JPH04149082A - Carbon material having oxidation resistance at high temperature - Google Patents

Carbon material having oxidation resistance at high temperature

Info

Publication number
JPH04149082A
JPH04149082A JP2269422A JP26942290A JPH04149082A JP H04149082 A JPH04149082 A JP H04149082A JP 2269422 A JP2269422 A JP 2269422A JP 26942290 A JP26942290 A JP 26942290A JP H04149082 A JPH04149082 A JP H04149082A
Authority
JP
Japan
Prior art keywords
layer
base material
sic
oxidation
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2269422A
Other languages
Japanese (ja)
Inventor
Tatsuo Morimoto
森本 立男
Yuzuru Ogura
小椋 譲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2269422A priority Critical patent/JPH04149082A/en
Publication of JPH04149082A publication Critical patent/JPH04149082A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To improve thermal shock resistance by successively forming a thin SiC-based carbide film and a thin film of an alloy based on Ir, Ru or Rh on the surface of a carbonaceous based material. CONSTITUTION:A carbonaceous base material 1 such as a carbon fiber reinforced carbon composite material and a prescribed percentage of a powdery SiC-Si-Al2O3 mixture are heated to a prescribed temp. in a furnace and the surface of the material 1 is allowed to react with the Si to form a thin SiC- based carbide film 2 in about 100mum thickness. A thin film 3 of an alloy contg. >=70wt.% Ir, Ru or Rh is formed on the film 2 in about 10-100mum thickness by chemical vapor deposition or other method by using one kind among Ir, Ru, Rh and one among Cr, Ti, Ta, Nb, Al to obtain a carbon material having oxidation resistance at high temp.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高温耐酸化炭素材料、更に詳しくは高温耐酸化
防止対策が施された断熱用炭素材、炭素繊維、炭素−炭
素複合材料等に関し、特に宇宙往還機の耐熱構造材の外
、ガスタービン、ジェットエンジン等用の高温部材に有
利に適用できる高温耐酸化炭素材料に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to high-temperature oxidation-resistant carbon materials, and more specifically, to heat-insulating carbon materials, carbon fibers, carbon-carbon composite materials, etc. that are provided with high-temperature oxidation-resistant measures. In particular, the present invention relates to a high-temperature oxidation-resistant carbon material that can be advantageously applied to high-temperature components for gas turbines, jet engines, etc., as well as heat-resistant structural materials for spacecraft.

〔従来の技術〕[Conventional technology]

黒鉛あるいは炭素繊維強化炭素複合材料(以下、C/C
複合材と略称する)の高温耐酸化被覆として既に実用化
されているのは炭化ケイ素(Si口)によるもので、そ
の代表的な例を第2図によって説明する。第2図中、■
は炭素質基材、2はSin層、4は8102層である。
Graphite or carbon fiber reinforced carbon composite material (hereinafter referred to as C/C
Silicon carbide (Si) has already been put into practical use as a high-temperature oxidation-resistant coating for composite materials (abbreviated as composite materials), and a typical example thereof will be explained with reference to FIG. In Figure 2, ■
2 is a carbonaceous base material, 2 is a Sin layer, and 4 is an 8102 layer.

Si0層2は炭素質基材1の表面を81と反応させるか
、あるいは化学的又は物理的蒸着によって形成される。
The Si0 layer 2 is formed by reacting the surface of the carbonaceous substrate 1 with 81 or by chemical or physical vapor deposition.

又、二酸化ケイ素(S102)層4は、Si0層2に発
生する亀裂を封止する目的で塗付等の方法により形成さ
れる。このS10層2並びにS】02層4が黒鉛あるい
はC/C複合材料の耐酸化被覆として機能するものであ
る。
Further, the silicon dioxide (S102) layer 4 is formed by a method such as painting for the purpose of sealing cracks generated in the Si0 layer 2. The S10 layer 2 and the S]02 layer 4 function as an oxidation-resistant coating for the graphite or C/C composite material.

すなわち、5lO3層4は1200℃以上の高温で溶融
すると酸素を透過し難い層として作用する。また、81
0層2は自己の酸化によってS1口2となる性質を有す
ることから、8102層4との接合性も良好であり、一
方、炭素質基材の表面を改質して形成した層であること
から、基材との接合性も良好である。Si口層2の作用
としては、この基材(炭素)と5iO7層4を接合する
とともに、基材(炭素)と5iO7の直接の接触による
炭素の酸化(−酸化炭素の発生)、消耗を防ぐ機能が期
待されている(以上、参考文献:米国特許4.、471
.923号明細書など)次に、同じく炭素質基材の耐酸
化被覆としてイリジウム(旨)の適用について報告され
ている。この代表例を第3図によって説明する。第3図
中、1は炭素質基材、6はIr層、5は炭化チタン(T
ie)又は炭化ハフニウム(Hf[:)層である。Ir
層6を基材(炭素)1の上に化学的、物理的蒸着法、電
着などの手法により直接形成してもよいが、更に、b層
6と基材1の密着性を上げるた杓、先ずTiC層、Hf
C層5を化学的蒸着法によって基材1の上に形成しその
後、Ir層6を被覆することもある。旨層6は酸素を透
過し難く前述の8102層に相当する層として作用する
。TiC、1(fC等の炭化物層5は旨と反応して、b
−Ti、  Ir−1(fの金属間化合物を形成する。
That is, when the 5lO3 layer 4 is melted at a high temperature of 1200° C. or higher, it acts as a layer that is difficult for oxygen to pass through. Also, 81
Since the 0 layer 2 has the property of becoming S1 port 2 through self-oxidation, it has good bonding properties with the 8102 layer 4, and on the other hand, it is a layer formed by modifying the surface of the carbonaceous base material. Therefore, the bondability with the base material is also good. The function of the Si layer 2 is to bond the base material (carbon) and the 5iO7 layer 4, and to prevent carbon oxidation (generation of carbon oxide) and consumption due to direct contact between the base material (carbon) and the 5iO7. (References: U.S. Pat. No. 4, 471)
.. No. 923, etc.) Next, the application of iridium as an oxidation-resistant coating for carbonaceous substrates has also been reported. A representative example of this will be explained with reference to FIG. In Figure 3, 1 is a carbonaceous base material, 6 is an Ir layer, and 5 is titanium carbide (T
ie) or a hafnium carbide (Hf[:) layer. Ir
Although the layer 6 may be directly formed on the base material (carbon) 1 by a method such as chemical or physical vapor deposition or electrodeposition, it is also possible to form the layer 6 directly on the base material (carbon) 1 by a method such as chemical or physical vapor deposition or electrodeposition. , first TiC layer, Hf
A C layer 5 may be formed on the substrate 1 by chemical vapor deposition and then covered with an Ir layer 6. The layer 6 is hardly permeable to oxygen and acts as a layer corresponding to the layer 8102 described above. The carbide layer 5 such as TiC, 1 (fC) reacts with b
-Ti, Ir-1 (forms an intermetallic compound of f).

また、これらの炭化物は旨に比べると炭素を含むため基
材(炭素)1との親和性がよいことが期待できる。この
2点からTiC、HfC層をIr層と基材との密着性向
上に利用しようというものである(以上、参考文献: 
J、M、Cr1scione 、 R,A。
In addition, since these carbides contain carbon compared to umami, they can be expected to have better affinity with the base material (carbon) 1. Based on these two points, the idea is to use TiC and HfC layers to improve the adhesion between the Ir layer and the base material (references:
J, M, Cr1scione, R,A.

Mercuri  、  E、P、Schram  、
  A、W、Sm1th  、  and  旧F。
Mercuri, E., P., Schram,
A, W, Sm1th, and old F.

Volk 、“High Temperature P
rotective Coatings for Gr
aphite″ML−TDR−64−173Partl
l  Oct。
Volk, “High Temperature P.
protective coatings for Gr
aphite″ML-TDR-64-173Partl
l Oct.

1974 、 J、R,5trife 、 J、G、S
meggil and W、L。
1974, J, R, 5trife, J, G, S
meggil and W,L.

Worrell“Reaction of Iricl
ium with MetalCaebides in
 the Temporature Range of
 1923to 2400 K” 、 J、Am、Ce
r、Soc、、 73 (4) P 83445 、 
1990など) 〔発明が解決しようとする課題〕 まず、上述したS10゜とSiCを耐酸化被覆として使
用する方法では、以下の問題点がある。すなわち、5i
O9とSiCとCが共存する系では、1500℃以上で
生成するガスの総蒸気圧が1気圧を超えるため、510
2の被膜内に気泡が発生し、被膜が破壊され耐酸化の機
能が損なわれる(出典: G、H,5chiroky 
、 R,T、Pr1ce 、 J、E。
Worrell “Reaction of Iricl”
with Metal Caebides in
the Temporature Range of
1923 to 2400 K”, J, Am, Ce
r, Soc,, 73 (4) P 83445,
(1990, etc.) [Problems to be Solved by the Invention] First, the method of using the above-mentioned S10° and SiC as an oxidation-resistant coating has the following problems. That is, 5i
In a system where O9, SiC, and C coexist, the total vapor pressure of the gas generated above 1500°C exceeds 1 atm, so 510
Bubbles are generated within the film of No. 2, which destroys the film and impairs its oxidation resistance (Source: G, H, 5chiroky)
, R.T., Pr1ce, J.E.

5heehan  、  G、A、  Technol
ogies  Report  GA−A18696 
(1986))。従って、SiO2とSiCを耐酸化被
覆として利用する方法では安定して使用できる温度の上
限が1500℃付近となるため、これを超える温度での
長時間の使用は難しい。
5heehan, G., A. Technol
ogies Report GA-A18696
(1986)). Therefore, in the method of using SiO2 and SiC as an oxidation-resistant coating, the upper limit of the temperature at which it can be stably used is around 1500°C, and it is difficult to use it for a long time at a temperature exceeding this.

次に、1rを耐酸化被覆として使用する方法では以下の
問題点がある。すなわち、Irは炭化物を形成せず、ま
た炭素の固溶限も低いためIrと炭素質基材の界面の接
合性は非常に悪い。その上1rの熱膨張率は8〜10 
x 10−6/l: (1000℃以」二)であるのに
対し炭素質基材は一般に熱膨張率が小さく、特にC/C
m合材料の場合1〜2 X 1. O−6/を程度であ
ることから、熱膨張率の差によって昇降温の際、界面に
熱応力が発生し容易に被膜が剥離する。
Next, the method of using 1r as an oxidation-resistant coating has the following problems. That is, since Ir does not form carbides and the solid solubility limit of carbon is low, the bondability at the interface between Ir and the carbonaceous base material is very poor. Moreover, the coefficient of thermal expansion of 1r is 8 to 10
x 10-6/l: (1000°C or higher)2) On the other hand, carbonaceous base materials generally have a small coefficient of thermal expansion, especially C/C
In the case of composite materials, 1 to 2 x 1. Since the film is about O-6/, thermal stress is generated at the interface when the temperature is raised or lowered due to the difference in thermal expansion coefficient, and the film easily peels off.

また、炭素質基材とIr層との間にTiC,HfCを化
学蒸着する従来例においては、Irと炭化物の接合性は
界面反応によって獲得できる可能性はある。しかしTi
Cの熱膨張率は約8×10/℃、HfCの熱膨張率は約
7X10−6/l:とIrと同程度であるため、炭素質
基材との熱膨張率差は大きく、更に蒸着によって形成さ
れたTiC。
Furthermore, in the conventional example of chemical vapor deposition of TiC and HfC between a carbonaceous base material and an Ir layer, there is a possibility that the bondability between Ir and carbide can be obtained by an interfacial reaction. However, Ti
The thermal expansion coefficient of C is about 8 x 10/℃, and the thermal expansion coefficient of HfC is about 7 x 10-6/l, which is about the same as that of Ir, so the difference in thermal expansion coefficient with the carbonaceous base material is large. TiC formed by.

HfCと炭素質基材との界面で反応が活発に起こるとは
考えられないことから、この界面が熱応力によって剥離
するという課題は依然として残る。
Since it is not considered that a reaction actively occurs at the interface between HfC and the carbonaceous base material, the problem that this interface peels off due to thermal stress still remains.

更に、万一 1rの被覆層が剥離その他の損傷を受けた
場合、Irを直接炭素質基材に被覆した例では、炭素質
基材が直接高温にさらされることとなり瞬時のうちに焼
損し、炭素質基材を使用する機器全体への損害が大きい
。また、TiC。
Furthermore, in the event that the coating layer 1r is peeled off or otherwise damaged, in the case where Ir is directly coated on the carbonaceous base material, the carbonaceous base material will be directly exposed to high temperature and will be burned out instantly. Significant damage to the entire equipment that uses carbonaceous base materials. Also, TiC.

Hf C層を介してIrを被覆した例で、仮にTiC。This is an example in which Ir is coated through a HfC layer, and it is assumed that TiC is used.

HfC層のみが残存したとしても、これらの炭化物表面
の酸化によって生じる酸化膜、すなわち酸化チタン、酸
化ハフニウムはSiCにおける5i02の如き酸素を透
過し難い性質をもだないた約、炭素質基材の酸化を防ぐ
ための役割を果し得ない。
Even if only the HfC layer remains, the oxide films produced by the oxidation of these carbide surfaces, i.e., titanium oxide and hafnium oxide, are likely to form on carbonaceous substrates, such as 5i02 in SiC, which have a property that makes it difficult for oxygen to permeate. It cannot play its role in preventing oxidation.

本発明は上記技術水準に鑑み、従来材料におけるような
問題点のない高温耐酸化炭素材料を提供しようとするも
のである。
In view of the above-mentioned state of the art, the present invention aims to provide a high temperature oxidation-resistant carbon material that does not have the problems of conventional materials.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は (1)炭素質基材の表面に、(a)炭化ケイ素を主成分
とする炭化物層からなる薄膜と、(b)Cr。
The present invention provides (1) on the surface of a carbonaceous base material, (a) a thin film consisting of a carbide layer containing silicon carbide as a main component, and (b) Cr.

Ti 、 Ta 、 Nb及びA1のうちのいずれかと
 IrRu及びRhのうちのいずれかとの合金からなる
薄膜を順次形成させてなることを特徴とする高温耐酸化
炭素材料。
A high-temperature oxidation-resistant carbon material characterized by sequentially forming a thin film made of an alloy of Ti, Ta, Nb, and A1 and either IrRu or Rh.

(2)上記(1)の合金からなる薄膜のIr、 Ru及
びRhの含有量が70重量%以上であることを特徴とす
る高温耐酸化炭素材料。
(2) A high-temperature oxidation-resistant carbon material, characterized in that the content of Ir, Ru, and Rh in the thin film made of the alloy of (1) is 70% by weight or more.

である。It is.

〔作用〕[Effect]

まず、SiCとSiO□を耐酸化被覆として使用する従
来技術において課題となっている1500℃以上で安定
して使用できないという点に対して、本発明では炭素質
基材表面に形成されたSiCを主成分とする炭化物層(
SiCとC)の上に、b 、 Ru及びRhを主成分と
する合金の薄膜を形成することによって解決を図ってい
る。SiCは酸化されない限り2600℃付近まで安定
であり、Ir、Ru及びRhを主成分とする合金で被覆
された状態であるため1500℃以上の温度でも使用可
能となり、Rhを主成分とする合金は最高1800〜1
850℃、fr、Ruを主成分とする合金は最高200
0℃付近までも使用可能となる。
First, in order to solve the problem of conventional technology that uses SiC and SiO□ as oxidation-resistant coatings, which cannot be used stably at temperatures above 1500°C, the present invention uses SiC formed on the surface of a carbonaceous base material. The main component is a carbide layer (
A solution is being sought by forming a thin film of an alloy containing b, Ru, and Rh as main components on top of SiC and C). SiC is stable up to around 2600℃ unless it is oxidized, and since it is coated with an alloy mainly composed of Ir, Ru and Rh, it can be used even at temperatures above 1500℃. Maximum 1800~1
850℃, fr, Ru-based alloys have a maximum of 200℃
It can be used even at temperatures close to 0°C.

次に、Ir単相を直接炭素質基材の上に被覆する従来技
術において課題となっている。Ir被覆層との界面の接
合性が不充分で剥離し易いという点に対しては、本発明
ではSiCを主成分とする炭化物との反応性を有する金
属を添加元素としてIr 、 Ru及びRhに加えるこ
とにより解決を図っている。すなわち、合金を被覆した
後の加熱処理ないしは最初の使用時の加熱の効果で、被
覆層と炭化物層の界面に反応が生じ、密着性が向上する
ことを狙っている。
Next, there is a problem in the conventional technique of directly coating a carbonaceous base material with a single phase of Ir. In order to solve the problem that the interface with the Ir coating layer has insufficient bonding properties and is easily peeled off, in the present invention, a metal that is reactive with carbides mainly composed of SiC is added to Ir, Ru, and Rh. We are trying to solve the problem by adding That is, the aim is to improve adhesion by causing a reaction at the interface between the coating layer and the carbide layer due to the effect of heat treatment after coating the alloy or heating during first use.

更に、Irと炭素質基材との間にTiC、HfCを蒸着
により被覆する従来技術と、Irを直接炭素質基材に被
覆する従来技術との双方にとっての課題であるIrまた
はTi[: 、 HfCと炭素質基材との熱膨張率の差
に起因する熱応力による剥離に対しては、本発明では以
下の手段により解決を図っている。すなわち、Ir、R
u及びRhを主成分とする合金の薄膜はSiCを主成分
とする炭化物層と接合されており、SiCの熱膨張率は
5〜6X10−6/’C程度で炭素質基材(特にC/C
複合材料)と比べてIr、Ru及びRhを主成分とする
合金との熱膨張率の差が小さいため、温度変動によって
生じる熱応力が小さい。その上、該合金は炭化物と反応
し易に添加元素(Cr、 Ti。
Furthermore, Ir or Ti [: , The present invention attempts to solve the problem of peeling due to thermal stress caused by the difference in coefficient of thermal expansion between HfC and the carbonaceous base material by the following means. That is, Ir, R
The thin film of the alloy mainly composed of u and Rh is bonded to the carbide layer mainly composed of SiC, and the coefficient of thermal expansion of SiC is about 5 to 6X10-6/'C. C
Since the difference in coefficient of thermal expansion with alloys whose main components are Ir, Ru, and Rh is smaller than that of composite materials, the thermal stress caused by temperature fluctuations is small. Moreover, the alloy easily reacts with carbides and contains additive elements (Cr, Ti, etc.).

Ta、 Nb及びAlのうちのいずれかの元素)の効果
で界面の密着性が向上するため剥離し難い。
The adhesion of the interface is improved due to the effect of any one of Ta, Nb, and Al, making it difficult to peel off.

SICを主成分とする炭化物層と炭素質基材の界面形成
法については、既に、従来技術としである炭素質基材と
Siのような炭化物形成元素を反応させ、炭素質基材表
面を炭化物化する手法により炭化物層を形成する手段を
利用して炭素と炭化物の存在比率が徐々に変わるように
して熱応力が集中せず剥離し難い界面を得ることも可能
である。
Regarding the method of forming an interface between a carbide layer mainly composed of SIC and a carbonaceous base material, there has already been a conventional technique in which a carbonaceous base material is reacted with a carbide-forming element such as Si to form a carbide layer on the surface of the carbonaceous base material. It is also possible to obtain an interface that does not concentrate thermal stress and is difficult to peel off by gradually changing the ratio of carbon to carbide by forming a carbide layer using a method of oxidation.

Irを被覆層として用いる従来技術でもう一つの共通の
課題であるところのb層が損傷を受けた後の炭素質基材
の急激な焼損に対しては、本発明ではだとえb 、 R
u及びRhを含む合金層が損傷を受けたとしても、中間
層となるSiCが耐酸化性を示すため、炭素質基材の急
激な焼損を抑止することが期待できる。
The present invention solves the rapid burnout of the carbonaceous base material after the b layer is damaged, which is another common problem in conventional techniques using Ir as a coating layer.
Even if the alloy layer containing u and Rh is damaged, the intermediate layer SiC exhibits oxidation resistance, so it can be expected to prevent rapid burnout of the carbonaceous base material.

本発明の高温耐酸化炭素材料の構成を第1図によって更
に詳述する。
The structure of the high-temperature oxidation-resistant carbon material of the present invention will be explained in more detail with reference to FIG.

第1図中、1は炭素質基材で、2は膜厚100μm程度
のSICを主成分とする炭化物層薄膜であり、3はIr
、Ru及びRhのうちのいずれかと、Cr、 Ti、 
Ta、 Nb及びA1のいずれかとの合金薄膜であり、
この合金薄膜3は化学蒸着、物理蒸着、電着等の手法に
より形成されたものであって、その膜厚は実用的には1
0〜100μmのものである。
In FIG. 1, 1 is a carbonaceous base material, 2 is a thin carbide layer mainly composed of SIC with a film thickness of about 100 μm, and 3 is an Ir
, Ru and Rh, and Cr, Ti,
An alloy thin film of Ta, Nb and A1,
This alloy thin film 3 is formed by chemical vapor deposition, physical vapor deposition, electrodeposition, etc., and the film thickness is practically 1.
It is 0 to 100 μm.

SiCを主成分とする炭化物層薄膜2は炭素質基材1と
合金薄膜3の熱膨張率の差を徐々に変化させる役目を有
する。また、合金薄膜3が損傷を受けた場合、−時的に
炭素質基材を急激な焼損から保護する。次に、合金薄膜
3は化学蒸着、物理蒸着等による被膜形成時の加熱また
は最初に高温で使用した際の加熱の効果によって、Si
Cを主成分とする炭化物層薄膜2と反応し、界面の密着
性向上させる。この界面反応を促すため、被膜形成後に
加熱処理を施すことも有効である。この観点から合金元
素の選定規準として、Slよりも炭化物生成エネルギー
が低い性質のものを選定した。
The carbide layer thin film 2 mainly composed of SiC has the role of gradually changing the difference in thermal expansion coefficient between the carbonaceous base material 1 and the alloy thin film 3. Also, if the alloy thin film 3 is damaged, it will temporarily protect the carbonaceous substrate from sudden burnout. Next, the alloy thin film 3 is heated by chemical vapor deposition, physical vapor deposition, etc. during film formation, or by the effect of heating when initially used at high temperature.
It reacts with the carbide layer thin film 2 whose main component is C, and improves the adhesion of the interface. In order to promote this interfacial reaction, it is also effective to perform heat treatment after film formation. From this point of view, as a criterion for selecting alloying elements, those having properties that have lower carbide formation energy than Sl were selected.

反面合金化によって、Ir 、 Ru及びRhの耐酸化
機能が損なわれないよう考慮する必要がある。
On the other hand, consideration must be given to ensure that the oxidation-resistant functions of Ir, Ru, and Rh are not impaired by alloying.

この観点から添加元素の選定規準として、Ir 。From this point of view, Ir is used as a criterion for selecting additive elements.

Ru及びRhと安定な化合物を形成し、ひいては高温の
酸化雰囲気下が内部酸化等によって酸素の侵入を促すよ
うな金属は除かれた。
Metals that form stable compounds with Ru and Rh, and in turn promote the intrusion of oxygen by internal oxidation under a high-temperature oxidizing atmosphere, were excluded.

第1表に以上の選定規準から選定された合金添加元素の
炭化物生成エネルギとIr (代表例)との反応性につ
いて示す。
Table 1 shows the carbide formation energy and reactivity with Ir (representative example) of alloy additive elements selected from the above selection criteria.

一方、Ir、Ru及びRhは炭素質基材の高温耐酸化被
膜として機能する。lr、Ru及び[lhは高温におい
て金属として安定であり、酸化による消耗もモリブデン
、タングステンなどの他の高融点金属に比べると少ない
。特に、白金族元素のうちIr、Ru及びRhは融点が
2000℃付近かそれ以上であり、1800℃以上の高
温での耐酸化被膜として働く。O8は融点は3000℃
を越えるが、Ir、Ru及びRhに比べ酸化による揮発
消耗が著しいためこれを除いた。
On the other hand, Ir, Ru, and Rh function as a high-temperature oxidation-resistant coating on the carbonaceous base material. lr, Ru, and [lh are stable as metals at high temperatures, and are less consumed by oxidation than other high-melting point metals such as molybdenum and tungsten. In particular, among the platinum group elements, Ir, Ru, and Rh have melting points of around 2000°C or higher, and function as an oxidation-resistant film at high temperatures of 1800°C or higher. The melting point of O8 is 3000℃
However, it was excluded because its volatile consumption due to oxidation is significant compared to Ir, Ru, and Rh.

白金族元素であるIr、Ru及びRhが酸素の透過を防
ぐ機能を有しており、合金元素の量が増加すると、その
機能が阻害されることがあるので、合金元素の添加量は
限定することが好ましい。添加合金元素が10重量%以
内であれば上述の合金元素はいずれもIr、Ru及びR
hに固溶するか、あるいは高融点化合物との二相組織と
なり、lr 、 Ru及びRhの機能を阻害しない。し
かし、これら合金元素が30重量%を超えると合金(化
合物)の融点が低下するなどの弊害が生じるので、Ir
、Ru及びRhの量は70重i%以上にすべきであり、
特に90重量%以上が好ましい。
The platinum group elements Ir, Ru, and Rh have the function of preventing oxygen permeation, and if the amount of alloying elements increases, this function may be inhibited, so the amount of alloying elements added should be limited. It is preferable. If the added alloying element is within 10% by weight, all of the above alloying elements are Ir, Ru and R.
It forms a solid solution in h, or forms a two-phase structure with a high melting point compound, and does not inhibit the functions of lr, Ru, and Rh. However, if these alloying elements exceed 30% by weight, adverse effects such as a decrease in the melting point of the alloy (compound) will occur, so Ir
, the amount of Ru and Rh should be 70% by weight or more,
Particularly preferred is 90% by weight or more.

〔実施例〕〔Example〕

第2表に、実施例として20種の構成について被覆層を
形成した例を示す。実施例では炭素質基材としてC/C
複合材料(ポリアクリロ−トリル系炭素繊維の織物とフ
ェノール樹脂を原料とする炭素マトリックスにより形成
された繊維体積率50%のもの)を用い、その表面を8
1と反応(1800℃の炉中にC/C1合材料を33%
SiC、33%Si:33%A 1.203の粉末と共
に装入して4時間保持)させてSiCとしたものを基材
として採用した。その上にIr、Ru及びRhと第1表
に示した添加元素による合金被膜を塩化物を用いた化学
蒸着法により形成した。
Table 2 shows examples in which coating layers were formed for 20 different configurations. In the examples, C/C was used as the carbonaceous base material.
A composite material (50% fiber volume ratio formed from a polyacrylotrile carbon fiber fabric and a carbon matrix made from phenolic resin) is used, and its surface is
1 (33% C/C1 composite material in a 1800°C furnace)
SiC, 33%Si:33%A (charged with 1.203 powder and held for 4 hours) to form SiC, was used as the base material. Thereon, an alloy film of Ir, Ru, Rh, and the additive elements shown in Table 1 was formed by chemical vapor deposition using chloride.

比較として、従来技術に相当する以下の3種の供試材を
使用した。すなわち、上記の表面をSICとした基材上
に81の有機化合物を塗付後加熱処理によりS1口2被
膜としたもの、炭素質基材上に1Fを直接化学蒸着した
もの、更に炭素質基材上にHfCを蒸着後、Irを蒸着
したものの3種である。
For comparison, the following three types of test materials corresponding to the prior art were used. In other words, 81 organic compound was coated on the substrate with the above-mentioned surface made of SIC, and then heat treated to form two S1 coatings, one in which 1F was directly chemically vapor deposited on the carbonaceous substrate, and one in which 1F was directly chemically vapor deposited on the carbonaceous substrate. There are three types in which HfC is vapor-deposited on the material and then Ir is vapor-deposited on the material.

以」−の供試材について耐酸化性と熱応力による被膜の
剥離性を次の方法によって比較検討した。すなわち、耐
酸化性については、1800℃に加熱した大気雰囲気炉
中で連続して120分加熱後取り出し、重量変化を調べ
た。熱応力に対してはAr雰囲気中で室温と1800℃
との熱サイクルを10回繰り返し剥離の有無を目視並び
に切断面の観察により調べた。
The oxidation resistance and peeling properties of the coating due to thermal stress were compared and examined using the following method for the following test materials. That is, regarding oxidation resistance, the sample was heated continuously for 120 minutes in an atmospheric furnace heated to 1800° C., then taken out, and the change in weight was examined. For thermal stress, room temperature and 1800℃ in Ar atmosphere
The thermal cycle was repeated 10 times, and the presence or absence of peeling was examined visually and by observing the cut surface.

次に、Ir等の被覆層に損傷が生じた後の炭素質基材へ
の影響を調べるため本発明になる供試材の全てと、Ir
を被覆した2種の比較材について、Irの融点を超える
2500℃で1分間酸素アセチレン炎にNMした。
Next, in order to investigate the effect on the carbonaceous base material after damage has occurred to the coating layer such as Ir, all of the test materials of the present invention and Ir
Two comparative materials coated with Ir were subjected to NM in an oxygen-acetylene flame for 1 minute at 2500° C., which exceeds the melting point of Ir.

第3表に試験結果を示す。Table 3 shows the test results.

第3表から明らかなように、SiCとSiO□で被覆し
た試験片(No、21>は大気中加熱試験によりC/C
複合材料の基板が焼損した。これに対しlrを被覆した
比較材(No、22.N123)と本発明品は最外層の
被覆層がやや酸化減肉したものの基材は損傷を受けてい
ない。
As is clear from Table 3, the test piece (No. 21> coated with SiC and SiO
The composite material substrate was burnt out. On the other hand, in the comparative materials coated with lr (No. 22.N123) and the products of the present invention, the outermost coating layer was slightly thinned by oxidation, but the base material was not damaged.

次に熱サイクル試験で、Irを被覆した比較材(No、
22.Nα23)は全て剥離が認められたのに対し、本
発明品には剥離が認められなかった。
Next, in a thermal cycle test, comparative materials coated with Ir (No.
22. While peeling was observed in all Nα23) products, no peeling was observed in the products of the present invention.

更に2500℃火炎暴露で、Irを被覆した比較材(N
α22.N[123)は炭素質基材がかなり焼損したの
に対し、本発明品では炭素の焼損量は少なかった。
Furthermore, a comparative material coated with Ir (N
α22. In N[123], the carbonaceous base material was considerably burnt out, whereas in the product of the present invention, the amount of carbon burnt out was small.

〔発明の効果〕〔Effect of the invention〕

実施例で述べたように、本発明高温耐酸化炭素材料は、
従来のSiCと5102による耐酸化被覆炭素材料では
耐酸化の機能が損なわれる1500℃以上においても優
れた耐酸化性を示す。
As described in the examples, the high temperature oxidation resistant carbon material of the present invention has the following properties:
Conventional oxidation-resistant coated carbon materials made of SiC and 5102 exhibit excellent oxidation resistance even at temperatures above 1500°C, where the oxidation-resistant function is impaired.

また、炭素質基材の耐酸化被覆にとって、大きな技術課
題である被覆層と母材の熱膨張率の差による熱応力の集
中を抑えたため、被覆層の耐剥離性も改善される。
Furthermore, since the concentration of thermal stress due to the difference in thermal expansion coefficient between the coating layer and the base material, which is a major technical issue for oxidation-resistant coatings on carbonaceous substrates, is suppressed, the peeling resistance of the coating layer is also improved.

更に、SiCを主成分とする炭化物層と、Ir。Further, a carbide layer containing SiC as a main component and Ir.

Ru及びRhを含む合金の被覆層を組み合わせたことか
ら、仮にIr、 Ru及びRhを含む合金の被覆層が何
らかの原因で損傷を受けてもSiCの耐酸化機能により
母材である炭素質基材の急激な焼損が防止できる。
Since the coating layer of the alloy containing Ru and Rh is combined, even if the coating layer of the alloy containing Ir, Ru, and Rh is damaged for some reason, the oxidation-resistant function of SiC will protect the carbonaceous base material, which is the base material. can prevent sudden burnout.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の高温耐酸化炭素材料の説明
図、第2図は従来の5102とSiCによる耐酸化被覆
炭素材料の説明図、第3図は従来の旨による耐酸化被覆
炭素材料の説明図である。
Fig. 1 is an explanatory diagram of a high-temperature oxidation-resistant carbon material according to an embodiment of the present invention, Fig. 2 is an explanatory diagram of a conventional oxidation-resistant coated carbon material made of 5102 and SiC, and Fig. 3 is an explanatory diagram of a conventional oxidation-resistant coating. FIG. 3 is an explanatory diagram of a carbon material.

Claims (2)

【特許請求の範囲】[Claims] (1)炭素質基材の表面に、 (a)炭化ケイ素を主成分とする炭化物層からなる薄膜
と、 (b)Cr、Ti、Ta、Nb及びAlのうちのいずれ
かとIr、Ru及びRhのうちのいずれかとの合金から
なる薄膜を順次形成させてなることを特徴とする高温耐
酸化炭素材料。
(1) On the surface of the carbonaceous base material, (a) a thin film consisting of a carbide layer mainly composed of silicon carbide, (b) one of Cr, Ti, Ta, Nb, and Al and Ir, Ru, and Rh. A high-temperature oxidation-resistant carbon material characterized by sequentially forming thin films made of an alloy with one of the above.
(2)請求項(1)の合金からなる薄膜のIr、Ru及
びRhの含有量が70重量%以上であることを特徴とす
る高温耐酸化炭素材料。
(2) A high-temperature oxidation-resistant carbon material, characterized in that the content of Ir, Ru, and Rh in the thin film made of the alloy according to claim (1) is 70% by weight or more.
JP2269422A 1990-10-09 1990-10-09 Carbon material having oxidation resistance at high temperature Pending JPH04149082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2269422A JPH04149082A (en) 1990-10-09 1990-10-09 Carbon material having oxidation resistance at high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2269422A JPH04149082A (en) 1990-10-09 1990-10-09 Carbon material having oxidation resistance at high temperature

Publications (1)

Publication Number Publication Date
JPH04149082A true JPH04149082A (en) 1992-05-22

Family

ID=17472203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2269422A Pending JPH04149082A (en) 1990-10-09 1990-10-09 Carbon material having oxidation resistance at high temperature

Country Status (1)

Country Link
JP (1) JPH04149082A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071470A (en) * 1995-03-15 2000-06-06 National Research Institute For Metals Refractory superalloys
CN100432281C (en) * 2006-08-04 2008-11-12 南京航空航天大学 Iridium coating layer for carbon material anti oxidation and its preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071470A (en) * 1995-03-15 2000-06-06 National Research Institute For Metals Refractory superalloys
CN100432281C (en) * 2006-08-04 2008-11-12 南京航空航天大学 Iridium coating layer for carbon material anti oxidation and its preparation method

Similar Documents

Publication Publication Date Title
JPH10507230A (en) Protective layer for protecting members against corrosion, oxidation and thermal overload, and method of manufacturing the same
US5514482A (en) Thermal barrier coating system for superalloy components
US8168259B2 (en) Articles for high temperature service and methods for their manufacture
US6335105B1 (en) Ceramic superalloy articles
US5283109A (en) High temperature resistant structure
US6582779B2 (en) Silicon nitride components with protective coating
EP1088909A2 (en) Thermal barrier coating system of a turbine component
US20120223127A1 (en) Components and methods of forming protective coating systems on components
US6495271B1 (en) Spallation-resistant protective layer on high performance alloys
JPH0510309B2 (en)
JP3466627B2 (en) Metal substrate with oxide layer and improved anchoring layer
JP2012132099A (en) Niobium-based alloy heat-resistant material
US6168875B1 (en) Coatings for turbine components
US5426000A (en) Coated reinforcing fibers, composites and methods
JPH06306640A (en) High temperature exposure material
JPH04149082A (en) Carbon material having oxidation resistance at high temperature
JPH04149083A (en) Carbon material having oxidation resistance at high temperature
US2854739A (en) Multiple coated molybdenum base article
US20050058849A1 (en) Elevated temperature oxidation protection coatings for titanium alloys and methods of preparing the same
EP0459865B1 (en) Method of protecting ceramic surfaces
US6485791B1 (en) Method for improving the performance of oxidizable ceramic materials in oxidizing environments
JPH06122580A (en) High-temperature antioxidizing carbonaceous material
JP2000511236A (en) Structural component having superalloy substrate and layer structure provided thereon, and method of manufacturing the same
JP2980861B2 (en) Metal / ceramic composite type thermal barrier coating and method of forming the same
JPS6028903B2 (en) Surface treatment method for metal materials