JPH04148808A - Position detecting method and position aligning method - Google Patents

Position detecting method and position aligning method

Info

Publication number
JPH04148808A
JPH04148808A JP2270580A JP27058090A JPH04148808A JP H04148808 A JPH04148808 A JP H04148808A JP 2270580 A JP2270580 A JP 2270580A JP 27058090 A JP27058090 A JP 27058090A JP H04148808 A JPH04148808 A JP H04148808A
Authority
JP
Japan
Prior art keywords
objects
diffraction
interference
beat
beat signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2270580A
Other languages
Japanese (ja)
Other versions
JPH0635928B2 (en
Inventor
Hiromasa Shibata
浩匡 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soltec Co Ltd
Original Assignee
Soltec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soltec Co Ltd filed Critical Soltec Co Ltd
Priority to JP2270580A priority Critical patent/JPH0635928B2/en
Priority to US07/688,115 priority patent/US5182610A/en
Publication of JPH04148808A publication Critical patent/JPH04148808A/en
Publication of JPH0635928B2 publication Critical patent/JPH0635928B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To simplify an optical system for guiding out diffracted light and to facilitate the adjustment of an optical axis by detecting the amounts of displacements of first and second objects based on the phase different between beat signals having equal frequencies. CONSTITUTION:The electric signal which is detected in a mask-signal light receiving part 6a of the signal light receiving parts (detectors) of a bisected sensor 6 contains the beat signals having two beat frequencies fa and fb. The signal is divided into two signals. The signals are filtered through a low-pass filter 7a having the threshold value of f = 0.5 MHz and a bypass filter 7b which satisfy the condition of fa<f<fb. The + or -first mask signal and the + or -first wafer signal and the + or -fourth mask signal and the + or -fourth wafer signals obtained in this way are inputted into first and fourth phase meters 8a and 8b. Thus each phase is measured. When the + or -first and + or -fourth phase signals are detected at the same time in this way, the broad detecting range with the + or -first light can be covered, and the super-high resolution in the + or -fourth light can be achieved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体超微細加工や超精密Il+q定等に
おいて光ヘテロダイン干渉光を利用する位置検出方法及
びその位置検出構成を用いて2つの物体の超精密位置合
せを行なう位置合せ方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention provides a position detection method using optical heterodyne interference light in semiconductor ultra-fine processing, ultra-precision Il+q determination, etc., and a position detection configuration using the position detection method to detect two objects. The present invention relates to an alignment method for performing ultra-precise alignment.

〔従来の技術〕[Conventional technology]

シングロトロン放射光りソグラフィ用アライナやフォト
ステッパ等の精密位置検出技術では、例えば特開昭62
−261003号や特開昭64−89323号等のよう
に、光ヘテロダイン位置検出方式が試作機レベルで実用
化され始めている。
For precision position detection technology such as synchrotron radiation lithography aligners and photosteppers, for example,
Optical heterodyne position detection methods are beginning to be put into practical use at the prototype level, as in Patent No. 261003 and Japanese Patent Application Laid-Open No. 64-89323.

これらの方式の基本構成は、わずかに異なる2周波数の
コヒーレンI・光を、第1及び第2の物体の各回折格子
に夫々±n次の方向から照射することにより、これらの
各回折格子から夫々垂直方向に生じる回折光を検出し、
且つ前記回折時点で又は回折光路途中で2周波成分を干
渉せしめて光ヘテロダイン干渉回折光とすることでこれ
を基にビート信号を夫々生成し、これらのビート信号の
位相差を測定することで前記第4及び第2の物体の変位
量を検出するというものである。
The basic configuration of these methods is to irradiate coheren I light with two slightly different frequencies onto each of the diffraction gratings of the first and second objects from ±n-order directions, respectively. Detects the diffracted light generated in the vertical direction,
In addition, by interfering the two frequency components at the time of the diffraction or in the middle of the diffracted optical path to produce an optical heterodyne interference diffracted light, beat signals are respectively generated based on this, and the phase difference of these beat signals is measured. This is to detect the displacement amounts of the fourth and second objects.

以上の光ヘテロダイン位置検出方式では、各回折格子の
格子定数、即ち格子ピッチPが大きい程その信号検出範
囲が広がり、その間の関係は、 信号検出範囲二回折格子ピッチP / 2 n  ・ 
・・ ■但し、n=コヒーレント光の照射方向の次数の
絶対値 であって、例えばnか1の場合、−1−記ピッチ■〕の
172がその検出範囲となる。但し、検出分解能につい
ては全くこの逆の関係が成り立ち、仮りに、位相計分解
能の精度を1°程度とすると、その検出分解能は、 検出分解能二信号検出範囲/360°  ・・・・・・
・・・・・・・・ ■となり、前記光の照射方向の次数
の絶対値nが小さい程、又、格子ピッチI)が大きい程
該検出分解能の精度は低下することになる。そのため検
出分解能を一ヒげようとして各回折格子に対する光の照
射角度を変え、前記次数の絶対値nを大きくしたり、格
子ピッチPの小さな回折格子にしようとすれは、信号検
出範囲は1:、記の式から明らかなように極端に狭くな
る。
In the optical heterodyne position detection method described above, the larger the grating constant of each diffraction grating, that is, the grating pitch P, the wider the signal detection range, and the relationship between them is as follows: Signal detection range 2 Diffraction grating pitch P / 2 n ·
... (2) However, n = the absolute value of the order in the irradiation direction of the coherent light, for example, if n or 1, the detection range is 172 of -1 - pitch (2). However, the opposite relationship holds true for detection resolution, and if the accuracy of the phase meter resolution is about 1°, then the detection resolution is: detection resolution 2 signal detection range / 360°...
(2) The smaller the absolute value n of the order in the light irradiation direction, or the larger the grating pitch I), the lower the accuracy of the detection resolution. Therefore, if you try to increase the detection resolution by changing the angle of light irradiated to each diffraction grating, increasing the absolute value n of the order, or using a diffraction grating with a small grating pitch P, the signal detection range will be 1: , becomes extremely narrow as is clear from the equation below.

そのため本発明者等は必要な検出分解能を維持したまま
検出範囲を拡大できる新たな位置検出及び位置合せ構成
の提案を行なった。
Therefore, the present inventors proposed a new position detection and alignment configuration that can expand the detection range while maintaining the necessary detection resolution.

本発明者等の提案に係るこれらの先行技術では、信号検
出範囲及び検出分解能(これらはJ−述のように相反す
る関係にある)に直接影響のある回折格子の格子ピッチ
や該格子ピッチ■〕によって定まる±n次照射方向の次
数の絶対値nにつき、2種以上のピンチ乃至2以」二の
異なる照射方向になる構成とするもので、例えば第6図
に示されるように第1及び第2の物体A、Bの夫々に2
種以−1−の格子ピッチP(図面では、PlとP2、但
しp□>p2)の回折格子(Ia)(Ib)を備えたり
、第7図に万くされるように前記次数の絶対値nが異な
る複数の照射方向(例えば±1次と±4次方向)どなる
ように第1及び第2の物体A、Bの夫々にコヒーレント
光を照射せしめるようにしたものである。
In these prior art techniques proposed by the present inventors, the grating pitch of the diffraction grating and the grating pitch, which have a direct effect on the signal detection range and detection resolution (these are in a contradictory relationship as described in J-2). For each absolute value n of the order of the ±n-th irradiation direction determined by 2 for each of the second objects A and B
It is possible to have diffraction gratings (Ia) (Ib) with a grating pitch P (in the drawing, Pl and P2, where p□>p2) of type 1-1, or with the absolute value n of the order as shown in FIG. The coherent light is irradiated onto each of the first and second objects A and B in a plurality of irradiation directions (for example, ±1-order and ±4-order directions) with different directions.

このような構成では、−1〕記■式のP又はnの値が2
つ以」二の異なる値を備えるものであるため、この0式
及び前記の0式より、その信号の位相差は第8図に示さ
れるような信号波形となって得られ、同図(a)(c)
のように信号検出範囲が非常に広いものと、同図(b)
(d)のように検出分解能の精度が非常に高いものとが
合せて得られることになる。
In such a configuration, the value of P or n in the formula (-1) is 2.
Since it has two different values, from this equation 0 and the equation 0 above, the phase difference of the signal can be obtained as a signal waveform as shown in FIG. )(c)
The signal detection range is very wide as shown in the figure (b).
As shown in (d), detection resolution with very high precision can be obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしこれらの構成はいずれも回折光の取出しが回折格
子(la)(lb)の格子幅方向で見た場合、±n次照
射方向に対して垂直方向で行なわれるので、第1及び第
2の物体Δ、Bで夫々2以上ずつ発生する回折光が重な
って取出される虞がある。それを避けるためこれらの構
成では、格子長手方向真横から見た第9図に1)(b)
に示されるように、傾斜角度を異ならしめた斜入射状態
01.02 でコヒーレント光を照射すると共に、回折
光の取出しもこれらの角度に対応した傾斜角度01.0
2・・で取出されるような構成としている。
However, in all of these configurations, the extraction of the diffracted light is performed in the direction perpendicular to the ±nth order irradiation direction when viewed in the grating width direction of the diffraction gratings (la) (lb), so the first and second There is a possibility that two or more diffracted lights generated by the objects Δ and B may be extracted in an overlapped manner. In order to avoid this, in these configurations, 1) (b)
As shown in , coherent light is irradiated at oblique incidence states of 01.02 with different inclination angles, and the diffracted light is also extracted at an inclination angle of 01.0 corresponding to these angles.
The structure is such that it can be taken out in 2...

従って各種ミラーやディスク等の光学系の配置2 置及び各光学系の光軸調整が複雑となり、特に検出光学
系ではディテクタD、乃至D4等が一軸につき2組(第
1及び第2の物体A、B用に各]−組)必要となる等光
学系の調整が必要な部分が多くなる問題がある。又、そ
れだけ光学系の占めるスペースが広くなり、シンクロ1
〜ロン放射光の軟X線を利用した露光装置等に設置する
場合は、その露光領域や放射光透過窓等を避けて上述の
ような斜入射構成の光学系配置にすることが実際上非常
に難しい。
Therefore, the arrangement of optical systems such as various mirrors and disks, and the adjustment of the optical axes of each optical system become complicated. In particular, in the detection optical system, two sets of detectors D, D4, etc. per axis (first and second objects There is a problem in that the number of parts that require adjustment of the optical system increases. Also, the space occupied by the optical system becomes larger, and synchro 1
~ When installed in an exposure device that uses soft X-rays from Ron synchrotron radiation, it is practically extremely important to avoid the exposure area, synchrotron radiation transmission window, etc., and arrange the optical system in an oblique incidence configuration as described above. It's difficult.

本発明は以上のような本発明者の提案に係る技術で内在
する新たな問題に鑑み創案されたもので、光学系を単純
化して光軸調整が簡1Fにでき、しかも省スペース化を
実現できる構成を提供せんとするものである。
The present invention was devised in view of the new problems inherent in the technology proposed by the inventors as described above, and it simplifies the optical system, allows optical axis adjustment to be easily performed on one floor, and saves space. The aim is to provide a configuration that can be used.

〔問題点を解決するための手段〕[Means for solving problems]

そのため本発明は、従前の本発明者の提案に係る構成を
改良するものであって、第1及び第2の物体の位置関係
を検出するための位置検出方法とこの位置検出構成をそ
のまま用いた第1及び第2の物体の位置合せを行なうた
めの位置合せ方法の提案を行なうものである(第1発明
・第2発明間、第3発明・第4発明間、第5発明・第6
発明間、第7発明・第8発明間はそのような関係にある
)。
Therefore, the present invention improves the configuration proposed by the present inventors, and uses a position detection method for detecting the positional relationship between the first and second objects and this position detection configuration as is. This is a proposal for an alignment method for aligning the first and second objects (between the first invention and the second invention, between the third invention and the fourth invention, between the fifth invention and the sixth invention).
There is such a relationship between the inventions and between the seventh invention and the eighth invention).

又、回折格子幅方向から見て垂直方向に夫々取出される
各回折光が格子長手方向真横から見ても重なるような状
態、即ちまず入射の構成として、格子長手方向真横から
見た時に各コヒーシン1−光の回折格子への照射を全て
同一の傾斜角度で斜入射せしめ、回折光取出し時に第1
の物体A及び第2の物体Bとも重なり合った回折光によ
る光軸を夫々形成して、平行な2軸状態で取出されるよ
うにする。そして各光軸における回折光の重なりがある
ままこれらのビート信号の検出を行ない、その検出の過
程で由来の異なる回折光のビート信号を夫々分離するか
、検出直前にこれらの各光軸の回折光の重なりをなくし
て夫々の干渉回折光とした上でこれらのビート信号の検
出を行なうようにする。
In addition, when viewed from the width direction of the diffraction grating, each of the diffracted lights taken out in the vertical direction overlaps even when viewed from the side in the longitudinal direction of the grating, that is, first, as an incident configuration, each cohesin beam is overlapped when viewed from the side in the longitudinal direction of the grating. 1- All the light irradiated onto the diffraction grating is obliquely incident at the same inclination angle, and when extracting the diffracted light, the first
The optical axes of the diffracted light beams overlap the object A and the second object B, respectively, so that the light beams are extracted in parallel biaxial state. Then, these beat signals are detected while the diffracted lights on each optical axis overlap, and in the process of detection, the beat signals of the diffracted lights of different origins are separated, or the diffracted lights of each of these optical axes are detected immediately before detection. These beat signals are detected after eliminating the overlap of the lights and making them respective interference diffraction lights.

前者のように回折光の重なりがあるままこれらのビート
信号の検出を行なう場合は、まず第1−図(a)に示す
ように周波数がわずかに異なって(例えばf、とf2及
びf3とf4の周波数成分、或いはf、どf2及びf2
とf、の周波数成分のように)回折時に互いに干渉し合
うことのできる(回折時に偏光面が一致する)もの同士
を一組どして、該−「渉時に生ずる各組のビート信号の
周波数がこれらの組の間で異なることになる(例えば、
fa=lf、−f21とfb=lfJ−f。
When detecting these beat signals while the diffracted lights overlap as in the former case, first, as shown in Figure 1 (a), the frequencies are slightly different (for example, f, and f2, and f3 and f4). frequency components, or f, f2 and f2
and f) that can interfere with each other during diffraction (their planes of polarization match during diffraction), and calculate the frequency of each set of beat signals generated during the diffraction. will differ between these pairs (e.g.,
fa=lf, -f21 and fb=lfJ-f.

の両ビート周波数でfaf:fbとなる)複数のコヒー
レント光の組を入射光として用いる(2種以上のピッチ
の回折格子の夫々を第1の物体と第2の物体に設ける前
記本発明者の提案に係る構成、及び±n次の照射方向に
つき次数の絶対値nが異なることになる2以にの照射方
向から照射する同しく本発明者の提案に係る構成につい
て、これらの入射光に用いる)。そしてこれらの干渉回
折光をビート信号として検出する際にはこれらのビート
信号が第2図(a)に示されるように合成された状態で
検出されることになるため、第1図(b)に示されるよ
うにパン1−パスフィルタ131?□乃至PF、、でフ
ィルタリングして第2図(b)(c)のような貼−のビ
ート周波数のものに夫々分けるようにし、最終的にはビ
ート周波数の等しい第1の物体人由来のものと第2の物
体B由来のもの同士のビート信号の位相差を夫々測定す
ることになる。
A set of a plurality of coherent lights (faf: fb at both beat frequencies of The configuration according to the proposal and the configuration also proposed by the present inventor that irradiates from two or more irradiation directions in which the absolute value n of the order differs for the ±n-th irradiation direction are used for these incident lights. ). When these interference diffraction lights are detected as a beat signal, these beat signals are detected in a combined state as shown in Figure 2 (a), so as shown in Figure 1 (b). Pan 1-pass filter 131 as shown in ? It is filtered by □ to PF to separate them into beat frequencies as shown in Figure 2 (b) and (c), and finally the first object with the same beat frequency is derived from a person. The phase difference between the beat signals from the second object B and the second object B is measured.

−・方、後者のように検出直前に回折光の重なりをなく
してビート信号を検出する場合は、第3図(a)に示す
ように周波数がわずかに異な−って回折時に互いに干渉
し合うことのできるもの(例えば、flとf2の周波数
成分を有し偏光面が同一のもの)同士を一組として偏光
面がこれらの組の間で異なることになる(例えば、一方
の組の偏光面が垂直方向であり、他方の組の偏光面が水
平方向であれば良く、ビート周波数は必ずしも一致させ
る必要はない)複数のコヒーレント光の組を入射光とし
て用いる。そしてこれらの干渉回折光を検出する前に同
図(b)に示されるように偏光ビームスプリッタPBS
、、PRS4等を使って回折光の重なりをなくし夫々単
一の偏光面を持つ干渉回折光に分離する(例えば、両干
渉回折光はそのビート周波数が共にf8の場合であって
も、又はfaとfl)の2種の場合であっても、垂直方
向の偏光面を持つものと水平方向の偏光面を持つものに
分離して取出される)。最終的にはこれらは全てディテ
クタD1乃至D4等によりビート信号として検出される
が、偏光面の等しい(例えば、偏光面が垂直方向又は水
平方向の)第1−の物体人由来のものと第2の物体B由
来のもの同士のビート信号の位相差を夫々測定すること
になる。
- On the other hand, when detecting a beat signal by eliminating the overlap of the diffracted lights just before detection, as in the latter case, the frequencies are slightly different and interfere with each other during diffraction, as shown in Figure 3 (a). The plane of polarization will be different between these pairs (for example, the plane of polarization of one set will be different). is vertical, and the polarization plane of the other set is horizontal, and the beat frequencies do not necessarily have to match.) A plurality of sets of coherent lights are used as incident light. Before detecting these interference diffraction lights, a polarizing beam splitter PBS is used as shown in the same figure (b).
,, PRS4 etc. are used to eliminate the overlap of the diffracted lights and separate them into interference diffracted lights each having a single plane of polarization (for example, even if the beat frequencies of both interference diffracted lights are f8, or fa Even in the two cases of (fl) and (fl), the light is extracted separately into one with a vertical polarization plane and one with a horizontal polarization plane). Ultimately, all of these are detected as beat signals by detectors D1 to D4, etc., but the first object with the same polarization plane (for example, the polarization plane is vertical or horizontal) and the second The phase difference between the beat signals originating from object B will be measured.

以F本発明を位置検出方法についてのみその構成を詳述
する。
Hereinafter, only the position detection method of the present invention will be described in detail.

まず第1発明は、周波数がわずかに異なって回折時に互
いに干渉し合うことのできるもの同士を一組として、該
干渉時に生ずる各組のビート信号の周波数がこれらの組
の間で異なることになる複数のコヒーレント光の組を、
各組毎に第1及び第2の物体の各回折格子に対し±n次
方向から照射させるにつき、次数の絶対値nが異なるこ
とになる複数の方向から同一の傾斜角度で入射させ、こ
れらの入射によって第1及び第2の物体の各回折格子か
ら夫々垂直方向に回折され、且つ同一の傾斜角度で取出
される干渉光を第1及び第2の物体の各回折格−rから
得られるものに分けて検出し、これらの干渉光から得ら
れるビート信号の合成信号をバンドパスフィルタでフィ
ルタリングして単一・のビート周波数のものに夫々分(
づ、周波数の等しいもの同上のビーI・信号の位相差を
夫々測定してこれらの位相差に基づいて前記第1及び第
2の物体の変位量を検出することを基本的特徴としてい
る、。
First, the first invention is to set a set of elements that have slightly different frequencies and can interfere with each other during diffraction, and the frequencies of the beat signals of each set generated during the interference will differ between these sets. A set of multiple coherent lights,
For each set, the diffraction gratings of the first and second objects are irradiated from the ±n-order directions, and the beams are irradiated from multiple directions with different absolute values n of the orders at the same inclination angle. Interference light that is diffracted in the vertical direction from each of the diffraction gratings of the first and second objects upon incidence and taken out at the same tilt angle is obtained from each of the diffraction gratings of the first and second objects. The synthesized signal of the beat signals obtained from these interference lights is filtered with a bandpass filter and separated into signals with a single beat frequency (
The basic feature is that the phase difference between the Be-I signals having the same frequency as above is measured, and the displacement amount of the first and second objects is detected based on these phase differences.

又、第3発明は、2種以上の異なる格子定数の回折格子
を並べて第1及び第2の物体の夫々に配置すると共に、
周波数がわずかに異なり回折時に互いに干渉し合うこと
のできるもの同士を一組として、該干渉時に生ずる各組
のビート信号の周波数がこれらの組の間で異なることに
なる複数のコヒーレント光の組を、前記回折格子の各格
子定数に応じて定まる±n次の方向から各組毎に夫々同
一の傾斜角度で入射させ、これらの入射によって第1及
び第2の物体の各回折格子から夫々垂直方向に回折され
、且つ同一の傾斜角度で取出される干渉光祭第1及び第
2の物体の各回折格子から得られるものに分けて検出し
、これらの干渉光から得られるビート信号の合成信号を
バンドパスフィルタでフィルタリングして単一のビート
周波数のものに夫々分け、周波数の等しいもの同士のビ
ート信号の位相差を夫々測定してこれらの位相差に基づ
いて前記第1及び第2の物体の変位量を検出することを
特徴としている。
Further, the third invention provides a method in which two or more types of diffraction gratings having different grating constants are arranged side by side on each of the first and second objects, and
A set of coherent light beams that have slightly different frequencies and can interfere with each other during diffraction is used, and the frequency of the beat signal of each set that is generated during the interference differs between these sets of coherent lights. , the incidence is made at the same inclination angle for each set from the ±n-th order direction determined according to each lattice constant of the diffraction grating, and by these incidences, each of the diffraction gratings of the first and second objects is incident in the vertical direction, respectively. The interference light beams obtained from each diffraction grating of the first and second objects are detected separately, and a composite signal of the beat signals obtained from these interference lights is detected. The beat signals of the first and second objects are filtered with a bandpass filter and separated into beat signals of a single frequency, and the phase difference between the beat signals of the same frequency is measured. It is characterized by detecting the amount of displacement.

第5発明は、周波数がわずかに異なって回折時に互いに
干渉し合うことのできるもの同士を一組として、偏光面
がこれらの組の間で異なることになる複数のコヒーレン
ト光の組を、各組毎に第1及び第2の物体の各回折格子
に対し±n次方向から照射させるにつき、次数の絶対値
Dが異なることになる複数の方向から同一の傾斜角度で
入射させ、これらの入射によって第1及び第2の物体の
各回折格子から夫々垂直方向に回折され、且つ同一の傾
斜角度で取出される干渉光を第1及び第2の物体の各回
折格子から得られるものに分けて検出すると共に、夫々
の偏光面毎にこれらの干渉光を分離し、偏光面の等しい
もの同士の干渉光から夫々得られるビート信号の位相差
を各測定してこれらの位相差に基づいて前記第1及び第
2の物体の変位量を検出することを特徴としている。
The fifth invention is to form a plurality of sets of coherent lights whose polarization planes differ between each set, each set consisting of a set of light beams having slightly different frequencies and which can interfere with each other during diffraction. For each diffraction grating of the first and second objects to be irradiated from the ±n-order direction, it is made incident at the same inclination angle from multiple directions with different absolute values D of the orders, and by these incidences, The interference light diffracted in the vertical direction from each diffraction grating of the first and second objects and extracted at the same tilt angle is divided into those obtained from each diffraction grating of the first and second objects and detected. At the same time, these interference lights are separated for each plane of polarization, the phase differences of the beat signals obtained from the interference lights of the same planes of polarization are each measured, and the first signal is calculated based on these phase differences. and detecting the amount of displacement of the second object.

更に第7発明は、2種以」−の異なる格r定数の回折格
子を並べて第1及び第2の物体の夫々に配置すると共に
、周波数がわすかに異なり回折時に互いに干渉し合うこ
とのできるもの同士を一組として、偏光面がこれらの組
の間で異なることになる複数のコヒーレント光の組を、
前記回折格子の各格子定数に応じて定まる±n次の方向
から各組毎に夫々同一の傾斜角度で入射させ、これらの
入射によって第1及び第2の物体の各回折格子から夫々
垂直方向に回折され、且つ同一の傾斜角度で取出される
干渉光を第1及び第2の物体の各回折格子から得られる
ものに分けて検出すると共に、夫々の偏光面毎にこれら
の干渉光を分離し、偏光面の等しいもの同士の干渉光か
ら夫々得られるビー1−信号の位相差を各測定してこれ
らの位相差に基づいて前記第1及び第2の物体の変位量
を検出することを特徴としている。
Furthermore, the seventh invention is such that two or more types of diffraction gratings with different r-constants are arranged side by side and placed on each of the first and second objects, and the diffraction gratings have slightly different frequencies and can interfere with each other during diffraction. A set of coherent lights whose planes of polarization differ between these sets,
The light is incident on each set at the same inclination angle from the ±n-th order direction determined according to each grating constant of the diffraction grating, and by these incidences, the light is vertically directed from each of the diffraction gratings of the first and second objects. Interfering light that is diffracted and extracted at the same tilt angle is detected separately into those obtained from each diffraction grating of the first and second objects, and these interference lights are separated for each plane of polarization. , the phase difference between the Bea-1 signals obtained from the interference light beams having the same plane of polarization is measured, and the amount of displacement of the first and second objects is detected based on these phase differences. It is said that

〔実施例〕〔Example〕

以下本発明の具体的実施例につき説明する。 Specific examples of the present invention will be described below.

第4図(a) (b)は第11発明の位置検出方法の一
実施例を示している。
FIGS. 4(a) and 4(b) show an embodiment of the position detection method of the eleventh invention.

同図(a)に示されるように、半導体レーザからなる小
型レーザ光源(2a) (或いはHe −N aレーザ
等でも良い)から発するコヒーレント光をハーフミラ−
(3a)で2分割し、周波数シフタ(4a)(4b) 
(図面では2つ用いられているが1つだけ用いて片方の
周波数のみシフトさせても良い)を用いて、ビート周波
数f a = 0.1 M!(zの2つの直線偏光(2
つの偏光の周波数が夫々f□とf2であればこのfaは
fa=lf1 f2で求められる)を作る。これらのコ
ヒーレント光の偏光面は一致している。該2偏光をミラ
ーM□、M2で第1及び第2の物体であるマスクA及び
ウェハB上に形成された格子ピッチPの回折格子(Ia
)(]、b)に対して±1次方向(角度α)から夫々照
射する(この時同図(b)に示されるように傾斜角度θ
の斜入射状態で照射した)。
As shown in Figure (a), coherent light emitted from a small laser light source (2a) consisting of a semiconductor laser (or a He-Na laser etc. may also be used) is transmitted through a half mirror.
Divide into two by (3a) and use frequency shifter (4a) (4b)
(Two are used in the drawing, but you can use only one and shift only one frequency) to set the beat frequency f a = 0.1 M! (Two linearly polarized lights of z (2
If the frequencies of the two polarized lights are f□ and f2, respectively, fa is determined by fa=lf1 f2). The planes of polarization of these coherent lights match. The two polarized lights are transferred to a diffraction grating (Ia
)(], b) from the ±1st direction (angle α) (at this time, as shown in the same figure (b), the inclination angle θ
irradiated at an oblique incidence).

同様にして別のレーザ光源(zb) (又は前述の光源
(2a)からハーフミラ−(図示なし)を用いてビーム
を分割しても良い)からの光をハーフミラ−(3b)で
2分割し、周波数シフタ(4c) (4d)を用いてビ
ート周波数f b= 1. t4Hzの2つの直線偏光
(これらの偏光面は全て」二足のものと同一である)を
作り出す。この2偏光を」−記2偏光と同様第4図(b
)に示すように傾斜角度Oの斜入射状態で且つマスクA
、ウェハB上に形成された同しくピッチPの回折格子(
la) (lb)に対して±4次方向(角度β)から夫
々照射する。
Similarly, the light from another laser light source (zb) (or the beam may be split from the aforementioned light source (2a) using a half mirror (not shown)) is divided into two by a half mirror (3b), Beat frequency f b = 1. using frequency shifter (4c) (4d). It produces two linearly polarized lights at t4Hz (all planes of polarization are identical to those of the two legs). These two polarized lights are similar to the two polarized lights in Figure 4 (b).
) as shown in FIG.
, a diffraction grating (
la) (lb) is irradiated from the ±4th direction (angle β), respectively.

そしてマスクA及びウェハBの両回折格子(1,a )
 (1,b )からの回折光はその回折時点でfa及び
fbの各ビート周波数を有する光ヘテロダイン干渉回折
光となり、全て格子幅方向で垂直方向に又格子長手方向
では前記傾斜角度Oと同一・の角度で出射される。これ
らの回折光をビームエキスパンダ(5)で適当な大きさ
に拡大し、2分割センサ(6)でマスク信号及びウェハ
信号に切り分ける。
And both diffraction gratings (1,a) of mask A and wafer B
The diffracted light from (1,b) becomes an optical heterodyne interference diffracted light having each beat frequency fa and fb at the time of diffraction, and all of the diffracted light is vertical in the grating width direction and at the same angle of inclination as the above-mentioned inclination angle O in the grating longitudinal direction. It is emitted at an angle of These diffracted lights are expanded to an appropriate size by a beam expander (5) and separated into a mask signal and a wafer signal by a two-split sensor (6).

該2分割センサ(6)の信号受光部(ディテクタ)のう
ちマスク信号受光部(6a)で検出された電気信号は、
第2図(a)に示すような2つのビート周波数fa、f
bのビート信号を含んでいる。
The electric signal detected by the mask signal light receiving part (6a) of the signal light receiving part (detector) of the two-part sensor (6) is as follows.
Two beat frequencies fa and f as shown in Figure 2(a)
Contains the beat signal of b.

この信号を2つに分岐し、各々をfa<f<fbの条件
を満たすf =0.5 MIIZの閥値を持つローパス
フィルタ(7a)とバイパスフィルタ(7b)でフィル
タリングする。該ローパスフィルタ(7a)を通った信
号は同図(b)に示すようにfb酸成分除去されたビー
ト周波数faの±1次マスク信号である。又、バイパス
フィルタ(7b)を通った信号は同図(c)に示すよう
にfa酸成分除去されたビート周波数fbの±4次マス
ク信号である。
This signal is branched into two, and each is filtered by a low-pass filter (7a) and a bypass filter (7b) having a threshold value of f=0.5 MIIZ that satisfies the condition fa<f<fb. The signal that has passed through the low-pass filter (7a) is a ±1st-order mask signal of the beat frequency fa from which the fb acid component has been removed, as shown in FIG. 3(b). Further, the signal that has passed through the bypass filter (7b) is a ±4th-order mask signal of the beat frequency fb from which the fa acid component has been removed, as shown in FIG. 3(c).

一方、前記2分割センサ(6)のウェハ信号受光部(6
b)で検出された電気信号は、同じく2つのビート周波
数fa、fbを含んでいる。そこでこの信号を2つに分
岐し、各々を0.5 Mllzの閥値を持つローパスフ
ィルタ(7C)及びバイパスフィルタ(7d)でフィル
タリングする2、このローパスフィルタ(7C)を通っ
た信号はfb酸成分除去されたビート周波数faの士1
次つェハ信号である。又、バイパスフィルタ(7d)を
通った信号はfa酸成分除去されたビート周波数fbの
±4次ウェハ信号である。
On the other hand, the wafer signal receiving section (6) of the two-part sensor (6)
The electrical signal detected in b) also includes two beat frequencies fa and fb. Therefore, this signal is split into two, and each is filtered with a low-pass filter (7C) and a bypass filter (7d) that have a threshold of 0.5 Mllz2.The signal that has passed through this low-pass filter (7C) is filtered by fb acid. Component removed beat frequency fa 1
Next is the wafer signal. Further, the signal passed through the bypass filter (7d) is a ±4th-order wafer signal of the beat frequency fb from which the fa acid component has been removed.

以」二のようにして得られた±1次マスク信号と±1次
ウェハ信号、更に±4次マスク信号と±4次ウェハ信号
を、夫々位相計(8a)(8b)で取込み、各々の位相
を測定する。このようにして±1次と±4次の位相信号
を同時に検出することにより、±1次光による広い検出
範囲がカバーできるようになると共に、±4次光の持つ
超高分解能を達成できることになる。
The ±1st mask signal and ±1st wafer signal obtained as described above, as well as the ±4th mask signal and ±4th wafer signal, are captured by phase meters (8a) and (8b), respectively, and each Measure the phase. In this way, by simultaneously detecting the ±1st-order and ±4th-order phase signals, it is possible to cover a wide detection range with the ±1st-order light, and also achieve the ultra-high resolution of the ±4th-order light. Become.

更に、ここで検出された値を第4図(b)の破線で示す
ように信号処理部(9)に送ってマスクステージ及びウ
ェハステージにフィードバックすれば、マスクΔ及びウ
ェハBの位置合せを行なうこともできる。
Furthermore, if the value detected here is sent to the signal processing section (9) as shown by the broken line in FIG. 4(b) and fed back to the mask stage and wafer stage, the mask Δ and the wafer B are aligned. You can also do that.

尚、回折光の受光を行なう際に上述の2分割センサ(6
)を使用する代りに、第5図に示されるようにナイフェ
ツジミラー(10)と2つのフォトディテクタDa、D
bを利用することで行なうこともできる。しかし、2分
割センサ(6)の方は2つの信号受光部(6a)(6b
)の間に不感帯があり、該不感帯によってマスクA側か
らの回折光とウェハB側からの回折光の切り分は時のク
ロストークが減少するため、該2分割センサ(6)を使
用する方が装置構成としてはよりコンパクトになる。
In addition, when receiving the diffracted light, the above-mentioned two-split sensor (6
) instead of using a knife mirror (10) and two photodetectors Da, D as shown in FIG.
This can also be done by using b. However, the two-split sensor (6) has two signal receivers (6a) (6b).
), and this dead zone reduces the crosstalk between the diffracted light from the mask A side and the diffracted light from the wafer B side, so it is better to use the two-split sensor (6). However, the device configuration becomes more compact.

〔発明の効果〕〔Effect of the invention〕

以」−詳述したように本発明法によれば、回折光の取出
しを重なりのある状態で行なった後、検出直前にその重
なりを解消したり、検出過程で信号分離を行なって最終
的にビート周波数の等しい信号同士の位相差を夫々測定
することができるようになるため、回折光の取出しを行
なう光学系を単純化でき、光軸調整が容易になると共に
、これらの光学系の設置スペースも小さくすることがで
きるようになる。
- As described in detail, according to the method of the present invention, after extracting the diffracted light in an overlapping state, the overlap is eliminated immediately before detection, or signal separation is performed during the detection process, and the final result is Since it becomes possible to measure the phase difference between signals with the same beat frequency, the optical system for extracting the diffracted light can be simplified, optical axis adjustment becomes easier, and the installation space for these optical systems can be saved. can also be made smaller.

又、特に第1乃至第4発明法では偏光ビームスプリッタ
や】/2波長板等を使用しないので、偏波もれ成分が発
生せず、信号線形性の低下等の影響が出にくくなる。
Further, in particular, the first to fourth methods of the invention do not use a polarizing beam splitter or a /2 wavelength plate, so that polarization leakage components are not generated and effects such as deterioration of signal linearity are less likely to occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)(b)は第1発明乃至第4発明法の基本的
信号検出法を示す説明図、第2図(a)(b)(c)は
検出信号のフィルタリング前後の(i分波形を示す波形
図、第3図(a)(b)は第5発明法乃至第8発明法の
基本的信号検出法を示す説明図、第4図(a)(b)は
第1発明法の具体的実施例を示した正面図及びその側面
図、第5図は本実施例で用いた2分割センサの代りに用
いることのてきる受光構成の−・例を示す概略図、第6
図は本発明者の提案に係る位置検出構成を示す斜視図、
第7図は同じく本発明者の提案に係る他の位置検出構成
を示す斜視図、第8図(a) (b) (c) (d)
はこれらの提案の構成によって得られるビート信号の信
号波形を示す波形図、第9図(a)(b)はこれらの提
案構成における斜入射及び斜方出射状態を示ず説明図で
ある。 図中、(Ia)(Ib)は回折格子、(2) (2a)
 (2b)はレーザ光源、(3) (3a) (3b)
はハーフミラ−1(4a)(4b) (4c) (4d
)は周波数シフタ、(5)はビームエキスパンダ、(6
)は2分割センサ、(6a) (6b)は受光部、(7
a)(7c)はローパスフィルタ、(7b)(7d)は
バイパスフィルタ、(8a)(8b)は位相計、(9)
は信号処理制御部、(10)はナイフェツジミラー、A
は第1の物体、Bは第2の物体、D3、D2、D3、D
4はディテクタを各示す。 第1 (a) 図 手続補正書 (自発) 平成2年/7月12日
FIGS. 1(a) and (b) are explanatory diagrams showing the basic signal detection method of the first to fourth invention methods, and FIGS. 2(a), (b), and (c) are (i) before and after filtering of the detection signal. Waveform diagrams showing divided waveforms, Figures 3(a) and (b) are explanatory diagrams showing the basic signal detection method of the fifth to eighth invention methods, and Figures 4(a) and (b) are diagrams showing the basic signal detection methods of the fifth invention method to the eighth invention method. Figure 5 is a front view and side view showing a specific example of the method; Figure 5 is a schematic diagram showing an example of a light receiving configuration that can be used in place of the two-split sensor used in this example;
The figure is a perspective view showing a position detection configuration proposed by the inventor;
FIG. 7 is a perspective view showing another position detection configuration similarly proposed by the inventor, and FIG. 8 (a) (b) (c) (d)
9A and 9B are waveform diagrams showing the signal waveforms of beat signals obtained by these proposed configurations, and FIGS. 9A and 9B are explanatory diagrams that do not show oblique incidence and oblique emission states in these proposed configurations. In the figure, (Ia) and (Ib) are diffraction gratings, (2) (2a)
(2b) is a laser light source, (3) (3a) (3b)
is half mirror 1 (4a) (4b) (4c) (4d
) is a frequency shifter, (5) is a beam expander, (6
) is a two-split sensor, (6a) (6b) is a light receiving part, (7
a) (7c) is a low-pass filter, (7b) (7d) is a bypass filter, (8a) (8b) is a phase meter, (9)
is a signal processing control unit, (10) is a Knifezi Miller, and A
is the first object, B is the second object, D3, D2, D3, D
4 indicates each detector. No. 1 (a) Draft procedure amendment (voluntary) July 12, 1990

Claims (8)

【特許請求の範囲】[Claims] (1)周波数がわずかに異なって回折時に互いに干渉し
合うことのできるもの同士を一組として、該干渉時に生
ずる各組のビート信号の周波数がこれらの組の間で異な
ることになる複数のコヒーレント光の組を、各組毎に第
1及び第2の物体の各回折格子に対し±n次方向から照
射させるにつき、次数の絶対値nが異なることになる複
数の方向から同一の傾斜角度で入射させ、これらの入射
によって第1及び第2の物体の各回折格子から夫々垂直
方向に回折され、且つ同一の傾斜角度で取出される干渉
光を第1及び第2の物体の各回折格子から得られるもの
に分けて検出し、これらの干渉光から得られるビート信
号の合成信号をバンドパスフィルタでフィルタリングし
て単一のビート周波数のものに夫々分け、周波数の等し
いもの同士のビート信号の位相差を夫々測定してこれら
の位相差に基づいて前記第1及び第2の物体の変位量を
検出する位置検出方法。
(1) A set of elements with slightly different frequencies that can interfere with each other during diffraction, and a plurality of coherent signals in which the frequencies of the beat signals of each set that occur during the interference differ between these sets. In order to irradiate each set of light from the ±n-order directions to each diffraction grating of the first and second objects, it is possible to irradiate each set of light from the ±n-order directions at the same inclination angle from multiple directions with different absolute values n of the orders. The interference light beams are diffracted in the vertical direction from each of the diffraction gratings of the first and second objects by these incidences, and are extracted at the same inclination angle from each of the diffraction gratings of the first and second objects. The synthesized signal of the beat signals obtained from these interference lights is filtered with a bandpass filter and divided into beat signals of a single beat frequency. A position detection method that measures phase differences and detects displacement amounts of the first and second objects based on these phase differences.
(2)周波数がわずかに異なって回折時に互いに干渉し
合うことのできるもの同士を一組として、該干渉時に生
ずる各組のビート信号の周波数がこれらの組の間で異な
ることになる複数のコヒーレント光の組を、各組毎に第
1及び第2の物体の各回折格子に対し±n次方向から照
射させるにつき、次数の絶対値nが異なることになる複
数の方向から同一の傾斜角度で入射させ、これらの入射
によって第1及び第2の物体の各回折格子から夫々垂直
方向に回折され、且つ同一の傾斜角度で取出される干渉
光を第1及び第2の物体の各回折格子から得られるもの
に分けて検出し、これらの干渉光から得られるビート信
号の合成信号をバンドパスフィルタでフィルタリングし
て単一のビート周波数のものに夫々分け、周波数の等し
いもの同士のビート信号の位相差を夫々測定してこれら
の位相差に基づいて前記第1及び第2の物体の位置合せ
を行なう位置合せ方法。
(2) A set of elements with slightly different frequencies that can interfere with each other during diffraction, and a plurality of coherent signals in which the frequencies of the beat signals of each set that are generated at the time of interference differ between these sets. In order to irradiate each set of light from the ±n-order directions to each diffraction grating of the first and second objects, it is possible to irradiate each set of light from the ±n-order directions at the same inclination angle from multiple directions with different absolute values n of the orders. The interference light beams are diffracted in the vertical direction from each of the diffraction gratings of the first and second objects by these incidences, and are extracted at the same inclination angle from each of the diffraction gratings of the first and second objects. The synthesized signal of the beat signals obtained from these interference lights is filtered with a bandpass filter and divided into beat signals of a single beat frequency. An alignment method that measures phase differences and aligns the first and second objects based on these phase differences.
(3)2種以上の異なる格子定数の回折格子を並べて第
1及び第2の物体の夫々に配置すると共に、周波数がわ
ずかに異なり回折時に互いに干渉し合うことのできるも
の同士を一組として、該干渉時に生ずる各組のビート信
号の周波数がこれらの組の間で異なることになる複数の
コヒーレント光の組を、前記回折格子の各格子定数に応
じて定まる±n次の方向から各組毎に夫々同一の傾斜角
度で入射させ、これらの入射によって第1及び第2の物
体の各回折格子から夫々垂直方向に回折され、且つ同一
の傾斜角度で取出される干渉光を第1及び第2の物体の
各回折格子から得られるものに分けて検出し、これらの
干渉光から得られるビート信号の合成信号をバンドパス
フィルタでフィルタリングして単一のビート周波数のも
のに夫々分け、周波数の等しいもの同±のビート信号の
位相差を夫々測定してこれらの位相差に基づいて前記第
1及び第2の物体の変位量を検出する位置検出方法。
(3) Two or more types of diffraction gratings with different grating constants are arranged side by side on each of the first and second objects, and a set of gratings with slightly different frequencies that can interfere with each other during diffraction, A plurality of sets of coherent light beams, in which the frequency of each set of beat signals generated at the time of interference differs between these sets, are separated for each set from the ±n-th direction determined according to each grating constant of the diffraction grating. are incident on the first and second objects at the same inclination angle, and the interference light beams are diffracted in the vertical direction from the respective diffraction gratings of the first and second objects and taken out at the same inclination angle as a result of these incidences. The beat signals obtained from each diffraction grating of the object are detected separately, and the composite signal of the beat signals obtained from these interference lights is filtered with a bandpass filter and divided into each beat signal of a single beat frequency. A position detection method that measures phase differences between identical beat signals and detects displacement amounts of the first and second objects based on these phase differences.
(4)2種以上の異なる格子定数の回折格子を並べて第
1及び第2の物体の夫々に配置すると共に、周波数がわ
ずかに異なり回折時に互いに干渉し合うことのできるも
の同士を一組として、該干渉時に生ずる各組のビート信
号の周波数がこれらの組の間で異なることになる複数の
コヒーレント光の組を、前記回折格子の各格子定数に応
じて定まる±n次の方向から各組毎に夫々同一の傾斜角
度で入射させ、これらの入射によって第1及び第2の物
体の各回折格子から夫々垂直方向に回折され、且つ同一
の傾斜角度で取出される干渉光を第1及び第2の物体の
各回折格子から得られるものに分けて検出し、これらの
干渉光から得られるビート信号の合成信号をバンドパス
フィルタでフィルタリングして単一のビート周波数のも
のに夫々分け、周波数の等しいもの同士のビート信号の
位相差を夫々測定してこれらの位相差に基づいて前記第
1及び第2の物体の位置合せを行なう位置合せ方法。
(4) Two or more types of diffraction gratings with different grating constants are arranged side by side on each of the first and second objects, and a set of gratings with slightly different frequencies that can interfere with each other during diffraction is formed, A plurality of sets of coherent light beams, in which the frequency of each set of beat signals generated at the time of interference differs between these sets, are separated for each set from the ±n-th direction determined according to each grating constant of the diffraction grating. are incident on the first and second objects at the same inclination angle, and the interference light beams are diffracted in the vertical direction from the respective diffraction gratings of the first and second objects and taken out at the same inclination angle as a result of these incidences. The beat signals obtained from each diffraction grating of the object are detected separately, and the composite signal of the beat signals obtained from these interference lights is filtered with a bandpass filter and divided into each beat signal of a single beat frequency. An alignment method that measures phase differences between beat signals between objects and aligns the first and second objects based on these phase differences.
(5)周波数がわずかに異なって回折時に互いに干渉し
合うことのできるもの同士を一組として、偏光面がこれ
らの組の間で異なることになる複数のコヒーレント光の
組を、各組毎に第1及び第2の物体の各回折格子に対し
±n次方向から照射させるにつき、次数の絶対値nが異
なることになる複数の方向から同一の傾斜角度で入射さ
せ、これらの入射によって第1及び第2の物体の各回折
格子から夫々垂直方向に回折され、且つ同一の傾斜角度
で取出される干渉光を第1及び第2の物体の各回折格子
から得られるものに分けて検出すると共に、夫々の偏光
面毎にこれらの干渉光を分離し、偏光面の等しいもの同
士の干渉光から夫々得られるビート信号の位相差を各測
定してこれらの位相差に基づいて前記第1及び第2の物
体の変位量を検出する位置検出方法。
(5) A set of coherent light beams with slightly different frequencies that can interfere with each other during diffraction is created, and each set of coherent light beams has a different plane of polarization. In order to irradiate each diffraction grating of the first and second objects from the ±n-order directions, the beams are incident at the same inclination angle from multiple directions with different absolute values n of the orders, and these incidences cause the first and detecting the interference light that is diffracted in the vertical direction from each diffraction grating of the second object and taken out at the same tilt angle into those obtained from each of the diffraction gratings of the first and second objects, and , separate these interference lights for each plane of polarization, measure the phase difference of the beat signals obtained from the interference lights of the same plane of polarization, and calculate the first and second beat signals based on these phase differences. 2. A position detection method for detecting the amount of displacement of an object.
(6)周波数がわずかに異なって回折時に互いに干渉し
合うことのできるもの同士を一組として、偏光面がこれ
らの組の間で異なることになる複数のコヒーレント光の
組を、各組毎に第1及び第2の物体の各回折格子に対し
±n次方向から照射させるにつき、次数の絶対値nが異
なることになる複数の方向から同一の傾斜角度で入射さ
せ、これらの入射によって第1及び第2の物体の各回折
格子から夫々垂直方向に回折され、且つ同一の傾斜角度
で取出される干渉光を第1及び第2の物体の各回折格子
から得られるものに分けて検出すると共に、夫々の偏光
面毎にこれらの干渉光を分離し、偏光面の等しいもの同
士の干渉光から夫々得られるビート信号の位相差を各測
定してこれらの位相差に基づいて前記第1及び第2の物
体の位置合せを行なう位置合せ方法。
(6) A set of light beams with slightly different frequencies that can interfere with each other during diffraction is created, and each set of coherent light beams has a different plane of polarization. In order to irradiate each diffraction grating of the first and second objects from the ±n-order directions, the beams are incident at the same inclination angle from multiple directions with different absolute values n of the orders, and these incidences cause the first and detecting the interference light that is diffracted in the vertical direction from each diffraction grating of the second object and taken out at the same tilt angle into those obtained from each of the diffraction gratings of the first and second objects, and , separate these interference lights for each plane of polarization, measure the phase difference of the beat signals obtained from the interference lights of the same plane of polarization, and calculate the first and second beat signals based on these phase differences. 2. Alignment method for aligning objects.
(7)2種以上の異なる格子定数の回折格子を並べて第
1及び第2の物体の夫々に配置すると共に、周波数がわ
ずかに異なり回折時に互いに干渉し合うことのできるも
の同士を一組として、偏光面がこれらの組の間で異なる
ことになる複数のコヒーレント光の組を、前記回折格子
の各格子定数に応じて定まる±n次の方向から各組毎に
夫々同一の傾斜角度で入射させ、これらの入射によって
第1及び第2の物体の各回折格子から夫々垂直方向に回
折され、且つ同一の傾斜角度で取出される干渉光を第1
及び第2の物体の各回折格子から得られるものに分けて
検出すると共に、夫々の偏光面毎にこれらの干渉光を分
離し、偏光面の等しいもの同士の干渉光から夫々得られ
るビート信号の位相差を各測定してこれらの位相差に基
づいて前記第1及び第2の物体の変位量を検出する位置
検出方法。
(7) Two or more types of diffraction gratings with different grating constants are arranged side by side on each of the first and second objects, and a set of gratings with slightly different frequencies that can interfere with each other during diffraction is formed. A plurality of sets of coherent lights whose polarization planes differ between these sets are made incident at the same inclination angle for each set from ±n-th directions determined according to each lattice constant of the diffraction grating. , interference light diffracted in the vertical direction from each of the diffraction gratings of the first and second objects by these incidences, and extracted at the same inclination angle, is
In addition to separately detecting the signals obtained from each diffraction grating of the second object, these interference lights are separated for each plane of polarization, and the beat signals obtained from the interference lights of those with the same plane of polarization are detected. A position detection method that measures phase differences and detects displacement amounts of the first and second objects based on these phase differences.
(8)2種以上の異なる格子定数の回折格子を並べて第
1及び第2の物体の夫々に配置すると共に、周波数がわ
ずかに異なり回折時に互いに干渉し合うことのできるも
の同士を一組として、偏光面がこれらの組の間で異なる
ことになる複数のコヒーレント光の組を、前記回折格子
の各格子定数に応じて定まる±n次の方向から各組毎に
夫々同一の傾斜角度で入射させ、これらの入射によって
第1及び第2の物体の各回折格子から夫々垂直方向に回
折され、且つ同一の傾斜角度で取出される干渉光を第1
及び第2の物体の各回折格子から得られるものに分けて
検出すると共に、夫々の偏光面毎にこれらの干渉光を分
離し、偏光面の等しいもの同士の干渉光から夫々得られ
るビート信号の位相差を各測定してこれらの位相差に基
づいて前記第1及び第2の物体の位置合せを行なう位置
合せ方法。
(8) Two or more types of diffraction gratings with different grating constants are arranged side by side on each of the first and second objects, and a set of gratings with slightly different frequencies that can interfere with each other during diffraction is formed, A plurality of sets of coherent lights whose polarization planes differ between these sets are made incident at the same inclination angle for each set from ±n-th directions determined according to each lattice constant of the diffraction grating. , interference light diffracted in the vertical direction from each of the diffraction gratings of the first and second objects by these incidences, and extracted at the same inclination angle, is
In addition to separately detecting the signals obtained from each diffraction grating of the second object, these interference lights are separated for each plane of polarization, and the beat signals obtained from the interference lights of those with the same plane of polarization are detected. An alignment method that measures phase differences and aligns the first and second objects based on these phase differences.
JP2270580A 1990-04-19 1990-10-11 Position detection method and position alignment method Expired - Lifetime JPH0635928B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2270580A JPH0635928B2 (en) 1990-10-11 1990-10-11 Position detection method and position alignment method
US07/688,115 US5182610A (en) 1990-04-19 1991-04-19 Position detecting method and device therefor as well as aligning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2270580A JPH0635928B2 (en) 1990-10-11 1990-10-11 Position detection method and position alignment method

Publications (2)

Publication Number Publication Date
JPH04148808A true JPH04148808A (en) 1992-05-21
JPH0635928B2 JPH0635928B2 (en) 1994-05-11

Family

ID=17488112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2270580A Expired - Lifetime JPH0635928B2 (en) 1990-04-19 1990-10-11 Position detection method and position alignment method

Country Status (1)

Country Link
JP (1) JPH0635928B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038883A1 (en) * 2007-09-17 2009-03-26 Quality Vision International Dual resolution, dual range sensor system and method
JP2012060131A (en) * 2010-09-13 2012-03-22 Asml Netherlands Bv Alignment determination system, lithography apparatus, and method of determining alignment in lithography apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038883A1 (en) * 2007-09-17 2009-03-26 Quality Vision International Dual resolution, dual range sensor system and method
US7808617B2 (en) 2007-09-17 2010-10-05 Quality Vision International, Inc. Dual resolution, dual range sensor system and method
JP2012060131A (en) * 2010-09-13 2012-03-22 Asml Netherlands Bv Alignment determination system, lithography apparatus, and method of determining alignment in lithography apparatus
JP2014132695A (en) * 2010-09-13 2014-07-17 Asml Netherlands Bv Alignment determination system, lithography apparatus, and method of determining alignment in lithography apparatus
US9046385B2 (en) 2010-09-13 2015-06-02 Asml Netherlands B.V. Alignment measurement system, lithographic apparatus, and a method to determine alignment in a lithographic apparatus
US9280057B2 (en) 2010-09-13 2016-03-08 Asml Netherlands B.V. Alignment measurement system, lithographic apparatus, and a method to determine alignment of in a lithographic apparatus

Also Published As

Publication number Publication date
JPH0635928B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
US5182610A (en) Position detecting method and device therefor as well as aligning device
CA1093297A (en) Plate aligning
DE102010003157B4 (en) Device for interferential distance measurement
EP0581118A1 (en) Light source for a heterodyne interferometer
US20150116729A1 (en) Autofocus system and method
EP0247665B1 (en) Device for detecting a magnification error in an optical imaging system
DE4031637A1 (en) METHOD AND DEVICE FOR MEASURING A SHIFT BETWEEN TWO OBJECTS AND A SPLIT DISTANCE BETWEEN THE TWO OBJECTS
US5100234A (en) Method and apparatus for aligning two objects, and method and apparatus for providing a desired gap between two objects
JP3364382B2 (en) Sample surface position measuring device and measuring method
KR20230041662A (en) Misalignment measurement using fringe moiré and optical moiré effects
JPH05272914A (en) Method and apparatus for measurement
JPH04148808A (en) Position detecting method and position aligning method
JPH0794969B2 (en) Positioning method and device thereof
JP3029133B2 (en) Measurement method and device
JPH06288722A (en) Multiple-coordinate measuring apparatus
JPS62261003A (en) Alignment method and apparatus therefor
JPS6258628A (en) Alignment process and device thereof
US5025168A (en) Alignment apparatus including three beams and three gratings
JPS5938521B2 (en) Micro displacement measurement and alignment equipment
JPH01107102A (en) Optical automatic positioning apparatus
JPH0635927B2 (en) Position detecting method, apparatus therefor and position aligning apparatus
JPH028704A (en) Relative positioning and apparatus therefor
JPS63172904A (en) Method and device for position detection by diffraction grating
JPH0429012B2 (en)
JPH02298804A (en) Interferometer