which has the disadvantage that the properties of the resin are lost.

その点、 [式中Rは水素原子またはメチル基を表す]て表わされ
るシクロへキセニルメチル(メタ)アクリレート化合物
を酸化剤でエポキシ化して得られる [式中Rは水素原子またはメチル基を表わす]は低粘度
で、かつ、低臭気で広範囲に亘る樹脂への溶解性を有し
ており、このものはインキ、塗料、接着剤、被覆剤、成
型用樹脂の原料あるいは改質剤として有用である。
In this regard, the compound obtained by epoxidizing the cyclohexenylmethyl (meth)acrylate compound represented by [wherein R represents a hydrogen atom or a methyl group] with an oxidizing agent [wherein R represents a hydrogen atom or a methyl group] is It has low viscosity, low odor, and solubility in a wide range of resins, and is useful as a raw material or modifier for inks, paints, adhesives, coatings, and molding resins.

しかし、この−儀式(II)て示されるエポキシ化され
た(メタ)アクリル酸エステル(以下Rが水素原子に時
はAETHB、Rがメチル基の時はMETHBと略す)
は極めて重合しやすく製造工程、貯蔵および輸送中に熱
、光およびその他の要因によってしばしば重合すること
が知られている。
However, the epoxidized (meth)acrylic acid ester shown in this ritual (II) (hereinafter abbreviated as AETHB when R is a hydrogen atom, and METHB when R is a methyl group)
It is known that it is extremely susceptible to polymerization and is often polymerized by heat, light and other factors during the manufacturing process, storage and transportation.

これらを防ぐために特願平1−320956号明細書に
おいて重合防止方法についての記載がある。
In order to prevent these problems, Japanese Patent Application No. 1-320956 describes a method for preventing polymerization.

(発明が解決しようとする課題) これに対して、本発明者らは、前記特願平コー3209
56号明細書(平成1年12月11日出願)において述
べられている重合禁止剤による重合防止効果は、まだ十
分とはいえないことを確かめた。
(Problems to be Solved by the Invention) In response to this, the present inventors have
It was confirmed that the polymerization preventing effect of the polymerization inhibitor described in Specification No. 56 (filed on December 11, 1999) was not yet sufficient.

この理由の一つは特願平1−320956号が出願され
た当時においてAETHB (METHB)が未だ工業
的規模で生産されていなかったため製品として具備すべ
き品質が十分予見てきなかったことにある。
One of the reasons for this is that at the time when Japanese Patent Application No. 1-320956 was filed, AETHB (METHB) had not yet been produced on an industrial scale, so the quality that the product should have was not sufficiently predicted.

すなわち、AETHB (METHB)製品中に含有す
る低沸成分を2〜3%から1%以内にしなければならず
、そのためには脱低沸工程において加熱温度を上昇させ
るか、あるいは滞留時間を長くする等をしなければなら
ないが、こうした場合、製品中に微量の重合物が含まれ
る。
In other words, the low-boiling components contained in AETHB (METHB) products must be reduced from 2 to 3% to 1%, and to achieve this, the heating temperature must be increased in the low-boiling removal process or the residence time must be lengthened. However, in such cases, the product contains trace amounts of polymers.

この点に関してその後開発が進み、製品中に微量の重合
物が含まれていると問題があることが明らかになってい
る。
Developments in this regard have progressed since then, and it has become clear that there is a problem if the product contains trace amounts of polymers.

例えば、塗料用樹脂の中間原料を合成する際に、重合物
を含むAETHB (METHB)を使うと重合物が粘
着性の不溶解物として析出し、プロセス上、種々の問題
を生しるとともに塗料の商品価値を著しく低下せしめて
しまう。
For example, when AETHB (METHB) containing a polymer is used to synthesize an intermediate raw material for paint resin, the polymer precipitates as a sticky insoluble substance, causing various problems in the process and causing damage to the paint. This will significantly reduce the product value of the product.

製品AETHB (METHB)中に含まれる微量の重
合物はAETHB (METHB)自体の低分子量重合
物が主成分と考えられる。
The trace amounts of polymers contained in the product AETHB (METHB) are thought to be mainly composed of low molecular weight polymers of AETHB (METHB) itself.

これらの重合物の含有量はn−へキサンあるいはn−へ
ブタン100ccに製品10gを溶解したときに生ずる
スラリーを濾過し、重量を測定することにより製品中に
含有する重合物の重量%で表すことができる(n−へブ
タンを使ったこのような溶解性試験を以下ヘプタンテス
ト−HTと呼ぶ)。
The content of these polymers is expressed as the weight percent of the polymers contained in the product by filtering the slurry produced when 10 g of the product is dissolved in 100 cc of n-hexane or n-hebutane and measuring the weight. (Such a solubility test using n-heptane is hereinafter referred to as Heptane Test-HT).

製品として使えるAETHB (METHB)はHTが
0゜1%以下でなければならないことがわかっている。
It is known that AETHB (METHB) that can be used as a product must have an HT of 0°1% or less.

翻って、特願平1−320956号明細書に記載された
方法を追試して得られたAETHB (METHB)の
重合物含有量を調べるとHTで0.14%と、品質的に
は十分てないと判断される。
On the other hand, the polymer content of AETHB (METHB) obtained by repeating the method described in Japanese Patent Application No. 1-320956 was found to be 0.14% in HT, which is sufficient in terms of quality. It is determined that there is no.

すなわち、AETHB (METHB)を工業的に生産
するには、さらに効果的な重合抑制方法を確立する必要
があり、本発明者らが出願した当時は依然として、それ
を可能にする技術は存在しなかったのである。
In other words, in order to industrially produce AETHB (METHB), it is necessary to establish a more effective method for inhibiting polymerization, and at the time the present inventors filed the application, there was still no technology that would enable this. It was.

本発明者らは、このような課題に対して鋭意研究を行い
、加熱温度を下げ、溶媒を2段階で脱低沸すれば上記目
的に極めて合致することを見出だし、ついに品質的に満
足し得るAETHB(M、ETHB)を工業的規模で製
造し、がっ、実情に即した品質の維持法を確立し、本発
明を完成するに至った。
The inventors of the present invention conducted intensive research to address these issues and found that lowering the heating temperature and removing the low boiling point of the solvent in two stages would extremely meet the above objectives, and finally satisfied the quality. The resulting AETHB (M, ETHB) was produced on an industrial scale, and a quality maintenance method was established in line with actual circumstances, leading to the completion of the present invention.

(発明の構成) すなわち、本発明は 「一般式(1) [式中Rは水素原子またはメチル基を表す]で表される
シクロへキセニルメチル(メタ)アクリレート化合物を
酸化剤でエポキシ化して一般式(11) [式中Rは水素原子またはメチル基を表す]で表される
化合物を製造する際に、 溶媒を含有する反応粗液を、まず (a)加熱温度]、 O0℃以下で脱低沸することによ
り、溶媒含有量10〜30重量%の粗液を得る工程で処
理し、 次いて (b)(a)で得られた粗液を加熱温度100’C以下
で脱低沸することにより溶媒含有量1重量%未清のエポ
キシ化されたシクロヘキンルメチル(メタ)アクリレー
トを得る工程 からなることを特徴とするエポキシ化されたシクロヘキ
ノルメチル(メタ)アクリレートの精製方法」 である。
(Structure of the Invention) In other words, the present invention provides the following method: ``A cyclohexenyl methyl (meth)acrylate compound represented by the general formula (1) [wherein R represents a hydrogen atom or a methyl group] is epoxidized with an oxidizing agent to obtain a compound of the general formula (11) When producing a compound represented by the formula [wherein R represents a hydrogen atom or a methyl group], the crude reaction solution containing a solvent is first deoxidized at (a) heating temperature] at 0°C or lower. Boiling to obtain a crude liquid with a solvent content of 10 to 30% by weight, and then (b) delow boiling the crude liquid obtained in (a) at a heating temperature of 100'C or less. A method for purifying epoxidized cyclohexynolmethyl (meth)acrylate, which comprises the step of obtaining unpurified epoxidized cyclohexynylmethyl (meth)acrylate having a solvent content of 1% by weight.

以下に本発明のAETHB (METHB)の精製方法
について詳しく説明する。
The method for purifying AETHB (METHB) of the present invention will be explained in detail below.

先ずエポキン化反応工程について説明する。First, the epochination reaction step will be explained.

すなわち、一般式(1)で表される(メタ)アクリレー
ト化合物を酸化剤てエポキシ化する。
That is, the (meth)acrylate compound represented by general formula (1) is epoxidized using an oxidizing agent.

この除用いる酸化剤は不飽和結合をエポキシ化できるも
のなら何でも良く、過ギ酸、過酢酸、過プロピオン酸、
m−クロロ過安息香酸、トリフルオロ過酢酸、過安息香
酸、ターシャリブチルハイドロパーオキサイド、クミル
ハイドロパーオキサイド、テトラリルハイドロバーオキ
サイド、ジイソプロピルベンゼンハイドロバーオキサイ
ドなどの各種ハイドロパーオキサイド類、過酸化水素な
どを例として挙げることができる。
The oxidizing agent used for this removal may be any oxidizing agent that can epoxidize unsaturated bonds, such as performic acid, peracetic acid, perpropionic acid,
Various hydroperoxides such as m-chloroperbenzoic acid, trifluoroperacetic acid, perbenzoic acid, tert-butyl hydroperoxide, cumyl hydroperoxide, tetralyl hydroperoxide, diisopropylbenzene hydroperoxide, and peroxide. Examples include hydrogen.

酸化剤は触媒として併用してもよく、例えば有機過酸な
ら、炭酸ソーダなどのアルカリや硫酸などの酸を触媒と
して用い得る。
The oxidizing agent may also be used as a catalyst; for example, in the case of an organic peracid, an alkali such as sodium carbonate or an acid such as sulfuric acid may be used as the catalyst.

同じく上記各種のハイドロパーオキシド類を用いる場合
なら、モリブデンヘキサカルボニル等公知の触媒能を持
つ化合物を、また過酸化水素を用いる場合なら、タング
ステン酸と苛性ソーダの混合物を併用することが出来る
Similarly, when using the above-mentioned various hydroperoxides, a compound having a known catalytic ability such as molybdenum hexacarbonyl can be used, and when hydrogen peroxide is used, a mixture of tungstic acid and caustic soda can be used in combination.

反応をバッチで行う場合は先ず、反応容器内にシクロへ
キセニルメチル(メタ)アクリレートを所定量仕込み、
この中に必要に応じて触媒、安定剤を溶解させ、この中
に前記酸化剤を滴下して行う。
When carrying out the reaction in batches, first, a predetermined amount of cyclohexenyl methyl (meth)acrylate is charged into the reaction vessel.
A catalyst and a stabilizer are dissolved in this as required, and the oxidizing agent is dropped into the solution.

酸化剤とシクロへキセニルメチル(メタ)アクリレート
との反応モル比は理論的には1/1であるが、本発明の
方法では0.1〜1oの範囲、好ましくは0.5〜10
の範囲、さらに好ましくは0.8〜1.5の範囲である
The reaction molar ratio between the oxidizing agent and cyclohexenyl methyl (meth)acrylate is theoretically 1/1, but in the method of the present invention it is in the range of 0.1 to 10, preferably 0.5 to 10
, more preferably from 0.8 to 1.5.

酸化剤とシクロへキセニルメチル(メタ)アクリレート
とのモル比が10を越える場合はシクロへキセニルメチ
ル(メタ)アクリレートの転化率および反応時間短縮、
(メタ)アクリレートの重合によるロスの減少の点で好
ましいが、過剰の酸化剤による副反応や酸化剤の選択率
および未反応の酸化剤を回収する場合に多大の費用を要
する、などの欠点がある。
If the molar ratio between the oxidizing agent and cyclohexenylmethyl (meth)acrylate exceeds 10, the conversion rate and reaction time of cyclohexenylmethyl (meth)acrylate will be reduced;
Although it is preferable in terms of reducing loss due to polymerization of (meth)acrylate, it has disadvantages such as side reactions caused by excess oxidizing agent, oxidizing agent selectivity, and large costs required when recovering unreacted oxidizing agent. be.

逆に酸化剤とシクロへキセニルメチル(メタ)アクリレ
ートとのモル比か01以下の場合は酸化剤の転化率、選
択率は高く、酸化剤による生成物の副反応を防ぐという
点で好ましいが、(メタ)アクリレートの重合によるロ
ス、未反応のシクロへキセニルメチル(メタ)アクリレ
ートを回収する場合に多大の費用を要する、などの欠点
かある。
On the other hand, when the molar ratio of the oxidizing agent and cyclohexenyl methyl (meth)acrylate is less than 0.01, the conversion rate and selectivity of the oxidizing agent are high, which is preferable in terms of preventing side reactions of the product caused by the oxidizing agent. There are disadvantages such as loss due to polymerization of meth)acrylate and a large amount of cost required to recover unreacted cyclohexenylmethyl (meth)acrylate.

反応温度は、エポキシ化反応が酸化剤の分解反応に優先
するような上限値以下で行い、例えば過酢酸を用いる場
合なら70℃以下で、ターンヤリブチルハイドロパーオ
キシドを用いる場合なら150℃以下が好ましい。
The reaction temperature is carried out below the upper limit so that the epoxidation reaction takes precedence over the decomposition reaction of the oxidizing agent. For example, when using peracetic acid, it is 70°C or less, and when using tanyabutyl hydroperoxide, it is 150°C or less. preferable.

反応温度が低いと、反応完結に長時間を要するので、過
酢酸を用いる場合なら0℃、ターシャリブチルハイドロ
パーオキシドを用いる場合なら20℃という下限値以上
で行う事が好ましい。
If the reaction temperature is low, it will take a long time to complete the reaction, so it is preferable to carry out the reaction at a temperature higher than the lower limit of 0° C. when peracetic acid is used and 20° C. when tert-butyl hydroperoxide is used.

また、エポキシ化の際、酸化剤からの副生等による有機
酸、アルコール、水でエポキシ基が開環してしまう副反
応が生じるので、副反応量が少なくなるような温度を前
記したような温度領域から選定して実施する。
In addition, during epoxidation, a side reaction occurs in which the epoxy group opens the ring with an organic acid, alcohol, or water due to by-products from the oxidizing agent. Select and implement from the temperature range.

反応圧力は一般には常圧下で操作されるが、加圧または
低圧下でも実施できる。
The reaction pressure is generally operated at normal pressure, but it can also be carried out under elevated or low pressure.

また、反応は無溶媒下でも実施できるが溶媒存在下のほ
うが、反応粗液の粘度低下、酸化剤の希釈による安定化
等の効果かあるため好ましし)。
Although the reaction can be carried out in the absence of a solvent, it is preferable to carry out the reaction in the presence of a solvent, since this has the effect of reducing the viscosity of the reaction crude liquid and stabilizing it by diluting the oxidizing agent).

使用される溶媒としては、ヘンセン、トルエン、キシレ
ン等の芳香族化合物、クロロホルム、ジメチルクロライ
ド、四塩化炭素、クロルベンゼン等のハロゲン化物、酢
酸エチル、酢酸ブチJし等のエステル化合物、アセトン
、メチルエチルケトン等のケトン化合物、1,2−ジメ
トキンエタン等のエーテル化合物等を用いることか出来
る。
Examples of solvents used include aromatic compounds such as Hensen, toluene, and xylene, halides such as chloroform, dimethyl chloride, carbon tetrachloride, and chlorobenzene, ester compounds such as ethyl acetate and butylene acetate, acetone, methyl ethyl ketone, etc. Ketone compounds, ether compounds such as 1,2-dimethquinethane, etc. can be used.

溶媒の使用量はシクロへキセニルメチル(メタ)アクリ
レートに対して0.5〜5倍量が望ましい。
The amount of solvent to be used is preferably 0.5 to 5 times the amount of cyclohexenylmethyl (meth)acrylate.

0.5倍量より少ない場合は、酸化剤を希釈することに
よる安定化などの効果が少なく、逆に5倍量より多くし
ても安定化効果はそれ程ア、ツブせず溶媒の回収に多大
の費用を要するので無駄となる。
If the amount is less than 0.5 times, there will be little stabilizing effect by diluting the oxidizing agent, and conversely, if it is more than 5 times the amount, the stabilizing effect will not be as great, and it will not swell and will greatly reduce the recovery of the solvent. It costs a lot of money, so it's a waste.

また上記のようなエポキシ化反応を行う際、分子状酸素
含有ガスとともに特願平1−320956号出願に記載
された重合禁止剤を併用しなければならない。
Further, when performing the above-mentioned epoxidation reaction, a polymerization inhibitor described in Japanese Patent Application No. 1-320956 must be used together with a molecular oxygen-containing gas.

分子状酸素としては通常空気が用いられ反応器に吹き込
まれる。
Air is usually used as molecular oxygen and is blown into the reactor.

吹き込み位置は、液中に直接吹き込んでも良いし、気相
中に吹き込んでも差しつかいない。
The blowing position may be either directly into the liquid or into the gas phase.

吹き込み量は任意に選べるが、多すぎると溶媒ロスとな
るので好ましくない。
The amount of blowing can be arbitrarily selected, but too much is not preferable because it will result in solvent loss.

反応は連続もしくはバッチで行わうが、連続の場合はピ
ストンフロー型式か好ましい。
The reaction is carried out continuously or batchwise, and in the case of continuous reaction, a piston flow type is preferred.

反応の終点の確認は残存する酸化剤濃度あるいはガスク
ロ分析によるものがよい。
The end point of the reaction can be confirmed by the concentration of the remaining oxidizing agent or by gas chromatography.

反応で得られたエポキシ化生成物反応粗液は、溶媒、低
沸物質、未反応原料、触媒等の低沸点成分の留去、中和
、吸着剤やイオン交換樹脂処理によって精製することが
出来る。
The epoxidation product reaction crude liquid obtained in the reaction can be purified by distillation of low-boiling components such as solvents, low-boiling substances, unreacted raw materials, and catalysts, neutralization, and treatment with adsorbents and ion exchange resins. .

特に、酸化剤として有機過酸を用いる場合は、反応粗液
の中和水洗を行うのが好ましい。
Particularly when an organic peracid is used as the oxidizing agent, it is preferable to neutralize and wash the reaction crude solution with water.

これは、中和せずに溶媒等の低沸点成分を除去しようと
すると極めて重合しやすいためである。
This is because if a low boiling point component such as a solvent is removed without neutralization, polymerization is extremely likely to occur.

中和に用いるアルカリ水溶液としては例えば、Na0H
SKOHSK2CO3、Na= co、、NaHCO,
、KHCO,、NH,等のような溶液を使用することが
でき、その際その濃度は広い範囲内で自由に選択できる
Examples of alkaline aqueous solutions used for neutralization include Na0H
SKOHSK2CO3, Na= co, , NaHCO,
, KHCO, NH, etc. can be used, the concentrations thereof being freely selectable within wide limits.

分液性あるいはロスの点からNaOH水溶液、Na2c
o!水溶液を用いるのが望ましい。
From the viewpoint of liquid separation or loss, NaOH aqueous solution, Na2c
o! Preferably, an aqueous solution is used.

中和および水洗工程は、10〜90℃、好ましくは10
〜50℃の温度範囲で行うのが良い。
The neutralization and water washing steps are carried out at 10-90°C, preferably at 10°C.
It is preferable to carry out at a temperature range of ~50°C.

中和あるいは水洗を行った反応粗液から低沸点成分を除
去するには重合禁止剤を添加した後薄膜式蒸発器などを
用いるのがよい。
In order to remove low boiling point components from the reaction crude liquid that has been neutralized or washed with water, it is preferable to use a thin film evaporator or the like after adding a polymerization inhibitor.

特に、反応粗液に含まれる重合禁止剤が下層中に抽出さ
れ中和上層液中の含量か減少する場合もあるが、その際
は、中和終了後、特願平1−320956号出願に記載
された重合禁止剤を適量補充するのが好ましい。
In particular, the polymerization inhibitor contained in the reaction crude liquid may be extracted into the lower layer and the content in the neutralized upper layer liquid may be reduced. Preferably, appropriate amounts of the polymerization inhibitors mentioned are supplemented.

また、中和水洗時にも分子状酸素を系内に吹き込むこと
が好ましい。
It is also preferable to blow molecular oxygen into the system during neutralization washing.

中和水洗工程では、有機酸の中和除去とともに残存有機
過酸を除去することか重要である。
In the neutralization water washing step, it is important to neutralize and remove the organic acid as well as remove the residual organic peracid.

次の低沸点成分除去工程を安定に操作するためには、中
和上層液中の残存有機過酸含量を0. 1%以下、好ま
しくは、0,01%以下になるまで繰り返し中和水洗す
る必要かある。
In order to operate the next low boiling point component removal step stably, the residual organic peracid content in the neutralized upper layer liquid must be reduced to 0. It is necessary to repeat neutralization and water washing until the concentration is 1% or less, preferably 0.01% or less.

中和水洗に使用するアルカリ量は、反応粗液中の有機酸
量に対して当量比で0.5〜3倍量、好ましくは0.8
〜1.8倍量使用するのか良く、必要以上に量を増やす
のは経済的でない。
The amount of alkali used for neutralization washing with water is 0.5 to 3 times the equivalent amount of organic acid in the crude reaction solution, preferably 0.8
It is best to use ~1.8 times the amount; it is not economical to increase the amount more than necessary.

また当量比を必要以上に下げた場合、有機酸を除去する
のに多量の水を要するため得策ではないし、また溶媒等
の下層水中への溶媒ロスも増加する。中和水洗工程の次
に溶媒を除去する。
Further, if the equivalent ratio is lowered more than necessary, it is not a good idea because a large amount of water is required to remove the organic acid, and the loss of solvents and the like to the lower water layer also increases. Following the neutralization water wash step, the solvent is removed.

次に本発明のポイントであるAETHB (METHB
)の脱低沸工程を2段に分けて行なう精製方法について
詳しく説明する。
Next, AETHB (METHB
) The purification method in which the low boiling point removing step is carried out in two stages will be explained in detail.

前記で得られた中和上層液はAETHB (METHB
) 、未反応物、溶媒、低沸成分を含む系である。
The neutralized upper layer solution obtained above was AETHB (METHB
), a system containing unreacted substances, solvents, and low-boiling components.

この中和上層液には、AETHB (METHB)の1
.7重量倍以上の溶媒が含まれている。
This neutralized upper layer solution contains 1 of AETHB (METHB).
.. Contains more than 7 times the amount of solvent by weight.

例えば、シクロへキセニルメチル(メタ)アクリレート
の3.7重量倍の溶媒を加えて得られた反応粗液を中和
したものは、80重量%の溶媒が含まれている。
For example, a neutralized reaction crude solution obtained by adding 3.7 times the weight of cyclohexenylmethyl (meth)acrylate solvent contains 80% by weight of the solvent.

この中和上層液から、公知の技術の薄膜蒸発器によって
溶媒を除去できる。
The solvent can be removed from this neutralized supernatant liquid using a thin film evaporator using known techniques.

中和上層液の脱溶媒処理は、−船釣にはプロセスの簡略
化のために1段の処理工程が多い。
The desolvation treatment of the neutralized upper layer liquid is often a one-stage treatment step for boat fishing to simplify the process.

また、脱溶媒には通常薄膜蒸発器を用いるが加熱温度は
重合防止の点から50〜180℃、このましくは、50
〜100℃て行うのが良いとされている。
In addition, a thin film evaporator is usually used for removing the solvent, but the heating temperature is 50 to 180°C, preferably 50°C to prevent polymerization.
It is said that it is best to carry out the process at a temperature of ~100°C.

また、圧力は溶媒の物性によって任意に選べるが加熱温
度との関係で減圧で操作するのが一般的とされている。
Further, although the pressure can be arbitrarily selected depending on the physical properties of the solvent, it is generally said that the operation is performed under reduced pressure in relation to the heating temperature.

しかし、1段で溶媒を1重量%以下に脱溶媒するため、
高真空にした場合、溶媒蒸気の体積が莫大なものとなり
十分な蒸発能力を実現するためには大きな蒸発器か必要
となる。
However, since the solvent is removed to 1% by weight or less in one stage,
When a high vacuum is used, the volume of solvent vapor becomes enormous, and a large evaporator is required to achieve sufficient evaporation capacity.

逆に低真空でおこなうと加熱温度を高くしなければなら
ないため重合か促進される。
On the other hand, if it is carried out in a low vacuum, the heating temperature must be increased, which accelerates polymerization.

また、加熱温度を低くした場合でも薄膜蒸発器内でのA
ETHB (METHB)の滞留時間が長くなり重合か
促進される。
Furthermore, even if the heating temperature is lowered, the A
The residence time of ETHB (METHB) becomes longer and polymerization is promoted.

つまり、1段で溶媒を1重量%まて除去した場合、IT
て0.1%以下の品質のものは得られない。
In other words, if 1% by weight of the solvent is removed in one stage, IT
Therefore, it is impossible to obtain a product with a quality of 0.1% or less.

そこで、ます品質てHTが0.1%以下で製品AETH
B (METHB)中の溶媒を1重量%以下とできる条
件を探索した。
Therefore, we are increasing the quality of products with HT of 0.1% or less.
We searched for conditions that would allow the amount of solvent in B (METHB) to be 1% by weight or less.

その結果、加熱温度を低くし、さらに粗液中の溶媒を2
段に分けて蒸発除去すれば目的を達成できることが分か
った。
As a result, the heating temperature was lowered and the solvent in the crude liquid was
It was found that the objective could be achieved by performing evaporation removal in stages.

つまり一段目脱溶媒工程では、加熱温度50〜100℃
、好ましくは50〜70℃の範囲で行うのがよい。
In other words, in the first stage desolvation step, the heating temperature is 50 to 100°C.
, preferably at a temperature in the range of 50 to 70°C.

また、その時の圧力は溶媒の物性によって任意に選べる
が加熱温度との関係で減圧で操作するのか一般的である
Further, the pressure at that time can be arbitrarily selected depending on the physical properties of the solvent, but it is common to operate under reduced pressure depending on the heating temperature.

このようにして得られた薄膜蒸発器の塔底液中の溶媒濃
度は10〜30重量%の範囲がよい。
The solvent concentration in the bottom liquid of the thin film evaporator thus obtained is preferably in the range of 10 to 30% by weight.

溶媒濃度を10重量%以下にした場合、高真空にしなけ
ればならず、留出する溶媒をコンデンサーで補集する際
、回収のロスが大きくなるため好ましくない。
If the solvent concentration is 10% by weight or less, a high vacuum must be applied, and when the distilled solvent is collected with a condenser, recovery loss becomes large, which is not preferable.

逆に溶媒濃度を30重量%以上にした場合、2段目脱溶
媒工程で高真空で行うため留出する溶媒をコンデンサー
で補修できず、回収のロスが太きくなるため好ましくな
い。
On the other hand, when the solvent concentration is 30% by weight or more, it is not preferable because the second stage desolvation step is carried out under high vacuum, so the distilled solvent cannot be repaired with a condenser and recovery losses increase.

2段目脱溶媒工程では、加熱温度50〜100℃、好ま
しくは50〜70℃の範囲で行うのがよい。また、その
時の圧力は溶媒の物性によって異なるが加熱温度との関
係で任意に選べる。
The second stage desolvation step is preferably carried out at a heating temperature of 50 to 100°C, preferably 50 to 70°C. Further, the pressure at that time varies depending on the physical properties of the solvent, but can be arbitrarily selected in relation to the heating temperature.

特願平1−320956号明細書の記載のように、重合
防止効果のある分子状酸素を蒸発器に導入する場所は任
意に選べるが塔底液が留出するラインから吹き込むのが
普通である。
As described in Japanese Patent Application No. 1-320956, molecular oxygen, which has a polymerization-preventing effect, can be introduced into the evaporator at any point, but it is usually introduced from the line where the bottom liquid is distilled. .

吹き込み量は任意に選べるが上限量は真空系の能力、あ
るいは塔底液が安定に流下するかどうか、あるいは留出
した溶媒をコンデンサーで捕集する際の回収ロスをいう
観点から自ずと制限される。
The amount of injection can be selected arbitrarily, but the upper limit is naturally limited by the capacity of the vacuum system, whether the bottom liquid flows down stably, or the recovery loss when collecting the distilled solvent with a condenser. .

脱溶媒工程で得られる塔底液は純度的には95〜97重
量%であるが、本発明の成果として溶媒濃度は1重量%
以下、HTは0.コ重量%以下程度の品質である。
The bottom liquid obtained in the solvent removal step has a purity of 95 to 97% by weight, but as a result of the present invention, the solvent concentration is 1% by weight.
Hereinafter, HT is 0. The quality is about less than 1% by weight.

(発明の効果) 以下に実施例を示し本発明の効果を具体的に説明するが
、本発明は、これらの実施例によって限定されるもので
はない。
(Effects of the Invention) The effects of the present invention will be specifically explained below with reference to Examples, but the present invention is not limited to these Examples.

実施例 攪拌機および冷却用ジャケットが付いた内容量15Nの
SUS製反応器にシクロへキセニルメチルアクリレート
1500gr、酢酸エチル5ラ045grを加え、かつ
、反応器に挿入管から酸素/窒素(10/90容量%)
の混合ガスを32NII/Hrで吹き込んだ。
Example 1500 gr of cyclohexenyl methyl acrylate and 045 gr of ethyl acetate were added to a 15N SUS reactor equipped with a stirrer and a cooling jacket, and oxygen/nitrogen (10/90 capacity%)
A mixed gas of 32 NII/Hr was blown into the reactor.

次いで反応温度を40℃に保ち、30%過酢酸溶液28
12grを定量ポンプで4時間かけて仕込んだ。仕込み
終了後、さらに5時間熟成後反応を終了させた。
Next, the reaction temperature was kept at 40°C, and a 30% peracetic acid solution was added at 28°C.
12 gr was charged over 4 hours using a metering pump. After the preparation was completed, the reaction was further aged for 5 hours and then terminated.

反応粗液を室温まて冷却後]O%NaOH5000g「
を加え30分攪拌後、30分間静置して分液させる。
After cooling the reaction crude liquid to room temperature] 5000 g of O% NaOH
was added and stirred for 30 minutes, then left to stand for 30 minutes to separate the liquids.

下層液を除去後さらに10%NaNaOH5O00を加
え同様の操作を行う。
After removing the lower layer liquid, 10% NaNaOH5O00 was further added and the same operation was performed.

この時上層液中の残存過酢酸濃度は0.02%で酢酸は
完全に消失していた。
At this time, the residual peracetic acid concentration in the upper layer liquid was 0.02%, and acetic acid had completely disappeared.

次イテ、1%NaNaOH5O00を加え同様な操作を
行ったところ過酢酸は0.01%以下であった。
Next, when 1% NaNaOH5O00 was added and the same operation was performed, the peracetic acid content was 0.01% or less.

次に、中和上層液6060g rにハイドロキノンモノ
メチルエーテル0、45grを加え、SUS製薄膜蒸発
器を用いて1段目脱溶媒処理をした。
Next, 0.45 gr of hydroquinone monomethyl ether was added to 6060 g of the neutralized upper layer liquid, and a first stage desolvation treatment was performed using an SUS thin film evaporator.

操作条件は加熱温度60℃圧力、150mmHgで、塔
底液留出ラインから酸素/窒素の混合ガスを3 2 R
 / H rで吹き込んだ。
The operating conditions were a heating temperature of 60°C, a pressure of 150 mmHg, and a mixed gas of oxygen/nitrogen at 32 R from the bottom liquid distillation line.
/H r.

この塔底液1630grを加熱温度60℃、圧力40m
mHgで塔底液留出ラインから、酸素/窒素(10/9
0容量%)の混合ガスを32Ng/Hrで吹込んだ。
1630g of this column bottom liquid was heated at a temperature of 60℃ and a pressure of 40m.
Oxygen/nitrogen (10/9
A mixed gas of 0% by volume) was blown in at 32 Ng/Hr.

塔底液の取得量は1480grであった。The amount of bottom liquid obtained was 1480 gr.

またガスクロマトグラフィー分析で組成を調べたところ
AETH896.2%、酢酸エチル0。
Further, the composition was investigated by gas chromatography analysis and found to be 896.2% AETH and 0 ethyl acetate.

1%、シクロへキセニルメチルアクリレート0。1%, 0 cyclohexenyl methyl acrylate.

9%、その他2.8%であった。9%, others 2.8%.

HTを行った結果、ポリマー含量は0.01%であった
As a result of HT, the polymer content was 0.01%.

比較例 攪拌機および冷却用ジャケットが付いた内容量1、51
1のSUS製反応器にシクロへキセニルメチルアクリレ
ート1500gr,酢酸エチル5ラ045grを加え、
かつ反応器に挿入管から酸素/窒素(10/90容量%
)の混合ガスを32NN/Hrで吹き込んだ。
Comparative example Contents 1, 51 with stirrer and cooling jacket
Add 1500g of cyclohexenyl methyl acrylate and 5045g of ethyl acetate to the SUS reactor in Step 1.
Oxygen/nitrogen (10/90% by volume) is added to the reactor from the tube inserted into the reactor.
) was blown in at a rate of 32 NN/Hr.

次いで反応温度を40℃に保ち、30%過酢酸溶液28
12grを定量ポンプで4時間かけて仕込んだ。仕込み
終了後、さらに5時間熟成後反応を終了させた。
Next, the reaction temperature was kept at 40°C, and a 30% peracetic acid solution was added at 28°C.
12 gr was charged over 4 hours using a metering pump. After the preparation was completed, the reaction was further aged for 5 hours and then terminated.

反応粗液を室温まて冷却後10%NaNaOH5O00
を加え30分攪拌後、30分間静置して分液させる。
After cooling the reaction crude liquid to room temperature, add 10% NaNaOH5O00
was added and stirred for 30 minutes, then left to stand for 30 minutes to separate the liquids.

下層液を除去後さらに10%N a. O H 5 0
 0 0grを加え同様の操作を行う。
After removing the lower layer liquid, add 10% Na. Oh 5 0
Add 00gr and perform the same operation.

この時上層液中の残存過酢酸濃度は0.02%で酢酸は
完全に消失していた。
At this time, the residual peracetic acid concentration in the upper layer liquid was 0.02%, and acetic acid had completely disappeared.

次イテ、1%NaOH5000g rを加え同様な操作
を行ったところ過酢酸は0.01%以下であった。
Next, 5000 g of 1% NaOH was added and the same operation was performed, and the peracetic acid content was 0.01% or less.

次に、6126grにハイドロキノンモノメチルエーテ
ル0□ 45grを加え、SUS製スミスミス式薄膜蒸
発器溶媒処理した。
Next, 0□ 45 gr of hydroquinone monomethyl ether was added to 6126 gr, and the mixture was treated with a SUS Smith-type thin film evaporator solvent.

操作条件は加熱温度100℃、圧力1.50 m mH
gで、塔底液留出ラインから酸素/窒素の混合ガスを3
2Ng/Hrて吹き込んだ。
The operating conditions were a heating temperature of 100°C and a pressure of 1.50 m mH.
At 3 g, a mixed gas of oxygen/nitrogen is introduced from the bottom liquid distillation line at 3 g.
It was blown in at 2Ng/Hr.

塔底液の取得量は1348grてあった。The amount of bottom liquid obtained was 1348 gr.

またガスクロマトグラフィー分析で組成を調べたところ
AETH894,5%、酢酸エチル18%、シクロへキ
セニルメチルアクリレート1゜0%、その他2,6%で
あった。
Further, the composition was examined by gas chromatography analysis and found to be 894.5% of AETH, 18% of ethyl acetate, 1.0% of cyclohexenyl methyl acrylate, and 2.6% of others.

HTを行ったところ、ポリマー含有量は0. 25%で
あった。
When HT was performed, the polymer content was 0. It was 25%.

Claims (1)

【特許請求の範囲】 一般式( I ) ▲数式、化学式、表等があります▼・・・( I ) [式中Rは水素原子またはメチル基を表す]で表される
シクロヘキセニルメチル(メタ)アクリレート化合物を
酸化剤でエポキシ化して 一般式(II) ▲数式、化学式、表等があります▼・・・(II) [式中Rは水素原子またはメチル基を表す]で表される
化合物を製造する際、 溶媒を含有する反応粗液を、まず (a)加熱温度100℃以下で脱低沸することにより、
溶媒含有量10〜30重量%の粗液を得る工程で処理し
、 次いで (b)(a)で得られた粗液を加熱温度100℃以下で
脱低沸することにより溶媒含有量1重量%未満のエポキ
シ化されたシクロヘキシルメチル(メタ)アクリレート
を得る工程からなることを特徴とするエポキシ化された
シクロヘキシルメチル(メタ)アクリレートの精製方法
[Claims] General formula (I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼... (I) Cyclohexenylmethyl (meth) represented by [In the formula, R represents a hydrogen atom or a methyl group] Epoxidizes an acrylate compound with an oxidizing agent to produce a compound represented by the general formula (II) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(II) [In the formula, R represents a hydrogen atom or a methyl group] When doing so, the crude reaction solution containing the solvent is first (a) de-low boiled at a heating temperature of 100°C or less,
A process of obtaining a crude liquid with a solvent content of 10 to 30% by weight is carried out, and then (b) the crude liquid obtained in (a) is deboiled at a heating temperature of 100°C or less to reduce the solvent content to 1% by weight. A method for purifying epoxidized cyclohexylmethyl (meth)acrylate, characterized in that it consists of a step of obtaining epoxidized cyclohexylmethyl (meth)acrylate of less than
JP27609990A 1990-10-15 1990-10-15 Method for purifying epoxidized (meth) acrylate Expired - Fee Related JP2819061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27609990A JP2819061B2 (en) 1990-10-15 1990-10-15 Method for purifying epoxidized (meth) acrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27609990A JP2819061B2 (en) 1990-10-15 1990-10-15 Method for purifying epoxidized (meth) acrylate

Publications (2)

Publication Number Publication Date
JPH04149175A true JPH04149175A (en) 1992-05-22
JP2819061B2 JP2819061B2 (en) 1998-10-30

Family

ID=17564789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27609990A Expired - Fee Related JP2819061B2 (en) 1990-10-15 1990-10-15 Method for purifying epoxidized (meth) acrylate

Country Status (1)

Country Link
JP (1) JP2819061B2 (en)

Also Published As

Publication number Publication date
JP2819061B2 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
JP4663893B2 (en) Method for producing epoxy compound
US4423239A (en) Method for purifying an epoxidation product
US4851556A (en) Process for the preparation of epoxidized polybutadienes
US5380884A (en) Method for producing glycidyl methacrylate
JP2704284B2 (en) Composition containing epoxidized (meth) acrylate compound
JP3029147B2 (en) Method for producing epoxidized (meth) acrylate compound
JP2852673B2 (en) Method for producing epoxidized (meth) acrylate
JPH04149175A (en) Purification of epoxidated (meth)acrylate
JP3018109B2 (en) Epoxidized (meth) acrylate and its production method
JP2906276B2 (en) Method for producing epoxidized (meth) acrylate
US4849532A (en) Process for the preparation of a cycloaliphatic diepoxide
JP2562620B2 (en) Method for producing epoxidized (meth) acrylate compound
JPH03240780A (en) Production of epoxide of dicyclopentadiene derivative
JP2941036B2 (en) Method for preventing coloration of epoxidized (meth) acrylate
JP3441189B2 (en) Stabilized alicyclic epoxy-containing (meth) acrylate compound and method for producing the same
JPH0967308A (en) Purification of 3,4-epoxycyclohexylmethyl (meth)acrylate
JP3336067B2 (en) Method for producing epoxidized (meth) acrylate compound
JPH01186876A (en) Production of epoxidized (meth)acrylate
JP3051192B2 (en) Epoxidized 1-methyltetrahydrobenzyl alcohol and method for producing the same
JP2990680B2 (en) Method for producing epoxidized tetrahydrobenzyl alcohol composition
JP2941044B2 (en) Novel (Nata) acrylate compound and method for producing the same
JPS6233165A (en) Manufacture of fatty epoxide
JP3760391B2 (en) Purification method of crude epoxidation reaction liquid
JP2000154182A (en) Production of epoxy compound having (meth)acryloyl group
JPS6233183A (en) Manufacture of alicyclic diepoxide

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees