JPH04148917A - Forming method of low heat-shrinkable polyphenylene sulfide film - Google Patents

Forming method of low heat-shrinkable polyphenylene sulfide film

Info

Publication number
JPH04148917A
JPH04148917A JP2272230A JP27223090A JPH04148917A JP H04148917 A JPH04148917 A JP H04148917A JP 2272230 A JP2272230 A JP 2272230A JP 27223090 A JP27223090 A JP 27223090A JP H04148917 A JPH04148917 A JP H04148917A
Authority
JP
Japan
Prior art keywords
temperature
heat treatment
film
polyphenylene sulfide
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2272230A
Other languages
Japanese (ja)
Inventor
Satoru Matsunaga
悟 松永
Masayuki Hino
雅之 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP2272230A priority Critical patent/JPH04148917A/en
Publication of JPH04148917A publication Critical patent/JPH04148917A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a forming method of film made of polyphenylene sulfide, the heat shrinkage factor of which at the temperature higher than the heat treatment temperature is small and the color change of which is little, by a method wherein a process, in which stretch heat treatment is carried out at the temperature not more than the specified one, and a process, in which relaxation heat treatment is carried out without substantially being received by mechanical external stress within the specified temperature range, are provided. CONSTITUTION:Unstretched film made of polyphenylene sulfide, which is obtained by melt extrusion molding, is stretch-heat-treated at the temperature, which is higher than its crystallization temperature and lower than its crystalline melting point by 20 deg.C. After that, the resultant film is relaxation-heat-treated within the temperature range, at which the lower limit temperature is set to be either higher one of the temperature lower than the stretch heat treatment temperature by 60 deg.C and the crystallization temperature and the upper limit temperature is set to be the temperature lower than the crystalline melting point by 20 deg.C, without substantially being received by mechanical external stress. As for the obtained film, its color change can be suppressed as compared with the conventional film and its heat shrinkage factor can be reduced to a far greater extent.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はポリフェニレンスルフィドからなる極度に低い
熱収縮率を有するフィルムの成形方法に関する。
DETAILED DESCRIPTION OF THE INVENTION ``Industrial Application Field'' The present invention relates to a method for forming a film having an extremely low heat shrinkage rate made of polyphenylene sulfide.

1−従来の技術] 例えばプリント基板のように導電体を積層する絶縁体フ
ィルムにおいては、製造玉響において熱線によりリフロ
半rDを溶融するとき絶縁フィルノー、を構成する樹脂
は230〜240℃の温度にまで熱せられる。1その際
、絶縁体フィルム(j通常妙伸され熱固定されているの
であるが、なお熱収縮が生じる。子の結果、僅かの隙間
を介し配線されている木未分離されているべき導電体相
互の接触が生じるとともに、平面性を損なうことがある
。プリント基板の導電体の集積密度が高まれば高まるほ
どこの熱収縮率の小さいことが望まれる。
1-Prior art] For example, in an insulating film in which conductors are laminated, such as in a printed circuit board, when the reflow semi-rD is melted with a hot wire in the manufacturing process, the resin constituting the insulating filler is heated to a temperature of 230 to 240°C. It can be heated up to. 1 At that time, the insulating film (usually stretched and heat-set, but heat shrinkage still occurs.As a result, the conductor that should be unseparated is wired through a small gap. Mutual contact may occur and the flatness may be impaired.The higher the integration density of the conductors on the printed circuit board, the lower the thermal shrinkage rate is desired.

この他、プリント基板の製造工程の際にエツチングによ
り露出した接着剤が硬化するまでの間、プリント基板以
外の個所に付着しないように剥離用フィルムを用いる。
In addition, a release film is used to prevent the adhesive exposed by etching during the printed circuit board manufacturing process from adhering to areas other than the printed circuit board until it hardens.

この剥離用フィルムがプリント基板と重ねられたまま熱
履歴を受けるとき、基板の絶縁体と異なる熱変形がなさ
れたのでは基板の導電体部分の変形をもたらす。よって
この剥離用フィルムもプリント基板同様の熱収縮率が要
求される。
When this peeling film is subjected to thermal history while stacked on the printed circuit board, the conductive portion of the board will be deformed if it undergoes thermal deformation that is different from that of the insulator of the board. Therefore, this release film is also required to have the same heat shrinkage rate as the printed circuit board.

この他例えばフロッピーディスク、TARテブ、絶縁体
フィルム或いは金属板と貼り合わせて使用する摺動部材
等多くの分野において熱収縮率の小さいことが要求され
る。
In addition, low heat shrinkage is required in many other fields, such as floppy disks, TAR tubes, sliding members used in conjunction with insulating films or metal plates.

これに対し、このような高温においても使用され得る耐
熱性樹脂として種々の樹脂が知られているが、耐熱性で
あってしかも生産性に優れ、結果的にコスト的にも比較
的安価である樹脂としてはボリフェニlノンスルフィド
が注目されている。その中で従来熱収縮率の低いフィル
ムの成形方法としては、例えば特公昭64.−7579
号公報に示すように未配向非晶状フィルノー\を使用す
る温度よりも高温において、この例においては260℃
において、定長熱処理する方法が採用されてきた。しか
しこの方法で得られる熱収縮率は結晶融点である285
℃に比較的近い250℃でせいぜい0.3%程度である
。その上、このような高温では熱劣化が起こる。
On the other hand, various resins are known as heat-resistant resins that can be used even at such high temperatures, but they are heat-resistant, have excellent productivity, and are relatively inexpensive as a result. Polyphenylonone sulfide is attracting attention as a resin. Among these, conventional methods for forming films with a low heat shrinkage rate include, for example, the Japanese Patent Publication No. 64. -7579
At a higher temperature than the temperature at which unoriented amorphous Filnault is used as shown in the publication, in this example 260°C.
, a method of constant length heat treatment has been adopted. However, the heat shrinkage rate obtained with this method is the crystal melting point of 285
It is about 0.3% at most at 250°C, which is relatively close to 250°C. Moreover, thermal degradation occurs at such high temperatures.

これに対し熱処理温度より高い温度での熱収縮率の例と
しては同じく特公昭64−7579号公報に例があるが
、130℃で熱処理して250℃の熱収縮率を0.7%
にしているに過ぎない。
On the other hand, as an example of the heat shrinkage rate at a temperature higher than the heat treatment temperature, there is also an example in Japanese Patent Publication No. 64-7579, but the heat shrinkage rate at 250℃ after heat treatment at 130℃ is 0.7%.
It's just that.

かくの如く熱処理温度より高い温度で使用しても、その
熱収縮率が0.6%程度以下にし得る様な熱収縮率の小
さく、熱劣化の少ないポリフェニレンスルフィドフィル
ムの成形方法は従来知られていなかった。
As described above, a method for forming a polyphenylene sulfide film with a low heat shrinkage rate and little thermal deterioration, which can be made to have a heat shrinkage rate of about 0.6% or less even when used at a temperature higher than the heat treatment temperature, is conventionally known. There wasn't.

[発明が解決(、ようとする課題1 本発明の目的は熱処理温度よりも高い温度における熱収
縮率が小さく、変色の少ないポリフェニレンスルフィド
からなるフィルムの成形方法を提供することにある。
[Problem to be Solved by the Invention (1) An object of the present invention is to provide a method for forming a film made of polyphenylene sulfide that has a small heat shrinkage rate at a temperature higher than the heat treatment temperature and less discoloration.

また熱処理温度より低い温度での熱収縮率をより小さく
するとともに変色が僅かであるフィルノ、の成形方法を
提供することにある。
Another object of the present invention is to provide a method for molding FILNO which has a smaller heat shrinkage rate at a temperature lower than the heat treatment temperature and which causes slight discoloration.

1課題を解決するための手段”1 〈要旨〉 本発明の要旨は 溶融押出成形により得られたボリフユニレンスルフィド
からなる未延伸フィルムを、 (a、)  結晶化温度以上、結晶融点より20℃低い
温度以下で緊張熱処理する工程、 次いで (b)  下限の温度を緊張熱処理温度より60℃低い
温度と結晶化温度のいずれか高い温度とし、上限の温度
を結晶融点より20℃低い温度とする温度範囲で機械的
な外部応力を実質的に受けることなく緩和熱処理する工
程からなる低熱収縮性ポリフェニレンスルフィドフィル
ムの成形方法にある。
1 Means for Solving Problems 1 <Summary> The gist of the present invention is to process an unstretched film made of borifunilene sulfide obtained by melt extrusion at a temperature higher than the crystallization temperature and 20°C below the crystal melting point. A step of performing stress heat treatment at a low temperature or lower, and then (b) a temperature in which the lower limit temperature is the higher of either a temperature 60 °C lower than the stress heat treatment temperature or the crystallization temperature, and the upper limit temperature is 20 °C lower than the crystal melting point. The present invention provides a method for forming a polyphenylene sulfide film with low heat shrinkage, which comprises a step of performing a relaxing heat treatment without substantially receiving external mechanical stress within a range.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

〈ポリフェニレンスルフィドフィルム〉本発明でボリフ
ェニし・ンスルフィ1〜どは、−Ill−8−)−を主
構成要素とするポリマーを意味するここで主構成要素と
は50モル%以上を意味する。好適には70モル%以上
、より好適には90モル%以」二のものが用いられる。
<Polyphenylene sulfide film> In the present invention, polyphenylene sulfide 1 to 1 means a polymer having -Ill-8-)- as a main constituent. Here, the main constituent means 50 mol% or more. The amount used is preferably 70 mol% or more, more preferably 90 mol% or more.

本発明で云うポリフェニレンスルフィドからなる未延伸
フィルムはポリフェニレンスルフィド単独またはポリフ
ェニレンスルフィドを−)二成分としこれに他の熱可塑
性樹脂や充填剤を配合した組成物からなる未延伸フィル
ムを意味する。こごでF主成分」とは50重量%以上を
指す。特に無機物を混合する組成物は熱収縮率をより低
下することができ、好適に採用される。また[未延伸j
とは結晶融点以上において流動配向するものまで排除す
るものではない。従って本発明での未延伸フィル1\は
流動配向フィルムであっても良いし、未配向フィルムで
あっても良い。
The unstretched film made of polyphenylene sulfide referred to in the present invention refers to an unstretched film made of polyphenylene sulfide alone or a composition containing polyphenylene sulfide as two components (-) and blended with other thermoplastic resins and fillers. "Main component" refers to 50% by weight or more. In particular, a composition containing an inorganic substance can further reduce the heat shrinkage rate, and is therefore preferably employed. Also [unstretched
This does not exclude those that exhibit fluid orientation above the crystal melting point. Therefore, the unstretched film 1\ in the present invention may be a fluid oriented film or an unoriented film.

流動配向フィルムを得るのには、分岐した高分子量のポ
リフェニレンスルフィドを用い、溶融押出後、高ドラフ
ト率で引取りつつ急冷することにより得ることができる
。また無配向フィルムは通常の公知の方法で得ることが
できる。
A fluid oriented film can be obtained by using a branched high molecular weight polyphenylene sulfide, melt extruding it, and then rapidly cooling it while taking it off at a high draft rate. Moreover, a non-oriented film can be obtained by a conventionally known method.

本発明においてはまず溶融押出成形によりポリフェニレ
ンスルフィドからなる未延伸フィルムを得る。フィルム
の形状は平板に限られず、筒状のようなものであっても
良い。またフィルムの厚さは5mm以1この薄葉状成形
体を、α昧する。フィルムの厚さは押出量と引取速度を
適宜選択することにより所望のものが得られる。
In the present invention, first, an unstretched film made of polyphenylene sulfide is obtained by melt extrusion molding. The shape of the film is not limited to a flat plate, but may be cylindrical. Further, the thickness of the film should be 5 mm or more for this thin leaf-shaped molded product. A desired film thickness can be obtained by appropriately selecting the extrusion amount and take-off speed.

溶融押出工程と次の緊張熱処理J−程とは続いてなされ
ていても良いし、例えば冷却]工程の如き別の工程がこ
れら工程の間に介在していても良い。
The melt extrusion step and the subsequent tension heat treatment step J- may be performed sequentially, or another step such as a cooling step may be interposed between these steps.

冷却工程は冷却された金属ドラム上にキャストする方法
、低温の流体中を通す方法等の公知の方法が採用される
For the cooling process, a known method such as casting on a cooled metal drum or passing through a low-temperature fluid may be employed.

く緊張熱処理工程〉 溶融押出成形により得たフィルムを、結晶化温度以上、
結晶融点より20℃低い温度以下、より好ましくは結晶
融点より30℃低い温度以下で緊張熱処理する。
Tension heat treatment process> The film obtained by melt extrusion is heated to a temperature higher than the crystallization temperature,
The strain heat treatment is carried out at a temperature not higher than 20° C. below the crystal melting point, more preferably at a temperature not higher than 30° C. below the crystal melting point.

本工程qσびに次に示す工程の熱処理温度はいずれもフ
ィルムを加熱する加熱媒体温度を指し、公知の加熱媒体
、例えば本工程に於いては加熱ロルが好適に使用される
。また結晶化温度と結晶融点とは示差走査熱量計を用い
、ガラス転移点より低い温度から10℃/分の速度で非
晶ベレット状としたポリフェニレンスルフィドを昇温し
たときに現われる最初の発熱ピーク温度と融解時の吸熱
ビクをそれそ゛れ指す。尚、ポリフェニレンスルフィド
が樹脂組成物のように2以上の結晶化温度、結晶融点を
有するときはそれぞれその主たるピりをここでいう結晶
化温度、結晶融点とする。
The heat treatment temperature in this step qσ and the following steps both refer to the heating medium temperature for heating the film, and a known heating medium such as a heating roll is suitably used in this step. Crystallization temperature and crystal melting point are the first exothermic peak temperature that appears when polyphenylene sulfide in the form of an amorphous pellet is heated at a rate of 10°C/min from a temperature lower than the glass transition point using a differential scanning calorimeter. This refers to the endothermic vibration during melting. In addition, when polyphenylene sulfide has two or more crystallization temperatures and crystal melting points, such as a resin composition, the main crystallization temperature and crystal melting point are respectively referred to here.

緊張熱処理は次の緩和熱処理の前に平面性を保持しつつ
結晶化を少なくともある程度進めるためのものである。
The tension heat treatment is for promoting crystallization at least to some extent while maintaining flatness before the next relaxation heat treatment.

さもないと次の緩和熱処理により収縮が大きく平面性の
悪いものとなってしまうためである。緊張熱処理に要す
る時間は用いられるポリフェニレンスルフィドの結晶化
速度に依存し、結晶化速度が小さい場合はより長く処理
され、緊張熱処理後の結晶化度が高いほど好ましく、1
0%以上、なかでも15%以−1−1特に20%以にと
なる程度に処理されるのが好ましい。
Otherwise, the subsequent relaxation heat treatment will cause large shrinkage and result in poor flatness. The time required for the stress heat treatment depends on the crystallization rate of the polyphenylene sulfide used; if the crystallization rate is low, the treatment is longer, and the higher the degree of crystallinity after the stress heat treatment, the more preferable it is.
It is preferable to treat it to an extent of 0% or more, particularly 15% or more, especially 20% or more.

緊張状態における応力は延伸後のフィルムの形状を保持
できる程度に砦する。
The stress in the tension state is maintained to such an extent that the shape of the film after stretching can be maintained.

〈緩和熱処理工程、〉 次いで下限の温度を緊張熱処理温度より60℃低い温度
と結晶化温度のいずれか高い温度とし、−に限の温度を
結晶融点より20℃低い温度とする温度範囲で機械的な
外部応力を実質的に受けない条件下で緩和熱処理する。
<Relaxation heat treatment step> Next, mechanical treatment is performed within a temperature range in which the lower limit temperature is 60 °C lower than the tension heat treatment temperature or the crystallization temperature, whichever is higher, and the - limit temperature is 20 °C lower than the crystal melting point. Relaxation heat treatment is performed under conditions where the material is not substantially subjected to external stress.

ここで1機械的な外部応力を実質的に受けることなく]
との意味はフィルムを熱媒体中に係留する保持共から受
ける応力まで受けない意ではない。例えばオーブン中に
フィルムを静置したときに熱膨張或いは熱収縮に伴って
生ずる静置面との摩擦応力、フィル1\を吊したり、フ
ィルム端部を固定したときにフィルムの自重により受け
る応力、熱媒が流体、特に液体であるとき、フィルム或
いは流体の移動に伴い熱媒より受()る応力等は受けて
良い。しがしながらできるだけ応力を受けないような条
件下でなされるのが好ましく、例えばエアーオーブン中
にフィルム端部を保持しつつ熱処理する方法、フィルム
の比重と同程度の熱媒中に静置する方法が好適に採用さ
れる。
Here, 1 without substantially receiving mechanical external stress]
This does not mean that the film is not subjected to stress from the support that anchors it in the heat medium. For example, when a film is left still in an oven, the friction stress with the stationary surface that occurs due to thermal expansion or contraction, and the stress caused by the film's own weight when the film 1 is hung or the edges of the film are fixed. When the heating medium is a fluid, particularly a liquid, it may be subjected to stress etc. from the heating medium as the film or fluid moves. However, it is preferable to carry out the heat treatment under conditions that minimize stress as much as possible. For example, heat treatment is carried out while holding the edges of the film in an air oven, or the film is left standing in a heating medium with a specific gravity similar to that of the film. The method is preferably adopted.

熱処理温度が高いほど熱収縮率は低下し、熱処理温度が
低いほど平面性の点では良いものが得られる。上限の温
度は結晶融点より20℃低い温度であり、好ましくは結
晶融点より25℃低い温度であり、下限の温度は緊張熱
処理温度より40℃低い温度と結晶化温度のいずれか高
い温度であり、より好ましくは下限の温度は緊張熱処理
温度より20℃低い温度と結晶化温度のいVれか高い温
度が採用される。熱処理時間は緊張熱処理で受けた歪並
びに緊張熱処理工程から緩和熱処理工程に移る際に受け
た歪を緩和しつるに十分な時間であればよく、熱処理温
度にも依存し適宜選択される。
The higher the heat treatment temperature, the lower the heat shrinkage rate, and the lower the heat treatment temperature, the better the flatness can be obtained. The upper temperature limit is 20 °C lower than the crystal melting point, preferably 25 °C lower than the crystal melting point, and the lower temperature limit is 40 °C lower than the stress heat treatment temperature or the crystallization temperature, whichever is higher; More preferably, the lower limit temperature is a temperature that is 20° C. lower than the tension heat treatment temperature or a temperature that is higher than the crystallization temperature. The heat treatment time may be a time sufficient to relax and loosen the strain caused by the tension heat treatment as well as the strain caused during transition from the tension heat treatment step to the relaxation heat treatment step, and is appropriately selected depending on the heat treatment temperature.

この緩和熱処理とその前の緊張熱処理の間には別の−L
程が介在していても良いし、介在しなくても良い。
Between this relaxation heat treatment and the preceding tension heat treatment, another -L
There may or may not be any intervention.

(実施例) 〈測定法〉 熱収縮率: フィルムを縦横100mmに切り出し、測定する前のフ
ィルムに長さが約1.00mmの十字クロスを刻印し、
IV−面」−に静置し、透明アクリル板を載置し、その
上からその長さを1μmまで読取り可能な顕微鏡で測定
した。次いでアクリル板を除き、フィルムをコピー用紙
上に載せて、250℃の熱風オーブン中に10分分間−
た。ついで常温まで放置した後における長さを測定前と
同様に1μmまで読取り可能な顕微鏡で測定した。この
ような操作を繰り返して3点の平均値から熱収縮率を求
めた。
(Example) <Measurement method> Heat shrinkage rate: Cut a film into 100 mm in length and width, and stamp a cross with a length of about 1.00 mm on the film before measuring.
A transparent acrylic plate was placed thereon, and the length was measured using a microscope capable of reading down to 1 μm. Next, the acrylic board was removed, the film was placed on copy paper, and placed in a hot air oven at 250°C for 10 minutes.
Ta. Then, after being left to stand at room temperature, the length was measured using a microscope capable of reading down to 1 μm in the same manner as before measurement. The heat shrinkage rate was determined from the average value of the three points by repeating such operations.

色差: [1来電色−■、業(株)装色y′計Σ80を用い、J
 T S7.8 ’722に、1′:り反射法により測
定した。色差の表示Sムは、lTS Z8730のハン
ターの色差式による。基準は比較例1である。
Color difference: [1Kiden color -
Measured at TS7.8'722 by the 1' reflection method. The color difference display SM is based on the Hunter's color difference formula of ITS Z8730. The standard is Comparative Example 1.

〈比較例1〉 芳香族ハロゲン化物としてジグロルベンゼン1.00モ
ルに対し0.2モルのトリクロルベンゼンを用いて常法
により重合させたポリフェニレンスルフィド100重量
部、カオリン0.2重量部とステアリン酸カルシウム0
,2重量部よりなる組成物を溶融押出(−1非晶ベレツ
ト化した。尚このポリマー単独のペレットの溶融粘度は
1200sec−”、310℃での測定条件下で1.2
300ポイズであり、結晶化温度は127て〕であり、
結晶融点は277℃であった。得られたペレットを16
0℃、30分間熱処理した後、50mmφ、L/D=2
8の押出機に取り付けたリップクリアランス0.5mm
、幅560 m mのリップを有するT−ダイでフィル
ム状に押出(7、キャスティングロールにより非晶状態
のまま引取った。樹脂の押出温度は330℃であり、押
出量は26 kF、、7時間であった。T−ダイ先端部
とキャスティングロール上端部の間を約10mmとし、
ギヤスティングロール表面温度は40℃、弓取速度は1
5m/分に設定した。
<Comparative Example 1> 100 parts by weight of polyphenylene sulfide, 0.2 parts by weight of kaolin, and calcium stearate polymerized by a conventional method using 0.2 mol of trichlorobenzene per 1.00 mol of diglorbenzene as an aromatic halide. 0
A composition consisting of 2 parts by weight of .
300 poise, and the crystallization temperature is 127 degrees],
The crystal melting point was 277°C. 16 of the obtained pellets
After heat treatment at 0°C for 30 minutes, 50mmφ, L/D=2
Lip clearance attached to No. 8 extruder 0.5mm
The resin was extruded into a film using a T-die with a lip of 560 mm in width (7) and taken off in an amorphous state using a casting roll. The distance between the T-die tip and the upper end of the casting roll was approximately 10 mm.
Gear sting roll surface temperature is 40℃, Yumitori speed is 1
The speed was set at 5 m/min.

非晶フィルj\の厚さは3811mである。表面温度1
.50て〕の加熱ロール(直径300mm)と表面温度
180てシの加熱ロール(直径3QOmm)の間を速度
5m/分でこのフィルムを通過させながら巻取りロール
に巻き取った。180て〕の加熱ロールに接している時
間は約6秒であった。
The thickness of the amorphous film j\ is 3811 m. Surface temperature 1
.. The film was passed between a heating roll (diameter 300 mm) with a surface temperature of 180 °C and a heating roll (diameter 3 QO mm) with a surface temperature of 180 °C at a speed of 5 m/min and wound up onto a take-up roll. The time that the sample was in contact with the heating roll (180 mm) was approximately 6 seconds.

このフィルムの結晶化度は21%であり、熱収縮率と色
差の結果を図に示した11図においては横軸の緩和熱処
理温度を25℃とする点に対応して表示した。
The crystallinity of this film was 21%, and in Figure 11, which shows the results of thermal shrinkage and color difference, the horizontal axis indicates the relaxation heat treatment temperature of 25°C.

〈実施例1〜5〉 比較例1のフィルムを3枚ずつ、5組用意し、何ら固定
枠もないままにコピー用紙の−1−に載せてそれぞれ1
50℃、175てシ、200℃、225℃、250℃の
熱風オーブン中に10分間静置した。その処理後のフィ
ルムの熱収縮率と色差は図に示す通りであった〈比較例
2〜4〉 比較例1のフィルムを3枚ずつ、3組用意し、何ら固定
枠もないままにコピ 用紙の上に載せてそれぞれ125
℃、260℃、275℃の熱風オーブン中に10分間静
置した。その処理後のフィルムの熱収縮率と色差は図に
示す通りであった。
<Examples 1 to 5> Five sets of three films each of Comparative Example 1 were prepared, and each film was placed on -1- of copy paper without any fixed frame, and one sheet of each film was prepared.
It was left standing in a hot air oven at 50°C, 175°C, 200°C, 225°C, and 250°C for 10 minutes. The heat shrinkage rate and color difference of the film after the treatment were as shown in the figure <Comparative Examples 2 to 4> Three sets of three films each of Comparative Example 1 were prepared and copied without any fixed frame. 125 each on top of
℃, 260°C, and 275°C for 10 minutes in a hot air oven. The heat shrinkage rate and color difference of the film after the treatment were as shown in the figure.

[本発明の効果1 本発明により従来に比し変色を抑える、二とができつつ
熱収縮率を大幅に低減することが可能となった。
[Effect 1 of the present invention] The present invention has made it possible to significantly reduce the heat shrinkage rate while suppressing discoloration compared to the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は実施例、比較例に示す緩和熱処理温度【こ対する
250℃における熱収縮率を示し、図2番は同様にそれ
らの色差を示す。 手続補正書(方式) 平成 3年 2月18日
FIG. 1 shows the thermal shrinkage rate at a relaxation heat treatment temperature of 250° C. shown in Examples and Comparative Examples, and FIG. 2 similarly shows the color difference therebetween. Procedural amendment (method) February 18, 1991

Claims (1)

【特許請求の範囲】[Claims] (1)溶融押出成形により得られたポリフェニレンスル
フィドからなる未延伸フィルムを、 (a)結晶化温度以上、結晶融点より20℃低い温度以
下で緊張熱処理する工程、 次いで (b)下限の温度を緊張熱処理温度より60℃低い温度
と結晶化温度のいずれか高い温度とし、上限の温度を結
晶融点より20℃低い温度とする温度範囲で機械的な外
部応力を実質的に受けることなく緩和熱処理する工程 からなる低熱収縮性ポリフェニレンスルフィドフィルム
の成形方法
(1) An unstretched film made of polyphenylene sulfide obtained by melt extrusion molding is subjected to (a) tension heat treatment at a temperature above the crystallization temperature and 20°C lower than the crystal melting point, and then (b) tension heat treatment at the lower limit temperature. A process of relaxing heat treatment without substantially receiving mechanical external stress in a temperature range where the temperature is 60°C lower than the heat treatment temperature or the crystallization temperature, whichever is higher, and the upper limit temperature is 20°C lower than the crystal melting point. Method for forming a low heat shrinkable polyphenylene sulfide film consisting of
JP2272230A 1990-10-12 1990-10-12 Forming method of low heat-shrinkable polyphenylene sulfide film Pending JPH04148917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2272230A JPH04148917A (en) 1990-10-12 1990-10-12 Forming method of low heat-shrinkable polyphenylene sulfide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2272230A JPH04148917A (en) 1990-10-12 1990-10-12 Forming method of low heat-shrinkable polyphenylene sulfide film

Publications (1)

Publication Number Publication Date
JPH04148917A true JPH04148917A (en) 1992-05-21

Family

ID=17510935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2272230A Pending JPH04148917A (en) 1990-10-12 1990-10-12 Forming method of low heat-shrinkable polyphenylene sulfide film

Country Status (1)

Country Link
JP (1) JPH04148917A (en)

Similar Documents

Publication Publication Date Title
US4629778A (en) Poly(p-phenylene sulfide) film and process for production thereof
US3901851A (en) Strengthened films and method for producing same
JPS5863417A (en) Preparation of isotropically oriented polyether either ketone film
JPH0617065B2 (en) Heat treatment method for biaxially stretched polyester film
JPS62251121A (en) Manufacture of polyphenylene sulfide unoriented film
JPH04148917A (en) Forming method of low heat-shrinkable polyphenylene sulfide film
JPH0212170B2 (en)
JPH01158049A (en) Heat-resistant film and production thereof
US5100593A (en) Poly(arylene sulfide) sheet and production process thereof
JP2611425B2 (en) Method for producing low shrinkage polyester film
JPH0235658B2 (en)
JP2004276565A (en) Manufacturing process of biaxially oriented polyester film
JPS597020A (en) Manufacture of poly-p-phenylenesulfide film
JPH08245771A (en) Polyester film for packaging
JPS6392430A (en) Manufacture of crystallized polyether ether ketone film
JP2855351B2 (en) Polyarylene sulfide sheet and method for producing the same
JP3781227B2 (en) Polyethylene terephthalate film and production method thereof
JPH0767740B2 (en) Method for producing biaxially stretched polyester film
JPH0380412B2 (en)
JPH0496941A (en) Release sheet and its production
JP2000034356A (en) Biaxially oriented polyphenylene sulfide film for releasing and production thereof
JPH03264334A (en) Manufacture of polyester film
KR0173727B1 (en) Manufacturing method of biaxially oriented polyester film
JP3531284B2 (en) Polyester film
JP2001328159A (en) Method for producing biaxially oriented film