JPH04148874A - Optical sampling device - Google Patents

Optical sampling device

Info

Publication number
JPH04148874A
JPH04148874A JP2274732A JP27473290A JPH04148874A JP H04148874 A JPH04148874 A JP H04148874A JP 2274732 A JP2274732 A JP 2274732A JP 27473290 A JP27473290 A JP 27473290A JP H04148874 A JPH04148874 A JP H04148874A
Authority
JP
Japan
Prior art keywords
light
optical
circuit
output
under test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2274732A
Other languages
Japanese (ja)
Other versions
JP2906633B2 (en
Inventor
Kazuo Nagata
和生 永田
Sunao Sugiyama
直 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2274732A priority Critical patent/JP2906633B2/en
Publication of JPH04148874A publication Critical patent/JPH04148874A/en
Application granted granted Critical
Publication of JP2906633B2 publication Critical patent/JP2906633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable a high-speed voltage waveform to be measured without adversely affecting a circuit to be measured by measuring a voltage waveform of the circuit to be measured based on an output of a calculation circuit. CONSTITUTION:This device is provided with a pulse generation means 10 which outputs optical pulses, a separation means 11 which separates this output light into two parts, a pulse compressor 12 which compresses one output light, and an electric optical element 31 which allows that output light to enter and change a polarization surface by an electric field corresponding to operation voltage of a circuit to be measured 16. Change in the polarization surface of returning light from an element 31 is converted to a change in light intensity by a polarization means 13, other output light of a separation means 11 is frequency-shifted by an optical acoustic modulator 20, both are synthesized by a synthesizing means 24, and the light is received by a light-receiving element 25. A waveform of the circuit to be measured 16 is calculated by a calculation circuit 26 based on an output of the element 25, thus enabling a voltage waveform of the circuit to be measured 16 to be measured.

Description

【発明の詳細な説明】 〈産業」−の利用分野〉 この発明は超高速電−r−アバイス(GaAs  IC
1,nP  IC)等におりる高速の電気信2づを測定
する装置に関し、特に被測定回路への影響を小さくした
光サンプリンタ装置に関するものである。
[Detailed Description of the Invention] <Field of Application in Industry> This invention is an ultrahigh-speed electronic device (GaAs IC)
The present invention relates to a device for measuring high-speed electrical signals such as 1, nP ICs, etc., and particularly relates to an optical sampler device that reduces the influence on the circuit under test.

〈従来技術〉 最近の高速電子−デバイスは高速なものが多く開発され
ている。例えば、HE M ′l’ (lligh 1
lectr。
<Prior Art> Recently, many high-speed electronic devices have been developed. For example, HE M 'l' (lligh 1
lectr.

n 14obilily Transistor )で
はゲート遅延時間が約1.、 Op s程度であり、ま
た光通信なとに用いられる半導体】/−ザーの直接変調
帯域も数i G )−(zに達している。このような高
速電子デバイスによる高速現象の測定は、通常サンプリ
ンタオシロスコープが用いられている。第71図にサン
プリンタオシI7スコープの原理を示す。すなわち、(
A、 )のように連続するN個の被測定信号に対して、
グー1−時間を少し7ずつずらしながら測定して行き、
その結果を合成して(Y3)のような測定値を得る。
n14obilily Transistor), the gate delay time is about 1. , Ops, and the direct modulation band of semiconductors used in optical communications has reached several i G )-(z. Measurement of high-speed phenomena using such high-speed electronic devices is A sampler oscilloscope is usually used. Figure 71 shows the principle of the sampler oscilloscope.
For N consecutive signals under test like A, ),
Goo 1 - Measure the time by slightly changing it by 7,
The results are combined to obtain a measurement value like (Y3).

この技術では、サンプリング幅が測定結果の分解能にな
る。
In this technique, the sampling width becomes the resolution of the measurement results.

しかしながら、第4図のサンブリンクオシIニアスコー
プでは、サンプリング幅はスデップ゛リカバリタイオー
ドの速度に制限され、25ps程度が限界であり、光パ
ルスを用いる光オシロスコープでも]、、 Op s程
度か限界であるという速度上の欠点があった。
However, in the sunblink oscilloscope shown in Fig. 4, the sampling width is limited by the speed of the step recovery diode, and the limit is about 25 ps, and even for an optical oscilloscope that uses optical pulses, the sampling width is about 25 ps or less. There was a drawback in terms of speed.

一方、GaAs基板は電気光学効果を有するので、電界
の大きさに応じてその戻り光の偏波面か変化する。この
現象を利用して、光を用いた測定装置か開発されている
。第5図にこのような光を用いた測定装置の構成を示す
。Y A Gレーザー1の出力光はパルス圧縮部2でp
 s程度のパルス幅に圧縮され、偏光子3、波長板・1
を介してG a AS集積回路5に入力される。また、
その戻り光は波長板4を通り、偏光子3で反射されて受
光素子6でその強麿が測定され、表示部8て表示される
On the other hand, since the GaAs substrate has an electro-optic effect, the polarization plane of the returned light changes depending on the magnitude of the electric field. Measurement devices using light have been developed to take advantage of this phenomenon. FIG. 5 shows the configuration of a measuring device using such light. The output light of the YAG laser 1 is compressed by the pulse compressor 2.
The pulse width is compressed to about s, and the polarizer 3, wave plate 1
The signal is input to the G a AS integrated circuit 5 via the G a AS integrated circuit 5 . Also,
The returned light passes through the wavelength plate 4, is reflected by the polarizer 3, and its intensity is measured by the light receiving element 6 and displayed on the display section 8.

駆動回路7てG a A s集積回路5が発生ずる電界
を変えるとその戻り光の偏光面が変化し、偏光子3によ
って受光素子6に入射する光の強風か変化する。IS区
動回路7により、YAGレーザ−1の出力光のタイミン
グとG a A s 集積回路5を駆動するタイミング
を同期させ、かつその位相差を少しずつずらして行くこ
とによって、第4図で説明しなサンプリンク技術と同し
原理てGaAs集積回路5の内部電圧波形を測定する事
が出来る。この装置によればpsオーダーのサンブリン
グ速度で測定が可能である。
When the drive circuit 7 changes the electric field generated by the GaAs integrated circuit 5, the polarization plane of the returned light changes, and the polarizer 3 changes the intensity of the light incident on the light receiving element 6. By synchronizing the timing of the output light of the YAG laser 1 and the timing of driving the GaAs integrated circuit 5 using the IS section circuit 7, and gradually shifting the phase difference, the timing explained in FIG. 4 is achieved. The internal voltage waveform of the GaAs integrated circuit 5 can be measured using the same principle as the sample link technique. According to this device, measurement can be performed at a sampling speed on the order of ps.

〈発明が解決すべき課題〉 しかしながら、第5図の装置では被測定回路に入射され
る光パルスの光パワーが充分小さくないなめ、発生ずる
光電子や逆電気光学効果により、回路動作に悪影響を与
えるという課題がある。またS/N比か十分得られない
なめ微小信号の測定が賀しい。
<Problem to be solved by the invention> However, in the apparatus shown in Fig. 5, the optical power of the optical pulse incident on the circuit under test is not small enough, and the generated photoelectrons and reverse electro-optic effect adversely affect the circuit operation. There is a problem. Also, it is difficult to measure small signals because the S/N ratio cannot be obtained sufficiently.

〈発明の目的〉 この発明は上記の課題を解決するためになされたもので
、S/N比を改善することにより微小の測定信号が測定
でき、被測定回路に悪影響を与えることなく高速の測定
信号を測定てきる光サンブリング装置を実現することを
目的とする。
<Purpose of the Invention> This invention was made to solve the above-mentioned problems, and by improving the S/N ratio, minute measurement signals can be measured, and high-speed measurement can be performed without adversely affecting the circuit under test. The purpose is to realize an optical sampling device that can measure signals.

く課題を解決する為の手段〉 本発明は光パルスの偏波面の状態を被測定回路の動作電
圧に応じて変化させ、との偏波面の変化を検出して被測
定回路の電圧波形を測定する光サンプリング装置に1系
るものて゛、その特徴とするところは光パルスを出力す
る光パルス発生手段と、この光パルス発生手段の出力光
を2つに分離する分離手段と、この分離手段の一方の出
力光を狭光パルス化するパルスコンプレッサと、このパ
ルスコンプレッサの出力光を入射して被測定回路の動作
電圧に対応する電界により偏波面を変化させる電気光学
素子と、この電気光学素子からの戻り光の偏波面の変化
を光強度の変化に変換する偏光り段と、前記分離手段の
他方の出力光を周波数シフトする光音響変調器と、前記
偏光1段の出力光と前記光音響変調器の出力光とを合波
する合波手段と、この合波手段の出力光を受光する受光
素子と、この受光素子の出力に基づいて被測定回路の電
圧波形を演算する演算回路を而え、演算回路の出力に基
づいて被測定回路の電圧波形をill定するように構成
した点にある。
Means for Solving the Problems> The present invention changes the state of the polarization plane of an optical pulse according to the operating voltage of the circuit under test, detects the change in the polarization plane, and measures the voltage waveform of the circuit under test. It is a type of optical sampling device for the purpose of A pulse compressor that converts one output light into narrow optical pulses, an electro-optical element that receives the output light of this pulse compressor and changes the polarization plane by an electric field corresponding to the operating voltage of the circuit under test, and this electro-optical element. a polarization stage that converts a change in the plane of polarization of the returned light into a change in light intensity; a photoacoustic modulator that frequency-shifts the other output light of the separation means; It includes a multiplexing means for multiplexing the output light of the modulator, a light receiving element for receiving the output light of the multiplexing means, and an arithmetic circuit for calculating the voltage waveform of the circuit under test based on the output of the light receiving element. Another advantage is that the voltage waveform of the circuit under test is determined based on the output of the arithmetic circuit.

く作用〉 光パルス発生手段から出力された光パルスをパルスコン
プレッサて狭光パルス化した後、被測定回路の電界が加
わった電気光学素子において偏波面を回転し、前記光パ
ルス発生手段の光周波数を光音響変調器でシフトした局
部発振光とともに受光素子に入射して光周波数ヘテロダ
イン検波を行うことにより、等測的に信号を増幅するこ
とかてきる。
After the optical pulse output from the optical pulse generating means is narrowed by a pulse compressor, the plane of polarization is rotated in an electro-optic element to which the electric field of the circuit under test is applied, and the optical frequency of the optical pulse generating means is changed. It is possible to amplify the signal isometrically by inputting it into a light receiving element together with local oscillation light shifted by a photoacoustic modulator and performing optical frequency heterodyne detection.

〈実施例〉 第1図に本発明に係る光サンプリンタ装置の一実施例を
示す。
<Embodiment> FIG. 1 shows an embodiment of an optical sampler device according to the present invention.

第1図において、10は繰返し周波数f の光l) パルスを出力する光周波数fIDの光パルス発生手段で
モー ド1:l!ツタ固体レーザからなるもの、11は
光パルス発生手段10の出力光を2光ビームに分離する
分離手段を構成するハーフミラ−112はハーフミラ−
】1の透過光をさらに狭光パルス化するパルスコンプレ
ッサ、13はパルスコンプレッサ12の出力光を透過す
る偏光子、14は偏光子13の出力光の偏波面を調整す
る波長板、15は波長板1−4から出力された光をGa
As集積回路からなる被測定回路16のパターン裏面(
後述)に集光するレンズである。17は光パルスの繰返
し周波数f の正弦波信−号で光パルス発生子ρ 段10を駆動する高周波発振器、18は発振器17と同
11+jした周波数から微小周波数Δfずれた周波数で
被測定回路16を駆動する駆動回路、20は局部発振光
を作るために、ハーフミラ−11の反射光の光周波数を
Δf、−は周波数シフトする光音響変調器、21.22
.23は光音響変調器20の出力光の光路長を調整する
ための光路長調整手段を構成するミラー、24は被測定
回路16からの反射光をレンズ15.波長板14および
”偏光イ13を介してミラー23の反射光とともに合波
する合波手段を構成するハーフミラ−125はハーフミ
ラ−24の出力光が入射する受光素子、26は受光素子
25の電気出力に基づいて被測定回路16の内部電圧波
形を演算表示する演算表示回路である。
In FIG. 1, 10 is an optical pulse generating means with an optical frequency fID that outputs a light pulse with a repetition frequency f.mode 1:l! A half mirror 112 constitutes a separating means for separating the output light of the optical pulse generating means 10 into two light beams.
13 is a polarizer that transmits the output light of the pulse compressor 12, 14 is a wavelength plate that adjusts the plane of polarization of the output light of the polarizer 13, and 15 is a wavelength plate. Ga
The back side of the pattern of the circuit under test 16 consisting of an As integrated circuit (
(described later) is a lens that focuses light on the 17 is a high frequency oscillator that drives the optical pulse generator ρ stage 10 with a sine wave signal having a repetition frequency f of optical pulses, and 18 is a high frequency oscillator that drives the circuit under test 16 at a frequency that is slightly different from the frequency 11+j of the oscillator 17 by a minute frequency Δf. A driving circuit 20 is a photoacoustic modulator that shifts the optical frequency of the reflected light from the half mirror 11 by Δf in order to generate local oscillation light, 21.22
.. 23 is a mirror constituting an optical path length adjustment means for adjusting the optical path length of the output light of the photoacoustic modulator 20; 24 is a mirror that directs the reflected light from the circuit under test 16 through a lens 15. A half mirror 125 constituting a combining means that combines the light reflected from the mirror 23 via the wavelength plate 14 and the polarization 13 is a light receiving element into which the output light of the half mirror 24 enters, and 26 is the electrical output of the light receiving element 25. This is a calculation display circuit that calculates and displays the internal voltage waveform of the circuit under test 16 based on.

1−記構成の装置の動作を次に説明する。The operation of the apparatus having the configuration 1- will now be described.

光パルス発生手段10は発振器17の出力に同期して光
パルスを発生ずる。この光パルスはハフミラー11で2
つに分れ、透過光はパルスコンプレッサ12てさらに狭
光パルス化され、偏光−r13、波長板14を透過し、
レンズ]5により被測定回路16上に焦点を結ぶ。この
入射光は、第2図に示すように、被測定回路16の裏面
から入射してGaAs基板31を透過し、被測定回路1
6の表面にあるICパターン32の裏面で反射され、再
びGaAs基板31を逆向きに透過して裏面から出射さ
れる。この反射光の偏波面は、被測定回路16のGaA
s基板が電気光学効果を持つ電気光学素子であるなめ、
入射光パルスの偏波面に対し、1. Cパターン上の電
気信4シ強疫に対M51゜て発生ずる電界強風に応じて
変化する。この反射光パルスは、レンズ15を逆向きに
透過し、波長板14で偏波面が調整された後、偏光子1
3において反射する際にその偏波面に応じて光強度変調
を受ける。他方、ハーフミラ−11で反射した光はミラ
ー19で光路方向を変えた後光音響変調器20で光周波
数をΔf1oたけ周波数シフI・される。
The optical pulse generating means 10 generates optical pulses in synchronization with the output of the oscillator 17. This light pulse is passed through the Huff mirror 11 into two
The transmitted light is further made into narrow light pulses by a pulse compressor 12, and transmitted through a polarized light r13 and a wavelength plate 14.
A lens] 5 focuses on the circuit under test 16. As shown in FIG. 2, this incident light enters from the back surface of the circuit under test 16, passes through the GaAs substrate 31,
The light is reflected by the back surface of the IC pattern 32 on the front surface of the substrate 6, passes through the GaAs substrate 31 in the opposite direction, and is emitted from the back surface. The plane of polarization of this reflected light is GaA of the circuit under test 16.
The s-substrate is an electro-optic element having an electro-optic effect,
For the polarization plane of the incident optical pulse, 1. It changes according to the electric field strong wind generated at M51° in the electrical signal 4 on the C pattern. This reflected light pulse passes through the lens 15 in the opposite direction, and after the plane of polarization is adjusted by the wave plate 14, the polarizer 1
When reflected at 3, the light intensity is modulated according to its plane of polarization. On the other hand, after the light reflected by the half mirror 11 changes its optical path direction by the mirror 19, the optical frequency is frequency-shifted by Δf1o by the photoacoustic modulator 20.

その出力光はミラー 21〜23を経由してパルスコン
プレッサ12を経由する光と等しい光路長となるように
調整され、局部発振光として、偏光子13で反射した光
とハーフミラ−24で合波された後、受光素子25で検
出され、両光が重なった区間について後述のように光ヘ
テ17タイン検波が行すわれる。パルスコンプレッサ1
2を経由する光は光音響変調器20を経由する光よりも
狭光パルスなので、2光を完全に重なり合Mることかで
きる。演算表示回路266J受光索子25の出力に基づ
いて被測定回路16の内部信号波形を表示する。
The output light is adjusted to have the same optical path length as the light that passes through the pulse compressor 12 via mirrors 21 to 23, and is combined with the light reflected by the polarizer 13 and the half mirror 24 as locally oscillated light. After that, the light is detected by the light-receiving element 25, and optical heat detection 17 is performed on the section where both lights overlap, as will be described later. Pulse compressor 1
Since the light passing through the photoacoustic modulator 20 has a narrower optical pulse than the light passing through the photoacoustic modulator 20, the two lights can be completely overlapped. The calculation display circuit 266J displays the internal signal waveform of the circuit under test 16 based on the output of the light receiving probe 25.

上記へテロタイン検波について以下に式を用いて説明す
る。例えば光パルス光子手段10がらの光出力は光周波
数がω1であるとすると、Elsinの1tで表され、
光音響変調器20からの光出力は光周波数がω2である
とすると、E2sz11ω21.で表される。この2つ
の光がハーフミラ24によって合波されると、受光素子
25の受光部上の合波光を表ず式は、 (Els i nω1t、+E2 s i nω2t、
 )・・・〈1) となる。受光素r−25により電気信号に変換後、+7
−バスフィルタおよびD □カッ1〜回路を通過しな後
の信号は、 ElHE2 cos (ω1 6.+2 ) t、  
□++ (2)となる。ここで ω1  ω27−2πΔf11) ・・ (3) である。〈2)式において、Elに被測定回路16の内
部電圧信号に対応した有益な情報が含まれているが、通
常、 丁・〕 1  (ト〕 2  、  E 2  ・・ 
−−一定であるから、 El<<El ・E2 であり、等測的に信号)が かE2倍増幅されなことに
なり、S/N比が改善されることが明らかである。しな
がって被測定回路16に入射する光パワーを従来例に比
べて小さくしても従来例と同等以上、のS/Nを得るこ
とができる。
The above heterotine detection will be explained below using a formula. For example, assuming that the optical frequency of the optical pulse photon means 10 is ω1, the optical output from the optical pulse photon means 10 is expressed by Elsin's 1t,
Assuming that the optical frequency of the optical output from the photoacoustic modulator 20 is ω2, E2sz11ω21. It is expressed as When these two lights are combined by the half mirror 24, the combined light on the light receiving part of the light receiving element 25 is expressed by the formula (Els i nω1t, +E2 s i nω2t,
)...<1) becomes. +7 after being converted into an electrical signal by the photodetector r-25
- The signal after passing through the bus filter and D□ka1~ circuit is ElHE2 cos (ω1 6.+2) t,
□++ (2). Here, ω1 ω27−2πΔf11) (3). In equation (2), El contains useful information corresponding to the internal voltage signal of the circuit under test 16, but usually,
-- Since it is constant, El<<El.E2, and isometrically the signal) is amplified by a factor of E2, and it is clear that the S/N ratio is improved. Therefore, even if the optical power incident on the circuit under test 16 is made smaller than that of the conventional example, it is possible to obtain an S/N equal to or higher than that of the conventional example.

またサンプリング技術を用いるなめに、駆動回路18か
ら出力される被測定回路16の駆動信号の基本周波数f
、は fd=N−fp十Δf       ・・・(4)で表
される。ここでN=1.2.3.・・・1、Δfは微小
周波数である。(4)式におけるΔfの存在により、被
測定回路16内の被測定信号に対し、f立川をt榮かず
っずらして光パルスでサンブリンクすることがてき、高
速な現象を低速な現象として処理するJとがてきる。s
これを基本周波数にょっ”C説明ずれは、被測定物面の
高い周波数fdが低い周波数Δfに変換されることにな
る。
In addition, in order to use the sampling technique, the fundamental frequency f of the drive signal of the circuit under test 16 output from the drive circuit 18 is
, is expressed as fd=N−fp+Δf (4). Here N=1.2.3. ...1, Δf is a minute frequency. Due to the presence of Δf in equation (4), the signal under test in the circuit under test 16 can be sunblinked with an optical pulse by shifting f Tachikawa by t, and a high-speed phenomenon can be treated as a low-speed phenomenon. J is coming. s
The difference in explanation is that the high frequency fd of the object surface to be measured is converted to a low frequency Δf.

、−のような邦1成の光サンプリンタ装置によれば、サ
ンプリング光に光ヘデI7ダイン検波を用いることによ
り、被測定回路に入射する)〜パワーを小さくすること
ができるので、光電子や逆電気光学効果を減少し、被測
定回路動作への悪影響を小さくすることができる。
According to Japan's leading optical sampler devices such as , and -, by using optical header I7 dyne detection for the sampling light, it is possible to reduce the power that enters the circuit under test. It is possible to reduce the reverse electro-optic effect and lessen the adverse effect on the operation of the circuit under test.

なお上記の実施例ではモード+7ツタ固体レー1ノ゛を
光源として用いたが、これに限らず半導体レザ等を1吏
用することもできる。
In the above embodiment, a mode +7 solid state laser was used as the light source, but the light source is not limited to this, and a semiconductor laser or the like may also be used.

第3図は第1図装置の変形例で、S/N比をさらに改善
するするなめに検出部を差動構成としたものを示ず要部
構成ブロンク図である。第1図と同じ部分は同一の記弓
を1・1シている。パルスコンプレッサ12からの光出
力は、偏光子337回転7′−37および偏光子]3を
透過し、波長板14へ入射される。波長板14からの出
力光はその偏波面のX、Y方向成分について、それぞれ
偏光子13と偏光子33で分離され、出力される。各分
離光は、それぞれ、ハーフミラ−24,,38にて光路
長調整ミラーからの出力光と合波される。各合波光はそ
り、ぞれ受光索子35および3・1で検出され、減算器
36で互いに引算される。光パルスの偏波面は被測定回
路16においてX、Y方向成分か逆極性で変調されるの
で、受光素子34.35に逆位相成分同士か等址入射す
るように光学系の7゛ラインメンl〜を行えば、光源自
体のノイズは位相に無関係なので受光素子34.35で
同相となって引算により相殺され、被測定回路16で変
調を受C−tた検出光の信号成分は逆相となって引算に
より足し合わされる。しながってSlN比がさらに向上
する。
FIG. 3 shows a modification of the device shown in FIG. 1, and is a block diagram of the main part of the apparatus, but does not show an arrangement in which the detection section is of a differential configuration in order to further improve the S/N ratio. The same parts as in Figure 1 are marked with the same archery. The optical output from the pulse compressor 12 is transmitted through the polarizer 337 rotating 7'-37 and the polarizer ] 3, and is incident on the wave plate 14. The output light from the wavelength plate 14 is separated by the polarizer 13 and the polarizer 33 in terms of the X and Y direction components of its polarization plane, and is output. Each of the separated lights is combined with the output light from the optical path length adjustment mirror by half mirrors 24, 38, respectively. Each of the multiplexed lights is detected by the light receiving probes 35 and 3.1, respectively, and subtracted from each other by the subtracter 36. Since the polarization plane of the optical pulse is modulated in the circuit under test 16 with X and Y direction components or with opposite polarities, the optical system's 7゜ line members 1 to 10 are arranged so that the opposite phase components are equally incident on the light receiving elements 34 and 35. If this is done, the noise of the light source itself is unrelated to the phase, so the light receiving elements 34 and 35 have the same phase and are canceled out by subtraction, and the signal component of the detected light that has received modulation C-t in the circuit under test 16 has an opposite phase. and are added together by subtraction. Therefore, the SIN ratio is further improved.

なお上記の各実施例では被測定物がG a A s集積
回路の場合ずなわぢ、被測定物自身が電気光学+4事2
1て構成されている場合を説明しなが、シリコン等の電
気光1学効果を有さない材料にも適用される。この場合
はシリコン等の被測定物に近接して1−7hTaO3単
結晶などの電気光学効果を有する材料を配置し、このり
、i T a 033社結晶に光を照射して、シリコン
等からなる被測定回路が発生ずる電界により電気光学効
果を生じさせるようにずればよい。
Note that in each of the above embodiments, if the object to be measured is a GaAs integrated circuit, the object to be measured itself is electro-optical + 4 + 2.
Although the present invention will be described with reference to a case in which the present invention is configured with a single electro-optical effect, the present invention is also applicable to materials that do not have an electro-optic effect, such as silicon. In this case, a material with an electro-optic effect such as a 1-7hTaO3 single crystal is placed close to the object to be measured, such as silicon, and the iTa033 crystal is irradiated with light. It is only necessary to shift so that an electro-optical effect is produced by the electric field generated by the circuit under test.

また被測定回路の反射光の偏波面の状態の変化を検出す
る代りに透過光を検出[7てもよい。
Furthermore, instead of detecting a change in the state of the polarization plane of the reflected light from the circuit under test, transmitted light may be detected [7].

また1分コヒーレンシーの高い光源を用いたときは光路
長調整手段は省略てきる。
Furthermore, when a light source with high 1-minute coherency is used, the optical path length adjusting means can be omitted.

〈発明の効果ン 以」二、実施例に基づいて具体的に説明したように、本
発明によれば、S/N比を改淳することにより微小の測
定信号が測定でき、被測定回路に悪影響を与えることな
く高速の測定前−Jを測定できる光サンプリング装置〃
を簡fitな構成で実現する4=とができる。
<Effects of the Invention> 2. As specifically explained based on the embodiments, according to the present invention, a very small measurement signal can be measured by improving the S/N ratio, and it can be applied to the circuit under test. Optical sampling device that can measure pre-J at high speed without adverse effects.
It is possible to realize 4= with a simple fit configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は木グト明に係る光サンプリンタ装”(M’−の
実施例を小ず構成ブロックIン1、第二2図は第1図装
”+’flの動作を説明するなめの説明し1、第3図は
第1図装置口゛の変形例を示ず要部構成11772図、
第4国はり一ンプリンタ技術の原理図、第5図は従来の
光l犬ンプリンタ装置の構成国である。
Figure 1 shows an example of the optical sampler device (M'-) according to Akira Kiguto. 1 and 3 do not show the modified example of the device opening shown in FIG.
FIG. 5, which is a diagram of the principle of printer technology in the fourth country, shows the configuration of a conventional optical printer device.

Claims (1)

【特許請求の範囲】 光パルスの偏波面の状態を被測定回路の動作電圧に応じ
て変化させ、この偏波面の変化を検出して被測定回路の
電圧波形を測定する光サンプリング装置において、 光パルスを出力する光パルス発生手段と、 この光パルス発生手段の出力光を2つに分離する分離手
段と、 この分離手段の一方の出力光を狭光パルス化するパルス
コンプレッサと、 このパルスコンプレッサの出力光を入射して被測定回路
の動作電圧に対応する電界により偏波面を変化させる電
気光学素子と、 この電気光学素子からの戻り光の偏波面の変化を光強度
の変化に変換する偏光手段と、 前記分離手段の他方の出力光を周波数シフトする光音響
変調器と、 前記偏光手段の出力光と前記光音響変調器の出力光とを
合波する合波手段と、 この合波手段の出力光を受光する受光素子と、この受光
素子の出力に基づいて被測定回路の電圧波形を演算する
演算回路を備え、 演算回路の出力に基づいて被測定回路の電圧波形を測定
するように構成したことを特徴とする光サンプリング装
置。
[Scope of Claim] An optical sampling device that changes the state of the polarization plane of a light pulse according to the operating voltage of the circuit under test, and measures the voltage waveform of the circuit under test by detecting the change in the polarization plane, comprising: An optical pulse generating means for outputting a pulse; a separating means for separating the output light of the optical pulse generating means into two; a pulse compressor for converting one output light of the separating means into a narrow optical pulse; An electro-optical element that receives output light and changes the plane of polarization using an electric field corresponding to the operating voltage of the circuit under test; and a polarizer that converts the change in the plane of polarization of the return light from the electro-optic element into a change in light intensity. a photoacoustic modulator for frequency shifting the output light from the other of the separating means; a combining means for combining the output light of the polarizing means and the output light of the photoacoustic modulator; It is equipped with a light-receiving element that receives output light, and an arithmetic circuit that calculates the voltage waveform of the circuit under test based on the output of the light-receiving element, and is configured to measure the voltage waveform of the circuit under test based on the output of the arithmetic circuit. An optical sampling device characterized by:
JP2274732A 1990-10-12 1990-10-12 Optical sampling device Expired - Fee Related JP2906633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2274732A JP2906633B2 (en) 1990-10-12 1990-10-12 Optical sampling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2274732A JP2906633B2 (en) 1990-10-12 1990-10-12 Optical sampling device

Publications (2)

Publication Number Publication Date
JPH04148874A true JPH04148874A (en) 1992-05-21
JP2906633B2 JP2906633B2 (en) 1999-06-21

Family

ID=17545810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2274732A Expired - Fee Related JP2906633B2 (en) 1990-10-12 1990-10-12 Optical sampling device

Country Status (1)

Country Link
JP (1) JP2906633B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153626A (en) * 1997-11-19 1999-06-08 Ando Electric Co Ltd Electrooptic sampling oscilloscope
JP2002522770A (en) * 1998-08-07 2002-07-23 インテル・コーポレーション Method and apparatus for directly measuring voltage in an integrated circuit using an infrared laser probe
JP2005127783A (en) * 2003-10-22 2005-05-19 Yokogawa Electric Corp Electric signal observation device and electric signal sampling device and method for the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153626A (en) * 1997-11-19 1999-06-08 Ando Electric Co Ltd Electrooptic sampling oscilloscope
JP2002522770A (en) * 1998-08-07 2002-07-23 インテル・コーポレーション Method and apparatus for directly measuring voltage in an integrated circuit using an infrared laser probe
JP4846902B2 (en) * 1998-08-07 2011-12-28 インテル・コーポレーション Method and apparatus for directly measuring voltage in an integrated circuit using an infrared laser probe
JP2005127783A (en) * 2003-10-22 2005-05-19 Yokogawa Electric Corp Electric signal observation device and electric signal sampling device and method for the same

Also Published As

Publication number Publication date
JP2906633B2 (en) 1999-06-21

Similar Documents

Publication Publication Date Title
US6141138A (en) Apparatus and method for measuring characteristics of light
JPH04148874A (en) Optical sampling device
JPH0547883A (en) Method and apparatus for testing integrated circuit
JPH04148873A (en) Optical sampling device
JP3165873B2 (en) Electric signal measuring method and apparatus
JP3334743B2 (en) Electric signal measuring device
JPH0915334A (en) Laser equipment for measuring distance
JPH0755891A (en) Mehtod and device for testing integrated circuit
JP3810531B2 (en) Optical phase characteristic measuring apparatus and measuring method
JP3592475B2 (en) Pulse picker
JPH08160110A (en) Electric signal measuring instrument
JP2003270127A (en) Instrument for measuring light amplitude phase time response
JP2893921B2 (en) Optical sampling device
JPH04121673A (en) Light sampler
JPH10197350A (en) Apparatus for measuring light-sampling waveform
JP3549813B2 (en) High frequency electromagnetic wave detection system and high frequency electromagnetic wave detection method
JP2893908B2 (en) Optical sampling device
JP2002005744A (en) Light polarization characteristic measuring device and its measuring method
JP2561655Y2 (en) Optical sampling device
JPH02257069A (en) Device for measuring physical quantity using light
JP3015903B2 (en) Integrated circuit circuit test apparatus and circuit test method
JPH08211131A (en) Voltage measuring apparatus
JP2959152B2 (en) Optical sampling device
JP3011763U (en) Four-wave mixing pulse measuring device
Oshida et al. Optical heterodyne measurement of vibration phase

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees