JPS6258628A - Alignment process and device thereof - Google Patents

Alignment process and device thereof

Info

Publication number
JPS6258628A
JPS6258628A JP60198966A JP19896685A JPS6258628A JP S6258628 A JPS6258628 A JP S6258628A JP 60198966 A JP60198966 A JP 60198966A JP 19896685 A JP19896685 A JP 19896685A JP S6258628 A JPS6258628 A JP S6258628A
Authority
JP
Japan
Prior art keywords
light
diffraction grating
diffracted
diffraction
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60198966A
Other languages
Japanese (ja)
Inventor
Masanori Suzuki
雅則 鈴木
Kazuo Minowa
箕輪 和男
Atsunobu Une
宇根 篤▲のぶ▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60198966A priority Critical patent/JPS6258628A/en
Publication of JPS6258628A publication Critical patent/JPS6258628A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To perform the alignment of two members with diffractive grids with high precision by a method wherein two wavelength beams with slightly different frequency are entered into two diffractive grids arranged in parallel with each other to transmit the diffractive beams only exceeding one time diffraction. CONSTITUTION:Two kinds of beams with slightly different frequency emitted from a two wavelength orthogonal polarized laser beam source 33 passing through a beam splitter 21 and a condenser are inputted in a photodetector 25 to be transmitted to a signal processor 26 as reference beat signals. Besides, said beams are divided into two wavelength beams with slighly different frequency to be entered into a transmitted diffractive grid 29 and a reflected diffractive grid 30 at specified incident angle. Finally the diffractive beams from the grids 29, 30 are detected by a photodetector 25' to be transmitted to the signal processor 26 as diffractive beam beat signals. Through these procedures, the position slips can be detected referring to the phase difference from the reference beat signals.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体IC−t−LSI  を製造するため
の露光装置やバタン評価装りに応用して好適な位置合わ
せ方法およびその実施(ユ使用される位置合わせ装置に
関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a suitable alignment method and its implementation (user It concerns the alignment device used.

〔従来の技術〕[Conventional technology]

半導体ICやLSI  の微細化C2伴い、マスクバタ
ンをウェハに一括して、もしく#よステップ・アンド・
レビート方式によって露光転写する装置では、マスクと
ウェハとを互い(2高精度に位置合わせする技術の進展
が不可欠のものとなっている。
With the miniaturization of semiconductor ICs and LSIs (C2), it is becoming increasingly difficult to use step and
In an apparatus that performs exposure and transfer using the rebeat method, it is essential to advance technology for aligning the mask and wafer with each other with high precision.

従来、光ヘテロダイン干渉を利用して微小変位測定ある
いは精督な位置合わせを行なう方法として、第4図に示
すようン12つの回折格子の回折光を用いるものがある
(特願昭54−137660)。
Conventionally, as a method for measuring minute displacements or precise positioning using optical heterodyne interference, there is a method that uses diffracted light from 12 diffraction gratings as shown in Fig. 4 (Japanese Patent Application No. 137,660/1982). .

第4図において、1は透過型回折格子、2は反射型回折
格子、3,4は周波数がわずかC;ずれた2波長の入射
光、5.6は所望の回折光、3−1゜4−1は回折格子
1力島らの一1次透過回折光、3−1’  、4−1’
は、回折格子2で島らの+1次反射回折光、3−2.4
−2は回折格子2からの+1次反射回折光、7Fi、回
折格子2からの一1次反射回折光である。透過型回折格
子lの格子ピッチP、は反射型回折格子2の格子ピッチ
P2の万であり、P 2 =2 P 1  である。一
般に、格子ピッチPの回折格子シ二波長λの元を鉛直入
射はせた場合、回折光は θ=ain−’(mu )  (m=Q、士1.± 2
  、  ・)の方向でのみ強(なり、鶏の値によって
旭次の回折光と呼ばれてし)る。第4図において周波数
が互いにわすかにずれた2波長をλ 、λ2 とし、! 波長λ 、λ2 の入射光3.4をそれぞれ】 の方向、すなわち反射型回折格子2の±17反射回折光
の方向から入射させることC;より、p  =−L  
p  であるため透過回折格子1カ・らの反射回折光は
、所望の回折光5,6の方向、すなわち透過型回折格子
の鉛直方向に対して空間的に分離される。また、入射光
3.4は、透過型回折格子ICより回折されてそれぞれ
一1次透過回折光3−1.4−1となる。さらに−1次
祷過回折光3−1.4−1は、反射型回折格子2(ユよ
り回折されてそれぞれ一1次反射回折光3−1’。
In Fig. 4, 1 is a transmission type diffraction grating, 2 is a reflection type diffraction grating, 3 and 4 are incident lights whose frequencies are slightly C; two wavelengths are shifted, and 5.6 is the desired diffraction light, 3-1°4. -1 is the 1st-order transmitted diffracted light of the diffraction grating 1 Rikishima et al., 3-1', 4-1'
is the +1st-order reflected diffracted light of Shima et al. at the diffraction grating 2, 3-2.4
-2 is the +1st-order reflected diffraction light from the diffraction grating 2, and 7Fi is the 11th-order reflected diffraction light from the diffraction grating 2. The grating pitch P of the transmission type diffraction grating 1 is ten thousand times the grating pitch P2 of the reflection type diffraction grating 2, and P 2 =2 P 1 . In general, when a diffraction grating with a grating pitch P and an element with two wavelengths λ are vertically incident, the diffracted light is θ=ain-'(mu) (m=Q, 1.±2
It becomes strong only in the direction of , ・), and depending on the value, it is called the diffracted light of the order of the rising sun. In Fig. 4, let the two wavelengths whose frequencies are slightly shifted from each other be λ and λ2, and! The incident light beams 3.4 with wavelengths λ and λ2 are respectively incident from the direction of ], that is, the direction of the ±17 reflected diffracted light of the reflection type diffraction grating 2; therefore, p = −L
p, the reflected diffracted light from the transmission diffraction grating 1 is spatially separated with respect to the direction of the desired diffracted lights 5 and 6, that is, the vertical direction of the transmission diffraction grating. Further, the incident light 3.4 is diffracted by the transmission type diffraction grating IC and becomes 11th order transmitted diffraction light 3-1.4-1, respectively. Furthermore, the -1st-order over-diffracted light 3-1, 4-1 is diffracted by the reflection type diffraction grating 2 (Y) and becomes 11th-order reflected diffracted light 3-1'.

4−1′となる。、−1次透過回折光3−1.4−1の
反射型回折格子2への入射方向は、それぞれθ−1・ 
θや、の方向である。光の速度をC,2波長λ1 、λ
2 の光の周波数をそれぞれf、  、 f2とすると
2波長のjIli波数差Δf1すなわちビート信号の周
波数は △fは、数KHz〜数百MHz程度の値であり、兄達C
に比べて十分小さく、 となり、従ってλl〜λ2 となる。すなわち、θ  
−0 −1〜 +1となり一1次反射回折光3−1’。
It becomes 4-1'. , the directions of incidence of the -1st-order transmitted diffraction light 3-1, 4-1 on the reflection type diffraction grating 2 are θ-1 and 4-1, respectively.
This is the direction of θ. The speed of light is C, the two wavelengths λ1, λ
If the frequencies of the two lights are respectively f, , f2, then the jIli wave number difference Δf1 between the two wavelengths, that is, the frequency of the beat signal, Δf has a value of about several KHz to several hundred MHz, and the older brothers C
It is sufficiently smaller than , and therefore λl~λ2. That is, θ
-0 -1 to +1 and the first-order reflected diffraction light 3-1'.

4−1′ は、それぞれ回折格子2の鉛直方向に回折さ
れるので光学的に合成され、/′!r阻の回折光5とな
る。さらに、入射光3゜4は透過型回折格子1により0
次回折され、反射型回折格子2により反射回折されて+
1次反射回折元3−2.4−2となる。+1次反射回折
光3−2.4−2は、透過型回折格子1の裏面にそれぞ
れ斜面の鉛直方向に対して の方向、すなわち、透過型回折格子lの斜面に対する±
1次回折元の方向から入射するため、透過回折格子1に
よりそれぞれ一1次透過回折して鉛直方向の回折光とな
り、光学的に合成されて所望の回折光6となる。
4-1' are each diffracted in the vertical direction of the diffraction grating 2, so they are optically combined, /'! The diffracted light 5 becomes r-inhibited. Furthermore, the incident light 3°4 is converted to 0 by the transmission type diffraction grating 1.
The next diffraction is reflected and diffracted by the reflection type diffraction grating 2, and +
The first-order reflection diffraction source becomes 3-2.4-2. The +1st-order reflected diffraction light 3-2, 4-2 is applied to the back surface of the transmission diffraction grating 1 in a direction relative to the vertical direction of the slope, that is, ± with respect to the slope of the transmission diffraction grating l.
Since the light enters from the direction of the first-order diffraction source, it undergoes first-order transmission diffraction by the transmission diffraction grating 1 to become vertically diffracted light, which is optically combined to form the desired diffracted light 6.

この回折i5.6から得られる光ヘテロダイン干渉によ
るビート信号の位相は、回折格子1と2との相対的な変
位によって変化する。したがって光源から発生し回゛折
浴子1.2に入射する入射光3,4と同様の2波長の光
をあらかじめ光源から分岐してとりだし、それぞれの光
を合成して、元ヘテロダイン干渉によるビート信号を得
られろように光学系を構成しておくことにより、このピ
ートイg号をm=信号として、基準fn号と回折光5,
6のビート信号との位相差を検出して位置合わせを行な
うことができる。
The phase of the beat signal due to optical heterodyne interference obtained from this diffraction i5.6 changes depending on the relative displacement between diffraction gratings 1 and 2. Therefore, two wavelengths of light similar to the incident lights 3 and 4 generated from the light source and incident on the diffraction bather 1.2 are branched out from the light source in advance, and the respective lights are combined to generate a beat due to original heterodyne interference. By configuring the optical system in such a way that a signal can be obtained, the reference fn and the diffracted light 5,
Positioning can be performed by detecting the phase difference with the beat signal of No. 6.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この方法では、位置合わせに必要な回折
光5,6以外に、入射光3゜4が透過回折格子lにより
0次回折されて反射型回折格子2にそれぞれd−1,d
+−1 の入射角で入射し、この回折格子2により鉛直方向の一
1次反射回折光として光学的に合成した回折光となり、
透過型回折格子1によりO次回折する回折光7が存在す
ることになる、しかも、この回折光7は、所望の回折光
5,6と同一方向に生じるため、干渉を生ぜしめる。回
折光7は、回折格子2 によってのみ回折して生じた入
射光3,4の合成回折光であり、回折光5,6のように
、 回折格子1 e 2 I:よってそれぞれ回折して生じ
た入射光3.4の二重回折光の合成光とは異なる。すな
わち、回折光7の回折光強度は、二重回折光である回折
光5,6C比べて強(、所望の回折光方向の回折光の主
成分となり、位置合わせ信号となる回折光5.6の雑音
として作用する。この回折光f)hら得られる光ヘテロ
ダイン干渉によるビート信号は、回折格子1と2との相
対的な変位において位相変化を生ぜず、位置合わぜがで
きないという欠点、あるいは回折光5.6から得られる
ビート・信号と回折光γη為ら得られるビート信号とが
相互に干渉を起こし1基準信号との位相差が変動し、精
度が劣化するという欠点があった。
However, in this method, in addition to the diffracted lights 5 and 6 necessary for alignment, the incident light 3°4 is 0th-order diffracted by the transmission diffraction grating l and transmitted to the reflective diffraction grating 2 by d-1 and d, respectively.
The diffracted light is incident at an incident angle of +-1, and is optically synthesized by this diffraction grating 2 as the first-order reflected diffracted light in the vertical direction.
There is a diffracted light 7 which is diffracted in the O-th order by the transmission type diffraction grating 1, and since this diffracted light 7 occurs in the same direction as the desired diffracted lights 5 and 6, it causes interference. The diffracted light 7 is a composite diffracted light of the incident lights 3 and 4 that are diffracted and generated only by the diffraction grating 2, and like the diffracted lights 5 and 6, the diffraction grating 1 e 2 I: Therefore, the diffraction grating 1 e 2 I: This is different from the composite light of the double diffracted light of the incident light 3.4. That is, the diffracted light intensity of the diffracted light 7 is stronger than that of the diffracted lights 5 and 6C, which are double diffracted lights. The beat signal due to optical heterodyne interference obtained from this diffracted light f)h has the drawback that it does not cause a phase change in the relative displacement of the diffraction gratings 1 and 2 and cannot be aligned, or There is a drawback that the beat signal obtained from the diffracted light 5.6 and the beat signal obtained from the diffracted light γη interfere with each other, and the phase difference with respect to the first reference signal fluctuates, resulting in deterioration of accuracy.

本発明は、上記の事情ζ2鑑みてなされたもので、その
目的とするところは、所望の回折光のみを取り出すこと
を可能とし、安定したビード信号を得るととにより位置
合わせ精度を向上させる位置合わせ方法、およびその方
法を実権するため(2使用される位置合わせ装置を提供
することにある、〔問題点を解決するための手段〕 本発明の位置合わせ方法は、第1の回折格子の格子ピッ
チをPl、第2の回折格子の格子ピッチfP2 とした
回折格子の組合わせを用い、回折格子面に鉛直な方向に
対し、第1および第2の回折格子のそれぞれの±1次反
射回折光の角度をそれとし死時、周波数が互い(−わず
か(=ずれた波長λ1.λ2 の2波長の光をそれぞれ
(ψ−1十〇−1)。
The present invention was made in view of the above-mentioned circumstances ζ2, and its purpose is to make it possible to extract only desired diffracted light, obtain a stable bead signal, and improve positioning accuracy by [Means for solving the problem] The alignment method of the present invention consists in providing an alignment method and an alignment device used for implementing the method (2). Using a combination of diffraction gratings with a pitch of Pl and a grating pitch of the second diffraction grating fP2, the ±1st-order reflected diffraction light of each of the first and second diffraction gratings is At the time of death, two wavelengths of light with wavelengths λ1 and λ2 whose frequencies are slightly different from each other (ψ-100-1) are respectively (ψ-100-1).

(ψ+1+θ+1)の角度で第1および第2の回折格子
に入射させることにより、所望の回折光のみを取り出し
て位置合わせを行なうようにし死力法である。
This is a dead force method in which only the desired diffracted light is extracted and aligned by making it incident on the first and second diffraction gratings at an angle of (ψ+1+θ+1).

また、本発明の位置合わせ装置は、第1の物体、例えば
マスクパタンCfl定される第1の回折格子と、第2の
物体、例えばウェハに固定されて第1の回折格子に対し
一定の間隔を隔てて対向する第2の回折格子と、第1の
物体と第2の物体とを相対的に動かす保持移動機構と、
周波数が互いにわずか(;ずれた2波長の光を発生する
光源と、この光源から第1および第2の回折格子(:入
射する2波長の光の入射角度を調整する入射角調整手段
と、第1および第2の回折格子g二よって生じた回折光
を取り出しそれらを光学的に合成する光合成手段と、合
成された回折光の光ヘテロダインビート信号を検出する
検出手段と、この検出手段による検出信号に応じて保持
移動機構l二制御信号を送り出し第1の物体と第2の物
体と金所冗の位置に位置合わせする信号処理制御手段と
を具備したものである。
Further, the alignment device of the present invention includes a first object, for example, a first diffraction grating defined by a mask pattern Cfl, and a second object, for example, a wafer fixed to the first diffraction grating, which is fixed to the first diffraction grating at a constant distance from the first diffraction grating. a second diffraction grating that faces each other across, and a holding and moving mechanism that relatively moves the first object and the second object;
a light source that generates light of two wavelengths whose frequencies are slightly shifted from each other; a light combining means for extracting the diffracted light generated by the first and second diffraction gratings g2 and optically combining them; a detecting means for detecting an optical heterodyne beat signal of the combined diffracted light; and a detection signal by the detecting means. The holding and moving mechanism is equipped with a signal processing control means that sends out a control signal to align the first object and the second object to the correct positions in response to the movement.

〔作用コ 本発明の方法によれば、所望の回折光に対し、それと同
一方向にある入射光の第1の回折格子からの反射回折光
、および入射光の@1の回折格子によるO次透過回折光
が第2の回折格子(:よって反射回折し、さらに第1の
回折格子によって再び0次透2過回折した回折光が9間
的に分離する。
[Operation] According to the method of the present invention, for the desired diffracted light, the reflected diffracted light from the first diffraction grating of the incident light in the same direction as the desired diffracted light, and the O-order transmission of the incident light by the @1 diffraction grating. The diffracted light is reflected and diffracted by the second diffraction grating, and the diffracted light is further diffracted by the first diffraction grating again through the 0th-order transmission, and the diffracted light is separated into nine parts.

寸た、本発明の装置では、入射角調整手段で入射光の入
射角を所望の角txt:=、+i整することにより、所
望の回折光のみが今夜され、この合成された回折光の光
ヘテロダインビート信号が検出手段を介して信号処理制
御手段に入力されて保持移動機構を作動させる。
In addition, in the apparatus of the present invention, by adjusting the incident angle of the incident light to a desired angle txt:=,+i using the incident angle adjustment means, only the desired diffracted light is generated, and the light of this combined diffracted light is The heterodyne beat signal is input to the signal processing control means via the detection means to operate the holding and moving mechanism.

〔実施例コ 以下、本発明を図面(=基づいて説明する。第1図は、
本発明C;係る位置合わせ装置の一実施例、すなわち、
半導体ICやLSI  を製造するためのX線バ犬装は
の概略)4成を示すものである。第1図において、33
は周波数が互いにわずかl二異なり、偏光面方向が互t
nc直交する2波長の光を発する2波長直交偏光レーザ
ー光源(光源)、21は、ビームスプリッタ−,22,
22’は集光レンズ、23.23’  、23”  、
23”はばラー(ただし、ばラー23’、23”は角度
yA整自在)24は偏光ビームスジ11ツタ−125,
25’は光検出器、26ti信号処理制御&+S(信号
処理制御手段)、27はマスクステージ、28はマスク
(第1の物体)、29は透過型回折格子C第1の回折格
子)、30Fi、反射型回折格子(第2の回折格子)、
31はウェハ(第2の物・体)、32はウェハステージ
である。
[Example] The present invention will be explained below based on the drawings.
Present invention C; one embodiment of such a positioning device, namely:
This is an overview of the four types of X-ray equipment used to manufacture semiconductor ICs and LSIs. In Figure 1, 33
have frequencies that differ from each other by only l2, and polarization plane directions that differ from each other by t.
A two-wavelength orthogonal polarized laser light source (light source) that emits light of two orthogonal wavelengths, 21 is a beam splitter, 22,
22' is a condensing lens, 23.23', 23'',
23" is a baler (however, the balers 23' and 23" are adjustable in angle yA) 24 is a polarizing beam streak 11 - 125,
25' is a photodetector, 26ti signal processing control &+S (signal processing control means), 27 is a mask stage, 28 is a mask (first object), 29 is a transmission type diffraction grating (C first diffraction grating), 30Fi, reflection type diffraction grating (second diffraction grating),
31 is a wafer (second object/body), and 32 is a wafer stage.

第1図(:おいて、2波長直交偏光レーザー光源33か
ら発した光の一部k、ビームスプリッタ21を介して取
り出し、集光レンズ22.紫通して光検出器25で検出
し基塾ピートイz号として信号処理制御部26に人力す
る。一方、2彼長直交偏光レーサー光13X33から発
した光は、ビームスプリッタ21% ばラー23を介し
て偏光ビームスプU 7タ24(;入る。偏光ビームス
ブ1)ツタ241mより、それぞれ水平成分、あるいは
垂直成分のみを有するπ線偏光でし力為もIi′i1彼
数かわず力島に異なる2ffJ、長の光イニ分割され、
それぞれ、ミラー23′。
In Fig. 1, a part of the light emitted from the two-wavelength orthogonally polarized laser light source 33 is taken out through the beam splitter 21, passed through the condensing lens 22, and detected by the photodetector 25. On the other hand, the light emitted from the orthogonal polarized laser beam 13 1) From 241 m of ivy, the light beams are divided into π-ray polarized light having only horizontal or vertical components, each having a length of 2ffJ, regardless of the number of beams.
Mirror 23', respectively.

23#(入射角調整手段)を介して所望の入射角で透過
型回折格子29、外よび反射型回折格子30+−入射す
る。回折格子29.30から得られ九回折光をミラー2
3”(光合成手段)、集光レンズ22′を介して光検出
器25′ (検出手段)l:よh検出し、回折光ビー)
−信号として信号処理料yJ剤261=入力下る。M号
処理制一部26では、基準ビート信号と回折光ビート信
号との位相差を検出し、位−a差が06になるようCニ
イ鼻持移動機構(図示略)を制御してマスクステージ2
7、およびウニハスラージ32を相対移動させ、マスク
面上のバタンかウェハ面上の所定の位置に精度よ(tな
って露光できようイ:マ7り28とウェハ31との間の
9密な位か合わせf竹なう、 次^で、このよう(:構成された位置合わせ装置を用畏
ハて本発明の位置合わせ方法を説明する。
The light is incident on the transmission type diffraction grating 29, the outside and the reflection type diffraction grating 30+- at a desired angle of incidence via 23# (incident angle adjusting means). The nine diffracted lights obtained from the diffraction grating 29 and 30 are reflected into the mirror 2.
3" (photosynthesizing means), a photodetector 25' (detecting means) through a condensing lens 22', detecting a diffracted light beam)
- Signal processing fee yJ agent 261 = input as a signal. The M processing control section 26 detects the phase difference between the reference beat signal and the diffracted light beat signal, controls the C knee nose holder moving mechanism (not shown) so that the phase-a difference becomes 06, and moves the mask stage. 2
7, and the wafer 32 are moved relative to each other, and the exposure can be performed with precision (t) by pressing a button on the mask surface or at a predetermined position on the wafer surface. Next, the positioning method of the present invention will be explained using the positioning device configured as described above.

第2図において、8は一遍過型回折、格子、9は反射型
回折格子、10.11は周波数が互いにわずかに異なる
2波長の入射光、12.13は所望の回折光、10−1
.11−1は透過型回折格子8からの一1次透過回折光
、10−1’  、11−1’は反射型回折格子9力島
らの1次反射回折光、10−2.11−2は、反射型回
折格子9からの一1次反射回折光である。透過型回折格
子8の格子ピッチP1  は、反射型回折格子9の格子
ピッチP2の万である。前記入射角調整手段を用いて入
射光10.11の入射方向を回折格子面に鉛直な方向番
二対し、回折格子8シよび9のそれぞれの±および(ψ
や、十 〇+1 ) の角f、(;設定する。
In Fig. 2, 8 is a single-pass diffraction grating, 9 is a reflection grating, 10.11 is incident light with two wavelengths slightly different from each other, 12.13 is a desired diffracted light, and 10-1
.. 11-1 is the 11th-order transmitted diffraction light from the transmission type diffraction grating 8, 10-1', 11-1' is the 1st-order reflected diffraction light from the reflection type diffraction grating 9 Rikishima et al., 10-2.11-2 is the 11th order reflected diffraction light from the reflection type diffraction grating 9. The grating pitch P1 of the transmission type diffraction grating 8 is ten thousand times the grating pitch P2 of the reflection type diffraction grating 9. Using the incident angle adjusting means, the incident direction of the incident light 10.11 is set perpendicular to the diffraction grating surface, and the angles of ± and (ψ) of the diffraction gratings 8 and 9 are adjusted.
, 10 + 1 ) angle f, (; Set.

ここで、入射光10.11の波長はλ 、λ2であり、
周波数差Δfは、数KHz  η為ら数百MHz  種
度の値であり、光速Cにユ比べて非常C2小さく、2波
長λ1 、λ2 に対する±1次回折角はほぼ等しくな
る。したがって、ψ−〜−ψ+1゜θ−1ダ θ+1 
 となり・ (ψ−,+  0.−1)〜−(ψや、十
 〇+1 ) となる。回折格子8゜9の格子ピッチP
  、P  をP2=2P1 とし、l      2 入射光10.11の入射角金(ψ−5+ θ−1)−(
ψ+1 十 〇+1 ) にそれぞれ設定することによ
り、入射光10,114二対する、回折格子8からの反
射回折光は、所望の回折光12.13の方向、すなわち
、回折格子面の鉛直方向に対して空間的に分離される。
Here, the wavelengths of the incident light 10.11 are λ and λ2,
The frequency difference Δf is a value ranging from several KHz η to several hundred MHz, which is much smaller than the speed of light C2, and the ±1st order diffraction angles for the two wavelengths λ1 and λ2 are almost equal. Therefore, ψ−〜−ψ+1゜θ−1da θ+1
Then, (ψ-, + 0.-1) ~ - (ψ, 10+1). Grating pitch P of diffraction grating 8°9
, P is P2=2P1, and the angle of incidence of l 2 incident light 10.11 is (ψ-5+ θ-1)-(
By setting ψ+1 10+1 ), the reflected diffracted light from the diffraction grating 8 for the incident light 10 and 1142 is directed in the direction of the desired diffracted light 12.13, that is, in the vertical direction of the diffraction grating surface. separated spatially.

また、第2図に示すよう(−1回折・格子8゜9(−入
射した入射光10.11は、それぞれ透過型回折格子8
で回折されて一1次透過回折光10−1.11−1とな
り、入射角θ−11θや。
In addition, as shown in Fig. 2, (-1 diffraction/grating 8°9 (-) the incident light 10.11 is transmitted through the transmission type diffraction grating 8.
The first-order transmitted diffracted light becomes 10-1.11-1, and has an incident angle of θ-11θ.

でそれぞれ反射型回折格子9に入射し、ここでそれぞれ
反射回折されて一1次反射回折光10−1’ 。
Each of them enters the reflection type diffraction grating 9, where they are each reflected and diffracted to become 11th-order reflected diffraction light 10-1'.

11−1’となる。−1次反射回折光10−1’。11-1'. -1st order reflected diffraction light 10-1'.

11−1’は、回折格子の鉛直方向にそれぞれ回折され
た回折光であり、光学的f;合成され透過型回折格子8
によって0次透過回折されて所望の回折光12となる。
11-1' is the diffracted light that is diffracted in the vertical direction of the diffraction grating, and the optical f;
The light is subjected to zero-order transmission diffraction and becomes the desired diffracted light 12.

一方、回折格子8.9に入射した入射光10.11の一
部は、透:iζ型回折格子8C;よって0次透過回折さ
れて反射型回折格子9に入射し、ここで反射回折されて
一1次反射回折党10−2.11−2となり、透過型回
折格子8に人射角ψ  、ψ でそれぞれ入射する。−
1次−1+1 反射回折光30−2.11−2は、透過型回折格子8で
透過回折されてそれぞれ回折格子8に対して鉛直方向の
一1次透過回折光として光合成されて所望の回折光13
となる。すなわち、所望の方向における回折光は、所望
の回折光12.13以外にはな(、入射光10.11が
涛過型回折格子8により回折された反射回折光、および
、入射光10.11が透過型回折格子8によりo次透過
回折し、反射型回折格子9で反射回折し、再び透過型回
折格子8G二よりO次透過回折した回折光とは、空間的
に分離される。そして、附記光検出器25′3:より、
所望の回折光12.13から元へテロダイン干渉(;よ
るビート信号を検出し、基準16号との位相差を測定し
てマスク28とウェハ31との位置合わせを行なう。
On the other hand, a part of the incident light 10.11 that has entered the diffraction grating 8.9 is transmitted through the iζ type diffraction grating 8C; therefore, it is subjected to zero-order transmission diffraction and enters the reflection type diffraction grating 9, where it is reflected and diffracted. The 11th-order reflection diffraction particles 10-2 and 11-2 are incident on the transmission type diffraction grating 8 at human incidence angles ψ and ψ, respectively. −
The 1st-order −1+1 reflected diffracted light 30-2 and 11-2 are transmitted and diffracted by the transmission type diffraction grating 8, and are optically synthesized as 11th-order transmitted diffracted light in a direction perpendicular to the diffraction grating 8, thereby producing a desired diffracted light. 13
becomes. In other words, the diffracted light in the desired direction is not other than the desired diffracted light 12.13 (the reflected diffracted light obtained by diffracting the incident light 10.11 by the wave-type diffraction grating 8, and the incident light 10.11). is spatially separated from the diffracted light which is transmitted and diffracted by the transmission type diffraction grating 8, reflected and diffracted by the reflection type diffraction grating 9, and again transmitted and diffracted by the transmission type diffraction grating 8G2. Supplementary photodetector 25'3:
A beat signal due to heterodyne interference (;) is detected from the desired diffracted light 12, 13, and the phase difference with reference No. 16 is measured to align the mask 28 and the wafer 31.

一方、第3図は、本発明装置の他の実施例における回折
格子の乳分を示した図である。第3図に卦ハて、14.
14’、14”はごラー、15は偏光ビームスプリッタ
−%16,16’は偏光板、17は入射光、17−1.
17−2.17−3゜17−4.17−5.17−6.
17−5’  。
On the other hand, FIG. 3 is a diagram showing the milk fraction of the diffraction grating in another embodiment of the apparatus of the present invention. Refer to figure 3, 14.
14', 14'' are the mirrors, 15 is the polarizing beam splitter, 16, 16' is the polarizing plate, 17 is the incident light, 17-1.
17-2.17-3°17-4.17-5.17-6.
17-5'.

l7−6’ 、17−7.17−8.17−9は回折光
、18.19は所望の回折光、20.20’は、空1’
Jfフィルターである。入射光17は、周波舷が互Zに
わずかにnなる2波長のλ4.λウ の光の合成光であ
り、しかもそれぞれの光の偏光面の方向が互いC′−垂
直な直線偏光の光である。第3図(2示したように回折
格子8.9の鉛直方向から入射した入射光17は、透過
型回折格子8により透過回折され、0次透過回折光17
−9は、反射型回折格子9に回折格子の鉛直方向から入
射し、また、+1次透過回折光17−1.−1次透過回
折光17−2は、入射角ψ−2もしくはψや、で反射型
回折格子9に入射する。0次透過回折光17−9は、反
射型回折格子9によりθ21もしくはθ+1 の角度で
反射回折されてそれぞれ一1次反射回折光17−3.+
1次反射回折光17−4となる。さらに、−1次反射回
折光17−3.17−4は、透過型回折格子8により(
ψ−7十〇−ff)もしぐは(ψや、十〇や、)の角度
に透過回折されてそれぞれ+1次透過回折光17−7.
17−8と彦る。一方、±1次′fh過回折光17−1
.17−2は、反射型回折格子9こより、(ψ−7+θ
−7)もしくは(ψや、十〇や、)の角度(−回折され
て+1次反射回折光17−5’ 、17−6’となり、
さらに透過型回折格子8cユよりO次回折されて、0次
透過回折光17−5.17−6となる。回折格子8.9
によって生じた回折光17−15.17−6.17−7
.17−8は、空間フィルタ20゜20′ 、ミラー1
4.14’を介して偏光ビームスプリッタ−153−入
射される。回折光17−5゜17−6.17−7.17
−8は、それぞれλ1゜λ2の2波長の合成光であり、
偏光面が互いに垂直な亘M偏光の光である。偏光板16
.16’全用いて回折光17−5.17−7、および回
折光17−6.17−8についてそれぞれ光の水平偏光
成分、すなわち波長λ、(またはλ2 )の光、および
光の垂直偏光成分、すなわち波長λ2 (またはλ、)
の光を取り出し、偏光ビームスフ+1ツタ−15に入射
させることにより、λ1 、λ2 の2波長の光が光学
的に合成された所望の回折光18.19を取り出すこと
ができる。所望の回折光18.1C1xら光ヘテロダイ
ン干渉によるビート信号を検出することにより位置合わ
せができる。
17-6', 17-7.17-8.17-9 is the diffracted light, 18.19 is the desired diffracted light, 20.20' is the sky 1'
It is a Jf filter. The incident light 17 has two wavelengths λ4. This light is a composite light of λc, and is a linearly polarized light whose planes of polarization are perpendicular to each other. As shown in FIG. 3 (2), the incident light 17 entering from the vertical direction of the diffraction grating 8.9 is transmitted and diffracted by the transmission type diffraction grating 8, and the 0th order transmitted diffracted light 17
-9 enters the reflection type diffraction grating 9 from the vertical direction of the diffraction grating, and +1st-order transmitted diffracted light 17-1. The -1st-order transmitted diffraction light 17-2 is incident on the reflection type diffraction grating 9 at an incident angle of ψ-2 or ψ. The 0th-order transmitted diffraction light 17-9 is reflected and diffracted by the reflection type diffraction grating 9 at an angle of θ21 or θ+1, and becomes the 11th-order reflected diffraction light 17-3. +
This becomes first-order reflected diffraction light 17-4. Furthermore, the −1st-order reflected diffraction light 17-3, 17-4 is filtered by the transmission type diffraction grating 8 (
ψ-710-ff) is transmitted and diffracted at an angle of (ψ, 10, etc.) and the +1st-order transmitted diffracted light 17-7.
17-8. On the other hand, ±1st-order 'fh overdiffracted light 17-1
.. 17-2 is a reflection type diffraction grating 9, (ψ-7+θ
-7) or (ψ, 10, etc.) angle (-diffracted and becomes +1st order reflected diffracted light 17-5', 17-6',
The light is further diffracted by the 0th order by the transmission type diffraction grating 8c to become 0th order transmitted diffracted light 17-5 and 17-6. Diffraction grating 8.9
Diffracted light 17-15.17-6.17-7 generated by
.. 17-8 is a spatial filter 20°20', mirror 1
4.14' to the polarizing beam splitter 153. Diffracted light 17-5°17-6.17-7.17
-8 is the composite light of two wavelengths of λ1 and λ2, respectively,
This is light with M polarization whose planes of polarization are perpendicular to each other. Polarizing plate 16
.. 16' for the diffracted light 17-5.17-7 and the diffracted light 17-6.17-8 respectively, the horizontal polarization component of the light, i.e. the light of wavelength λ, (or λ2), and the vertical polarization component of the light. , i.e. the wavelength λ2 (or λ,)
By taking out the light and making it incident on the polarized beam filter 15, it is possible to take out the desired diffracted light 18.19, which is optically combined light of two wavelengths λ1 and λ2. Positioning can be performed by detecting a beat signal caused by optical heterodyne interference from the desired diffracted light 18.1C1x.

以上の説明においては、透過型回折格子8の格子ピッチ
P を反射型回折格子9の格子ピッチP2の1/2に定
めたが、一般に、透過型回折格子の格子ピッチP を反
射型回折格子の格子ピッチP2】 の−(nは正の整数)、すなわちp、=−Lp2 にn
                         
               n設定し、回折格子面
の鉛直方向を0次回折の方向として、入射方間、もしく
は所望の回折光方向に定め、透過型回折格子の±1次回
折の方向をψ−1゜9  反射型回折格子の±1次回折
の方向を6=、。
In the above explanation, the grating pitch P of the transmission type diffraction grating 8 was set to 1/2 of the grating pitch P2 of the reflection type diffraction grating 9, but in general, the grating pitch P of the transmission type diffraction grating is set to 1/2 of the grating pitch P2 of the reflection type diffraction grating. - (n is a positive integer) of the lattice pitch P2], that is, p, = -Lp2

n, set the vertical direction of the diffraction grating surface as the direction of 0th order diffraction, and set it to the incident direction or the direction of the desired diffracted light, and set the direction of ±1st order diffraction of the transmission type diffraction grating to ψ-1°9.Reflection type 6 = the direction of the ±1st order diffraction of the diffraction grating.

+“l θ+1 とした時、(ψ−1十〇−1)および(ψ+1
十〇+1)の方向に所望の回折光方向、もしくは入射方
向と定めれば、透過型回折格子からの入射光の反射回折
光および、透過型回折格子からの入射光のO次回折光が
反射型回折格子により反射回折され、さらに透過型回折
格子により0次透過回折された回折光は本来所望の回折
光方向4ユ生ぜず、高精度な位置合わせを行なうことが
できる。
+“l θ+1, (ψ−100−1) and (ψ+1
If the direction of 10+1) is set as the desired diffracted light direction or incident direction, the reflected diffracted light of the incident light from the transmission type diffraction grating and the O-th order diffracted light of the incident light from the transmission type diffraction grating will be reflected type. The diffracted light that is reflected and diffracted by the diffraction grating and then transmitted and diffracted by the transmission type diffraction grating does not produce the originally desired diffracted light direction 4, allowing highly accurate positioning.

なお、第1図においては、1対の回折格子29゜30f
示したが同様の回折格子を、マスクおよびウェハ面上の
2個所以上の位置(−設置し、第1図と同様の方法を用
いて回折光のビート信号を検出し、基準信号との位相差
をなくすよう(−マスクおよびウェハステージをil制
御することにより、マスクとウェハとを回折格子面に平
行な面で回折格子に平行および垂直な方向の2軸X、Y
、およびXY面に垂直なz軸を中心としたXY面の回転
軸θの3軸について位置合わせを行なうこともできる。
In addition, in FIG. 1, a pair of diffraction gratings 29°30f
Diffraction gratings similar to those shown above are installed at two or more positions on the mask and wafer surface, and the beat signal of the diffracted light is detected using the same method as in Figure 1, and the phase difference with the reference signal is detected. (-By controlling the mask and wafer stage, the mask and wafer are aligned in two axes, X and Y, parallel and perpendicular to the diffraction grating in a plane parallel to the diffraction grating plane.
, and the rotation axis θ of the XY plane centered on the z-axis perpendicular to the XY plane.

また、本発明における第1および第2の回折格子として
、吸収型回折格子、位相型回折格子のいずれを用いても
よく、さらfニパイナリ−回折格子に限定されることな
(、正弦波状回折格子、ブレーズ回折格子など1々の組
み合わせが可能である。
Further, as the first and second diffraction gratings in the present invention, either an absorption type diffraction grating or a phase type diffraction grating may be used. , blazed diffraction grating, etc. are possible.

また、本実施しl」では、z))2の回折格子f;反射
型回折格子金用めた場合につ1ハて述べ九が、透過型回
折格子を用いた場合においても同様の効果を得ることが
できる。
In addition, in this implementation example, the diffraction grating f in z))2 is described in 1 C and 9 above, but the same effect can be obtained when a transmission type diffraction grating is used. Obtainable.

さらに、本発明の実施例では、第1の回折格子の格子ピ
ッチP11:対し、第2の回折格子の格子ピッチP2 
を2倍とした場合について述べたが、一般にntPt 
== r12P2 (n、e T:12は正の整数)の
関係にある格子ピッチの回折格子を用いた場合I:おい
ても同様の効果を得ることができる。    4・〔発
明の効果〕 以上説明したように二、本発明の方法によれば、透過型
回折格子と反射型回折格子を用いる位置合わせ装置(−
おいて、透過型回折格子および反射型回折格子の一方の
み(−よって1次回折して生じるマスクとウェハとの相
対変位(2無関係な反射回折光の影#ヲ・除去すること
ができるので、精密な位置合わせを安定して行なうこと
ができ、マスクとウェハの高精度々位置合わC−t々ど
に極めて有効である。ブた、本発明の方法は、位置合わ
せのみならず、ある物体の微小変位全測定する装置、座
標位置検出およびつj制御装置にも適用することができ
る。
Furthermore, in the embodiment of the present invention, the grating pitch P11 of the first diffraction grating: whereas the grating pitch P2 of the second diffraction grating
Although we have discussed the case where ntPt is doubled, in general, ntPt
A similar effect can be obtained when using a diffraction grating with a grating pitch having the relationship of == r12P2 (n, e T: 12 is a positive integer). 4. [Effects of the Invention] As explained above, 2. According to the method of the present invention, an alignment device (-
In this case, only one of the transmission type diffraction grating and the reflection type diffraction grating (-Therefore, the relative displacement between the mask and the wafer caused by the first-order diffraction (2) can be removed. Precise alignment can be stably performed, and it is extremely effective for highly accurate alignment of masks and wafers.However, the method of the present invention is useful not only for alignment, but also for It can also be applied to devices that measure all minute displacements, coordinate position detection, and control devices.

また、本発明の装置(:よれば、入射角調整手段で入射
光の入射角を所望の角度(すなわち、(ψ−1十〇−1
)、(ψ+1十〇+、)あるいは回折格子の鉛直方向)
にシロ整することができ、これによって、所望の回折光
のみを取り出して、高精度の位置合わせを行なうことが
できる、
Further, according to the apparatus of the present invention (:), the incident angle of the incident light can be adjusted to a desired angle (i.e.,
), (ψ+100+, ) or the vertical direction of the diffraction grating)
This allows for highly accurate positioning by extracting only the desired diffracted light.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一夷九例を示す概略))成因、第2
図は同じ(回折格子のii、(1分を示す概略図、第3
図は、本発明の他の裏弛例における回折格子の部分を示
す概略図、第4図は従来の微小変位の測定および精密位
置合わせ装Mの回折格子の部分を示す概略図である。 8・・・・・・透過型回折格子、9・・・・・・反射型
回折格子、10.11・・・・・・入射光、10−1.
11−1・・・・・・透過型回折格子8がらの一1次透
11回折光、10−1’、11−1’・・・反射型回折
格子9からの一1次反射回折光% 1o−2,11−2
・・・反射型回折格子9からの一1次反射回折光、12
.13・・・・・・所望の回折光、14.14’  、
14”・・・・・・ミラー、15・・・・・・1光ビー
ムスプリッタ−116゜16′・・・・・・偏光板、1
7・・・・・・入射光、17−1゜17−2.17−3
.17−4.17−5.17−6.17−5’  、1
7−6’  、17−7.17−8・・・・・・回折光
、IF3.19・・・・・・所望の回折光、20.20
’・・・・・・空間フィルター、21・・・・・・ビー
ムスプリッタ−,22,22’・・・・・・集光レンズ
、23.23′′・・・・・・ミラー、23’  + 
23”−・−−−・ミラー(入射角−些禾段)、24・
・・・・うA光ビームスプリッタ−125・・・・・・
光検出器、25′・・・・・・プし検出器(検出手段)
、26・・・・・・信号処理■(!脚部(信号処理制御
手段)、27・・・・・・マスクステージ、28・・・
・・・マスク(f41の物体)、29・・・・・・育過
型回折格子 (第1の回折格子)、30・・・・・・反
射型回折格子(第2の回折格子)、31・・・・・・ウ
ェハlT2の物体)、32・・・・・・ウェハステージ
、33・・・・・・2波長直交偏光レーザー元源(光源
)。 /ill願入 日本電信電話株式会社 代理人 弁理士 志 賀 正 武 23゛、23”・ 人身1由衣周整■又(ミラー)28
 :第1/l鈎停(Y入り) 29 : 第1の回杭子答テ(誘怠1面用番をテ)30
  尾2/1回侑十1す(双約11回初J省テ〕26 
  ゛ 1古号グ↓週癌’1911ラ−を覧(イ古′g
jメさ工!刷右繁声)第  2 図 9:M2 〆)回1了y+hコト(7反↓ヒコ型1回丁
q℃子イトラーン第3図 第4図 7・
FIG. 1 is a schematic diagram showing one example of the present invention.
The figures are the same (ii of the diffraction grating, (schematic diagram showing 1 minute, 3rd
This figure is a schematic diagram showing a portion of a diffraction grating in another example of back-relaxation of the present invention, and FIG. 8... Transmission type diffraction grating, 9... Reflection type diffraction grating, 10.11... Incident light, 10-1.
11-1...11th-order transmitted 11th-order diffracted light from the transmission type diffraction grating 8, 10-1', 11-1'...11st-order reflected diffracted light from the reflection type diffraction grating 9% 1o-2, 11-2
...11th order reflected diffraction light from the reflection type diffraction grating 9, 12
.. 13... Desired diffracted light, 14.14',
14"...Mirror, 15...1 Optical beam splitter-116°16'...Polarizing plate, 1
7...Incoming light, 17-1°17-2.17-3
.. 17-4.17-5.17-6.17-5', 1
7-6', 17-7.17-8... Diffracted light, IF3.19... Desired diffracted light, 20.20
'...Spatial filter, 21...Beam splitter, 22, 22'...Condenser lens, 23.23''...Mirror, 23' +
23”-・---・mirror (incidence angle - small degree), 24・
...A optical beam splitter-125...
Photodetector, 25'...Pop detector (detection means)
, 26... Signal processing ■(! Leg (signal processing control means), 27... Mask stage, 28...
...Mask (f41 object), 29... Growth type diffraction grating (first diffraction grating), 30... Reflection type diffraction grating (second diffraction grating), 31 . . . wafer lT2 object), 32 . . . wafer stage, 33 . . . 2 wavelength orthogonal polarization laser source (light source). /ill Application Nippon Telegraph and Telephone Corporation Representative Patent Attorney Masaru Shiga Takeshi 23゛, 23” Person 1 Shusei Yui ■Mata (Miller) 28
: 1st/l hook stop (enter Y) 29 : 1st round answer (number for 1st page of temptation) 30
Tail 2/1st Yuju1su (about 11th first J save) 26
゛ 1 old issue ↓ Weekly Cancer '1911 La- (I old 'g
j mesako! 2nd figure 9: M2 〆) times 1 completed y+h (7 anti↓ hiko type 1 times ding q℃ child itran 3rd figure 4th figure 7.

Claims (1)

【特許請求の範囲】 1)第1の物体に設けた第1の回折格子と、第2の物体
に設けた第2の回折格子とを一定の間隔を隔てて対向さ
せて相互に平行移動可能に配置し、これら第1および第
2の回折格子に単色光を入射し、両回折格子から生じる
回折光を利用して第1の物体と第2の物体の相対変位を
検出し、位置合わせする方法において、前記単色光とし
て周波数のわずかにずれた2波長の光を用い、前記第1
および第2の回折格子によつて生じた回折光のうち、両
回折格子によつてそれぞれ1次以上の回折を生じた回折
光のみを取り出すことにより、それらを光学的に合成し
、光ヘテロダインビート信号を生成して、その位相変化
によつて第1の物体と第2の物体の相対変位を検出して
両物体の位置合わせを行なうことを特徴とする位置合わ
せ方法。 2)前記第1および第2の回折格子に入射する入射光と
して、周波数がわずかにずれた2波長の光で、且つ偏光
面が互いに垂直な直線偏光の光を用いることを特徴とす
る特許請求の範囲第1項記載の位置合わせ方法。 3)第1の物体と第2の物体とを相対的に位置合わせす
る装置において、第1の物体に固定される第1の回折格
子と、第2の物体に固定されかつ前記第1の回折格子に
対し一定の間隔を隔てて対向する第2の回折格子と、第
1の物体と第2の物体とを相対的に動かす保持移動機構
と、周波数が互いにわずかにずれた2波長の光を発生す
る光源と、この光源から第1および第2の回折格子対に
入射する前記2波長の光の入射角を調整する入射角調整
手段と、第1および第2の回折格子によつて生じた回折
光を取り出しそれらを光学的に合成する光合成手段と、
合成された回折光の光ヘテロダインビート信号を検出す
る検出手段と、この検出手段による検出信号に応じて前
記保持移動機構に制御信号を送り出し第1および第2の
物体を相対的に移動させて所定の位置に位置合わせさせ
る信号処理制御手段とを具備したことを特徴とする位置
合わせ装置。
[Claims] 1) A first diffraction grating provided on a first object and a second diffraction grating provided on a second object can be moved in parallel with each other by facing each other with a fixed interval between them. monochromatic light is incident on the first and second diffraction gratings, and the relative displacement of the first object and the second object is detected and aligned using the diffracted light generated from both diffraction gratings. In the method, light of two wavelengths whose frequencies are slightly shifted is used as the monochromatic light, and the first
Out of the diffracted lights generated by the first and second diffraction gratings, only the diffracted lights that have been diffracted to the first or higher order by both diffraction gratings are taken out, and these are optically combined to form an optical heterodyne beat. A positioning method characterized by generating a signal and detecting a relative displacement between a first object and a second object based on a phase change of the signal to align the two objects. 2) A patent claim characterized in that the incident light incident on the first and second diffraction gratings is linearly polarized light having two wavelengths whose frequencies are slightly shifted and whose planes of polarization are perpendicular to each other. The alignment method described in item 1. 3) In an apparatus for relatively aligning a first object and a second object, a first diffraction grating fixed to the first object and a first diffraction grating fixed to the second object and the first diffraction grating fixed to the first object; A second diffraction grating that faces the grating at a constant interval, a holding and moving mechanism that relatively moves the first object and the second object, and light of two wavelengths whose frequencies are slightly shifted from each other. a light source that generates light, an incident angle adjustment means that adjusts the incident angle of the two wavelengths of light that enters the pair of first and second diffraction gratings from the light source, and a light source generated by the first and second diffraction gratings. a photosynthesis means for taking out the diffracted lights and optically combining them;
a detection means for detecting an optical heterodyne beat signal of the combined diffracted light; and a control signal is sent to the holding and moving mechanism in response to the detection signal from the detection means to relatively move the first and second objects to a predetermined position. A positioning device comprising a signal processing control means for positioning the position.
JP60198966A 1985-09-09 1985-09-09 Alignment process and device thereof Pending JPS6258628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60198966A JPS6258628A (en) 1985-09-09 1985-09-09 Alignment process and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60198966A JPS6258628A (en) 1985-09-09 1985-09-09 Alignment process and device thereof

Publications (1)

Publication Number Publication Date
JPS6258628A true JPS6258628A (en) 1987-03-14

Family

ID=16399886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60198966A Pending JPS6258628A (en) 1985-09-09 1985-09-09 Alignment process and device thereof

Country Status (1)

Country Link
JP (1) JPS6258628A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0450721A (en) * 1990-06-20 1992-02-19 Futaba Corp Optical length measuring instrument
JPH0499914A (en) * 1990-03-26 1992-03-31 Sumitomo Heavy Ind Ltd Displacement measuring method and apparatus using diffraction grating
US5432603A (en) * 1992-11-20 1995-07-11 Canon Kabushiki Kaisha Optical heterodyne interference measuring apparatus and method, and exposing apparatus and device manufacturing method using the same, in which a phase difference between beat signals is detected
JPH09508463A (en) * 1994-01-24 1997-08-26 エスヴィージー リトグラフィー システムズ インコーポレイテッド Lattice-lattice interference type alignment device
KR100464854B1 (en) * 2002-06-26 2005-01-06 삼성전자주식회사 Method for aligning of wafer and apparatus for same
KR100481545B1 (en) * 2002-06-29 2005-04-07 동부아남반도체 주식회사 Method for wafer alignment by using double wavelength laser
JP2009105433A (en) * 2004-12-23 2009-05-14 Asml Netherlands Bv Lithographic equipment with two-dimensional alignment measurement arrangement, and two-dimensional alignment measurement method
KR200467407Y1 (en) * 2011-09-15 2013-06-12 (주)아모레퍼시픽 Apparatus for eliminating foreign substance in container
KR101290397B1 (en) * 2011-08-29 2013-08-07 현대제철 주식회사 Method evaluate the curvature of forming matter with a micro-bending

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499914A (en) * 1990-03-26 1992-03-31 Sumitomo Heavy Ind Ltd Displacement measuring method and apparatus using diffraction grating
JPH0450721A (en) * 1990-06-20 1992-02-19 Futaba Corp Optical length measuring instrument
US5432603A (en) * 1992-11-20 1995-07-11 Canon Kabushiki Kaisha Optical heterodyne interference measuring apparatus and method, and exposing apparatus and device manufacturing method using the same, in which a phase difference between beat signals is detected
JPH09508463A (en) * 1994-01-24 1997-08-26 エスヴィージー リトグラフィー システムズ インコーポレイテッド Lattice-lattice interference type alignment device
KR100464854B1 (en) * 2002-06-26 2005-01-06 삼성전자주식회사 Method for aligning of wafer and apparatus for same
KR100481545B1 (en) * 2002-06-29 2005-04-07 동부아남반도체 주식회사 Method for wafer alignment by using double wavelength laser
JP2009105433A (en) * 2004-12-23 2009-05-14 Asml Netherlands Bv Lithographic equipment with two-dimensional alignment measurement arrangement, and two-dimensional alignment measurement method
KR101290397B1 (en) * 2011-08-29 2013-08-07 현대제철 주식회사 Method evaluate the curvature of forming matter with a micro-bending
KR200467407Y1 (en) * 2011-09-15 2013-06-12 (주)아모레퍼시픽 Apparatus for eliminating foreign substance in container

Similar Documents

Publication Publication Date Title
US4631416A (en) Wafer/mask alignment system using diffraction gratings
JP2821073B2 (en) Gap control device and gap control method
JP3187093B2 (en) Position shift measuring device
EP0449582A2 (en) Measuring method and apparatus
JPS6228576B2 (en)
JPH039403B2 (en)
JPS6258628A (en) Alignment process and device thereof
JPS62224025A (en) Aligner for arraging mask and substrate mutually
JPH0749926B2 (en) Alignment method and alignment device
JP3029133B2 (en) Measurement method and device
JPS5938521B2 (en) Micro displacement measurement and alignment equipment
US5025168A (en) Alignment apparatus including three beams and three gratings
JP2554626B2 (en) Positioning method and positioner using diffraction grating
JPS63172904A (en) Method and device for position detection by diffraction grating
JPS6378004A (en) Positioning method and exposing device
JP2677662B2 (en) Relative alignment method and device
JP2883385B2 (en) Alignment method and their devices
JPS61290306A (en) Position detection and exposure using the same
JPH07122565B2 (en) Exposure equipment
JPS6318624A (en) Exposure apparatus
JPH0587530A (en) Interference measurement device
JPS62165918A (en) Exposure device
JPH02222520A (en) Alignment device for light exposing apparatus
KR0174868B1 (en) Alignment device for stepper wafer using Zeman laser
JPS6482622A (en) Device for alignment