JPH04148563A - Linear image sensor - Google Patents

Linear image sensor

Info

Publication number
JPH04148563A
JPH04148563A JP2273527A JP27352790A JPH04148563A JP H04148563 A JPH04148563 A JP H04148563A JP 2273527 A JP2273527 A JP 2273527A JP 27352790 A JP27352790 A JP 27352790A JP H04148563 A JPH04148563 A JP H04148563A
Authority
JP
Japan
Prior art keywords
light
light receiving
impurity diffusion
image sensor
linear image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2273527A
Other languages
Japanese (ja)
Other versions
JP3047114B2 (en
Inventor
Kojin Kawahara
河原 行人
Satoshi Machida
聡 町田
Hiroshi Konakano
浩志 向中野
Masahiro Yokomichi
横道 昌弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2273527A priority Critical patent/JP3047114B2/en
Priority to US07/775,824 priority patent/US5329149A/en
Priority to EP19910309425 priority patent/EP0480775A3/en
Publication of JPH04148563A publication Critical patent/JPH04148563A/en
Priority to US07/939,090 priority patent/US5426060A/en
Application granted granted Critical
Publication of JP3047114B2 publication Critical patent/JP3047114B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To even out the photo-electric conversion characteristic of a plurality of light receiving elements by making impurity diffusion layers, to store up the photo-electric charges of the light receiving elements, into the same shape having the same insulation capacitance as light shielding metallic conductive films. CONSTITUTION:Light receiving elements PD2, PD3,... have openings of a standard shape and the area SPD thereof is (a)X(b). The opening of a light receiving element PD1 at the end is rectangular, the sides in the direction of the arrangement of the light receiving elements of which are shorter than the other openings, and its area SPD1, which is a'Xb', is equal to SPD. Impurity diffusion layers 3 are provided with an insulation capacitance COR at SOR1 and SOR2 where the impurity diffusion layers 3 overlap opaque metallic thin films 5 through an intermediate insulating film 4. The impurity diffusion layers 3 overlap the opaque metallic thin films 5 through the intermediate insulating film 4 also at the light receiving element at the end of the linear image sensor and the area SE thereof equals the sum of the area of SOR1 and SOR2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ファクシミリや、イメージスキャナ、又、デ
ジタルコピア等の画像読取り用のリニアイメージセンサ
−に関するものであり、さらに詳述すれば、受光素子間
の出力均一性に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a linear image sensor for reading images in facsimiles, image scanners, digital copiers, etc. This relates to output uniformity between elements.

〔発明の概要〕[Summary of the invention]

本発明は、複数本でリニアイメージセンサ−を直線上に
配置してなるリニアイメージセンサ−において受光素子
の光電荷を蓄積する不純物拡散層の形状を同じにして、
かつ、その拡散層と遮光用の金属導電膜との間に絶縁容
量を等しくして、複数個の受光素子の光電変換特性が均
一になるようにしたものである。
The present invention provides a linear image sensor in which a plurality of linear image sensors are arranged in a straight line, in which the shape of the impurity diffusion layer for accumulating photoelectric charge of the light receiving element is made the same,
In addition, the insulating capacitance is made equal between the diffusion layer and the light-shielding metal conductive film, so that the photoelectric conversion characteristics of the plurality of light receiving elements are made uniform.

〔従来の技術〕[Conventional technology]

従来、第2図Tal〜(C1に示すように、等積変形し
た光電荷蓄積用の拡散層14.22.32を複数個配置
してなるリニアイメージセンサ−が知られていた。第2
図(alは、n型の半導体基板12中に形成されたP型
の高不純物濃度の拡散層14でフォトダイオードの受光
素子を形成するリニアイメージセンサ−を示している9
例えば、特開昭57−157680号公報にこのような
従来のリニアイメージセンサ−の構造が開示されている
Conventionally, as shown in FIG.
Figure 9A shows a linear image sensor in which a photodiode light-receiving element is formed by a P-type high impurity concentration diffusion layer 14 formed in an N-type semiconductor substrate 12.
For example, Japanese Patent Application Laid-Open No. 57-157680 discloses the structure of such a conventional linear image sensor.

〔発明が解決しようとする!IN) しかし、従来のリニアイメージセンサ−は、通常の受光
素子となる光電荷蓄積用の不純物拡散層21と、等横変
形した光電荷蓄積用の不純物拡散層22の領域で発生す
る光電荷の量が等しくてもその形状が異なるため、光t
?iiJを引き出す際の電界強度が異なるため、読み出
し時間が異なるという問題点があった。受光素子がフォ
ト・ダイオードの時はその差が比較的小さいが、フォト
・トランジスタにすると、等横変形しても、形状の違い
から増幅率hfeが異なり、外部へ出力される信号電荷
の量が大きく異なり、リニアイメージセンサ−の出力均
一性が悪くなるという問題点があった。
[Invention tries to solve! However, in conventional linear image sensors, photocharges generated in the region of the impurity diffusion layer 21 for photocharge accumulation, which serves as a normal light-receiving element, and the impurity diffusion layer 22 for photocharge accumulation, which is horizontally deformed, are Even if the amount is the same, the shape is different, so the light t
? Since the electric field strength when extracting iiJ is different, there is a problem that the readout time is different. When the light-receiving element is a photodiode, the difference is relatively small, but when it is a phototransistor, even if the phototransistor is deformed horizontally, the amplification factor hfe differs due to the difference in shape, and the amount of signal charge output to the outside increases. There was a problem that the output uniformity of the linear image sensor deteriorated.

そこで、本発明は、従来のこのような問題点を解決する
ため、受光領域は等横変形し同じ面積とし、かつ発生し
た光電荷を蓄積する不純物拡散層の形状も同じにして、
出力均一性を向上させたリニアイメージセンサ−を得る
ことを目的としている。
Therefore, in order to solve these conventional problems, the present invention makes the light-receiving region equilaterally deformed to have the same area, and also makes the shape of the impurity diffusion layer that accumulates the generated photocharge the same.
The objective is to obtain a linear image sensor with improved output uniformity.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するために、本発明は、遮光用の不透
明金属薄膜で半導体基板上部を被い、その不透明金属薄
膜の開口部の下部を受光素子の受光領域とし、受光領域
の面積を決める各受光素子の開口部の形状は、互いに形
状が変わっても面積が等しくなるよう等横変形し、かつ
光の半導体基板への照射により、半導体基板中で発生し
た光電荷を蓄積する不純物拡散層の形状は、各受光素子
とも同じにし、加えて不純物拡散層と、不透明金属薄膜
との間の絶縁容量もほぼ同一にする構成とし、リニアイ
メージセンサ−の出力均一性を向上させるようにした。
In order to solve the above problems, the present invention covers the upper part of a semiconductor substrate with an opaque metal thin film for light shielding, sets the lower part of the opening of the opaque metal thin film as a light receiving area of a light receiving element, and determines the area of the light receiving area. The shape of the opening of each light-receiving element is horizontally deformed so that the area is the same even if the shape changes, and there is an impurity diffusion layer that accumulates photocharges generated in the semiconductor substrate when the semiconductor substrate is irradiated with light. The shape of each light-receiving element is made the same, and the insulation capacitance between the impurity diffusion layer and the opaque metal thin film is also made almost the same, thereby improving the output uniformity of the linear image sensor.

〔作用〕[Effect]

上記のように構成されたリニアイメージセンサ−に均一
な光を照射した場合、各受光素子に蓄積される光電荷の
量は、等横変形された各受光素子の開口部を通って半導
体基板に照射される光量が同じため、はぼ等しくなり、
かつ光電荷を蓄積する不純物拡散層の形状が等しく、加
えてその不純物拡散層と、遮光用の金属薄膜とで形成さ
れる絶縁容量もほぼ等しいため、外部へ光電変換された
信号電荷を読み出す際も、出力インピーダンスや、増幅
率hfeが、受光素子間でほぼ等しくなり出力信号もほ
ぼ等しくなるものである。
When a linear image sensor configured as described above is irradiated with uniform light, the amount of photocharge accumulated in each photodetector passes through the opening of each photodetector that is equilaterally deformed and reaches the semiconductor substrate. Since the amount of light emitted is the same, they are approximately equal,
In addition, the shape of the impurity diffusion layer that accumulates photocharges is the same, and the insulating capacitance formed by the impurity diffusion layer and the light-shielding metal thin film is also approximately equal, so when reading out the photoelectrically converted signal charge to the outside, Also, the output impedance and amplification factor hfe are approximately equal between the light receiving elements, and the output signals are also approximately equal.

〔実施例〕〔Example〕

以下、本発明のリニアイメージセンサ−の実施例を図面
に基づいて詳細に説明する。第1図18+において、半
導体基板lの表面側に複数の受光素子が直線上に配置形
成されている様子を示す0便宜上、半導体基板lは導電
型がn型のシリコンSt半導体基板とする。半導体基板
1の表面側に形成されている不純物拡散層3は光huが
照射され半導体基板1内部で発生する光電荷のうち、正
孔を蓄積する働きをもち、ボロンBまたはインジウムI
nの高濃度p型層で形成される。それぞれの不純物拡散
層3を分離するために素子分離層2が、各不純物拡散層
3を囲うように、リンPや、砒素As又はアンチモンs
b、の高濃度N型層で半導体基板1の表面に形成されて
いる。それらが形成された半導体表面を中間絶縁膜4で
被覆する。中間絶縁膜4は透明である必要があり、通常
は一酸化砒素Singを用い、半導体基板lを熱酸化し
たり、化学気相成長法等により形成する。その中間絶縁
W44の上に、各受光素子の受光面積を決める遮光膜と
なる不透明金属1II5を形成する。この不透明金属薄
膜5の開口部の下部が受光素子の受光領域となる0通常
この不透明金属薄膜5はアルミニウムが使われ、スパッ
タリングや、真空蒸着等により堆積させ、通常のLSI
製造工程を通してエツチングしパターニングされる。さ
らに、その上を保護M6で被覆する。この保護膜6には
、透明なリン珪化ガウスPSGや、シリコンナイトライ
ド5ixNaが用いられ、これらは化学気相成長法等に
より形成され、外部からアルカリ土属イオンや、水分等
の不純物が半導体基板1表面へ侵入するのを防ぐ働きを
する。このような断面構造を有する通常の受光素子を直
線上に配置し、リニアイメージセンサ−の検出部を作る
が、そのリニアイメージセンサ−の端部の様子を第1図
10)に示す、PDI、PO2・・・は受光素子を示し
、第1図ic)では、不透明金属薄膜5のみを表し、開
口部の形状の違いを示している。受光素子PD2゜PO
2・・・の開口部が標準の形状をしており、その面積S
PDは5PD=axbとなっている。
Hereinafter, embodiments of the linear image sensor of the present invention will be described in detail based on the drawings. In FIG. 18+, a plurality of light receiving elements are arranged and formed in a straight line on the front surface side of a semiconductor substrate 1. For convenience, the semiconductor substrate 1 is assumed to be a silicon St semiconductor substrate having an n-type conductivity. The impurity diffusion layer 3 formed on the surface side of the semiconductor substrate 1 has the function of accumulating holes among the photocharges generated inside the semiconductor substrate 1 when the light hu is irradiated,
It is formed of a p-type layer with a high concentration of n. In order to isolate each impurity diffusion layer 3, the element isolation layer 2 is made of phosphorus P, arsenic As, or antimony S so as to surround each impurity diffusion layer 3.
A highly doped N-type layer b is formed on the surface of the semiconductor substrate 1. The semiconductor surface on which they are formed is covered with an intermediate insulating film 4. The intermediate insulating film 4 must be transparent and is usually formed by thermally oxidizing the semiconductor substrate 1 using arsenic monoxide Sing, or by chemical vapor deposition. On the intermediate insulator W44, an opaque metal 1II5 is formed to serve as a light-shielding film that determines the light-receiving area of each light-receiving element. The lower part of the opening of this opaque metal thin film 5 becomes the light receiving area of the light receiving element.Usually, this opaque metal thin film 5 is made of aluminum and is deposited by sputtering, vacuum evaporation, etc.
It is etched and patterned during the manufacturing process. Further, it is covered with a protective layer M6. This protective film 6 is made of transparent Gauss phosphorus silicide PSG or silicon nitride 5ixNa, and is formed by chemical vapor deposition, etc., so that impurities such as alkaline earth metal ions and moisture can be absorbed from the outside into the semiconductor substrate. 1. Works to prevent intrusion into the surface. A normal light receiving element having such a cross-sectional structure is arranged in a straight line to create a detection section of a linear image sensor. PO2 . . . indicates a light receiving element, and in FIG. 1 ic), only the opaque metal thin film 5 is shown, and the difference in the shape of the opening is shown. Photodetector PD2゜PO
The opening of 2... has a standard shape, and its area S
The PD is 5PD=axb.

又、端部の受光素子PDIの開口部の形状は、他の標準
の開口部の形状に比べ受光素子の配列方向の長さが縮ん
だ長方形をしており、開口部の面積5PDIfJ<5P
DI=a’ xb’で5PDI=SPDを満足するよう
等横変形された形状になっている。尚、第1図(al、
(blは、それぞれ第1図(Cl)X+  Xzg及び
y + −Y z Hニ沿ツタ断jI 図’tr示す、
標準の受光素子は、第1図(al、山)かられかるよう
に不純物拡散層3と不透明金属薄膜5が中間絶縁M4を
介して重なりあう部分があり、第1図Td)に重なり合
う部分5ORI、5OR2で、その部分が示されている
。この部分で不純物拡散層3に絶縁容量CORが付加さ
れる。
In addition, the shape of the opening of the photodetector PDI at the end is a rectangle with a shorter length in the arrangement direction of the photodetector compared to other standard aperture shapes, and the area of the aperture is 5PDIfJ<5P.
The shape is equilaterally deformed so that DI=a'xb' and 5PDI=SPD are satisfied. In addition, Fig. 1 (al,
(bl is shown in Figure 1 (Cl)
In the standard light receiving element, as shown in FIG. 1 (al, mountain), there is a portion where the impurity diffusion layer 3 and the opaque metal thin film 5 overlap with the intermediate insulation M4 in between, and the overlapping portion 5ORI is shown in FIG. 1 (Td). , 5OR2. An insulating capacitance COR is added to the impurity diffusion layer 3 at this portion.

一方、リニアイメージセンサ−の端部の受光素子も第1
図+11)、(flに示すように、不純物拡散層3の一
部と、不透明金属薄膜5が中間絶縁膜4を介して重なり
ており、その面積SRは、前述の重なり合う部分の和5
OR−3OR1+5OR2と等しくなっている。即ち5
E−3ORとなっている。
On the other hand, the light receiving element at the end of the linear image sensor is also
As shown in FIG.
It is equal to OR-3OR1+5OR2. i.e. 5
It is E-3OR.

平面図を示す第り図1dlにその様子を示す0重なって
いる形状は異なるが、面積が等しいため絶縁容量GEは
前述の絶縁容量CORと等しくなり、信号読み出しの際
の出力インピーダンスが端部の受光素子と、それ以外の
標準の受光素子とがほぼ等しくなり、読み出し時間がほ
ぼ同じになり、結果的に出力均一性が向上する。又、受
光素子をフォトトランジスタにした場合、不純物拡散層
の形状をそれぞれの受光素子とも同じにすることにより
、増幅率hfeがほぼ等しくなり、フォトダイオード以
上に不均一な出力特性になり易いフォトトランジスタ型
のリニアイメージセンサ−の出力均一性の向上を実現す
ることができた。
The overlapping shapes are different, but because the areas are the same, the insulation capacitance GE is equal to the insulation capacitance COR mentioned above, and the output impedance when reading out signals is the same as that of the end. The light-receiving element and other standard light-receiving elements are approximately equal, the readout time is approximately the same, and output uniformity is improved as a result. Furthermore, when the light-receiving element is a phototransistor, by making the shape of the impurity diffusion layer the same for each light-receiving element, the amplification factor hfe becomes almost equal, making the phototransistor more likely to have uneven output characteristics than a photodiode. We were able to improve the output uniformity of this type of linear image sensor.

〔発明の効果〕〔Effect of the invention〕

この発明は、以上説明したように受光素子の受光面積を
、半導体基板表面を被覆するように形成した不透引金r
IA薄膜の等横変形された開口部の面積で決め、かつ、
発生する光電荷を蓄積する不純物拡散層の形状は、同じ
にするという簡単な構造で、均一光を照射した時に各受
光素子から得られる信号がほぼ等しくなる出力均一性が
良くなる効果である。又、このようなリニアイメージセ
ンサ−を複数本直線上に接続して1本の長尺のリニアイ
メージセンサ−を作る場合、各イメージセンサ−の受光
素子アレイの両端部は、ダイシングによって局部的に結
晶や絶縁膜が破壊され、その幅が数8m〜30μm位に
及ぶのでこの受光素子アレイをつないで、その両先端の
素子間距離を数μmにすることはほとんど不可能といっ
てよい、そこでつなぎ部分のピッチをかえないために、
アレイの両端部の受光素子の受光部の幅は、他の素子の
受光部に比べて不足する素子を作る必要が生し、かつ均
一な出力が得られるよう受光領域が等横変形されている
のだが、遮光膜がなく、受光部が受光素子の不純物拡散
層そのものだと、P−N拡散接合部を安定にしておくた
めにスクライブ部から十分な距離を離して形成しなけれ
ばならず、直線上に配置する実装精度からくる両端部の
受光素子間距離が標準のものより短くなり易い、一方、
遮光膜の開口部の大部を受光領域とした本発明では、上
記と同様にスクライブ部から離れたところに光電荷の蓄
積用不純物拡散層を形成しても、受光領域を決める不透
明金属薄膜の開口部をよりダイシング部に近いところに
位置するように形成することができ、同じ実装精度でも
受光部間距離を標準に近い寸法に保ち易くする効果があ
る。この場合、ダイシングによるダメージが、端部の受
光素子の受光領域となる半導体基板の一部に入っても、
不純物拡散層の接合部には影響がないため、暗時に引時
と同じような信号ができるという不良は発生しない0発
生した光電荷がそのダメージで消滅することはあるが、
その量は、わずかで出力均−Pを低下させるほどの量で
はない。
As explained above, the light-receiving area of the light-receiving element is replaced by an opaque metal layer formed to cover the surface of a semiconductor substrate.
Determined by the area of the opening of the IA thin film that is equilaterally deformed, and
It is a simple structure in which the impurity diffusion layers that accumulate the generated photocharges have the same shape, and this has the effect of improving output uniformity, in which the signals obtained from each light receiving element are approximately equal when irradiated with uniform light. In addition, when a plurality of such linear image sensors are connected in a straight line to make one long linear image sensor, both ends of the light receiving element array of each image sensor are locally separated by dicing. Since the crystal and insulating film are destroyed and the width ranges from several 8 m to 30 μm, it is almost impossible to connect this photodetector array and reduce the distance between the elements at both ends to a few μm. In order not to change the pitch of the joint part,
The width of the light-receiving areas of the light-receiving elements at both ends of the array requires making an element that is insufficient compared to the light-receiving areas of other elements, and the light-receiving areas are horizontally deformed in order to obtain uniform output. However, if there is no light-shielding film and the light-receiving part is the impurity diffusion layer of the light-receiving element itself, it must be formed at a sufficient distance from the scribe part to keep the P-N diffusion junction stable. Due to the precision of mounting in a straight line, the distance between the light receiving elements at both ends tends to be shorter than that of the standard one.
In the present invention, where most of the opening of the light-shielding film is the light-receiving region, even if the impurity diffusion layer for accumulating photocharges is formed at a distance from the scribe portion in the same manner as described above, the opaque metal thin film that determines the light-receiving region is The opening can be formed so as to be located closer to the dicing part, which has the effect of making it easier to maintain the distance between the light receiving parts at a dimension close to the standard even with the same mounting accuracy. In this case, even if the damage caused by dicing enters a part of the semiconductor substrate that becomes the light receiving area of the light receiving element at the end,
Since there is no effect on the junction of the impurity diffusion layer, there will be no defect such as the generation of a signal similar to that during dark time. 0 The generated photocharge may disappear due to the damage, but
The amount is small and not large enough to reduce the output average -P.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al、(blはそれぞれ本発明のリニアイメー
ジセンサ−の標準の受光素子の断面図、第1図(C(d
lはそれぞれ本発明のリニアイメージセンサ−C端部の
平面図、第1図tel、(flはそれぞれ本発明eリニ
アイメージセンサ−の端部の受光素子の断面図、第2図
(a)は従来のリニアイメージセンサ−C断面図、第2
図世)、fc)はそれぞれ従来のリニアイメージセンサ
−の端部の様子を示す平面図であるl・・・半導体基板 2・・・素子分離拡散層 3・・・不純物拡散層 4・・・中間絶縁膜 5・・・不透明金属is 6・・・保護膜 7・・・半導体基板端面 [ )、 リニアイメージセンサ−の詳細図
Figure 1 (al, (bl) is a cross-sectional view of a standard light-receiving element of the linear image sensor of the present invention, Figure 1 (C (d)
l is a plan view of the C end of the linear image sensor of the present invention, FIG. Conventional linear image sensor-C sectional view, 2nd
Figures ) and fc) are plan views showing the end portions of conventional linear image sensors, respectively.l...Semiconductor substrate 2...Element isolation diffusion layer 3...Impurity diffusion layer 4... Intermediate insulating film 5... Opaque metal IS 6... Protective film 7... Semiconductor substrate end surface [ ), Detailed view of linear image sensor

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の第1表面に形成された複数個の受光素子を
直線上に配した半導体受光素子列の、端部の受光素子の
遮光用の金属膜の一部を開口してなる受光窓の受光素子
列方向の幅を他の受光素子の受光窓の受光素子列方向の
幅に比べ縮小し、かつ受光窓の面積は変わらないように
等積変形した受光素子アレイを直線上に複数個配置して
なるリニアイメージセンサーにおいて、遮光用の前記金
属膜は、前記半導体基板と電気的に接続され、かつ該金
属膜と前記受光素子の光電荷を蓄積する前記半導体基板
と逆の電導型の光電荷蓄積用不純物拡散層とで形成され
る絶縁容量が、それぞれの前記受光素子で変わらず、か
つ前記光電荷蓄積用不純物拡散層の形状が同じことを特
徴とするリニアイメージセンサー。
Light reception in a light-receiving window formed by opening a part of the light-shielding metal film of the end light-receiving element of a semiconductor light-receiving element array in which a plurality of light-receiving elements formed on the first surface of the semiconductor substrate are arranged in a straight line. A plurality of photodetector arrays are arranged in a straight line in which the width in the element row direction is reduced compared to the width in the photodetector column direction of the light receiving windows of other photodetectors, and the area of the light receiving window is deformed to the same area. In the linear image sensor comprising: A linear image sensor characterized in that an insulating capacitance formed with a storage impurity diffusion layer remains the same for each of the light receiving elements, and the shape of the photocharge storage impurity diffusion layer is the same.
JP2273527A 1990-10-12 1990-10-12 Linear image sensor Expired - Lifetime JP3047114B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2273527A JP3047114B2 (en) 1990-10-12 1990-10-12 Linear image sensor
US07/775,824 US5329149A (en) 1990-10-12 1991-10-11 Image sensor with non-light-transmissive layer having photosensing windows
EP19910309425 EP0480775A3 (en) 1990-10-12 1991-10-14 An image sensor and a method of inspecting image sensors
US07/939,090 US5426060A (en) 1990-10-12 1992-09-02 Method of inspecting image sensors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2273527A JP3047114B2 (en) 1990-10-12 1990-10-12 Linear image sensor

Publications (2)

Publication Number Publication Date
JPH04148563A true JPH04148563A (en) 1992-05-21
JP3047114B2 JP3047114B2 (en) 2000-05-29

Family

ID=17529095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2273527A Expired - Lifetime JP3047114B2 (en) 1990-10-12 1990-10-12 Linear image sensor

Country Status (1)

Country Link
JP (1) JP3047114B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030080650A (en) * 2002-04-10 2003-10-17 동부전자 주식회사 Structure of image sensor pixel array
JP2007335692A (en) * 2006-06-16 2007-12-27 Seiko Instruments Inc Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030080650A (en) * 2002-04-10 2003-10-17 동부전자 주식회사 Structure of image sensor pixel array
JP2007335692A (en) * 2006-06-16 2007-12-27 Seiko Instruments Inc Semiconductor device

Also Published As

Publication number Publication date
JP3047114B2 (en) 2000-05-29

Similar Documents

Publication Publication Date Title
US5070380A (en) Transfer gate for photodiode to CCD image sensor
JPH027417B2 (en)
US4665422A (en) Solid state image sensing device
US5828091A (en) Interline charge coupled device solid state image sensor
US5751049A (en) Two-color infrared detector
US5329149A (en) Image sensor with non-light-transmissive layer having photosensing windows
JPH01207640A (en) Semiconductor photodetecting device and ultraviolet detecting method, and semiconductor photodetecting element and its manufacture
JPH02100363A (en) Solid-state image sensing element
EP3440701A1 (en) Direct read pixel alignment
US5233429A (en) CCD image sensor having improved structure of VCCD region thereof
US4499654A (en) Method for fabricating semiconductor photodetector
JPH0964329A (en) Solid-state image pickup element
US4025943A (en) Photogeneration channel in front illuminated solid state silicon imaging devices
JPH04148563A (en) Linear image sensor
JP4335104B2 (en) Photodiode array and spectrometer
JP2773930B2 (en) Light detection device
JP2521789B2 (en) Photosensitive unit structure of solid-state imaging device
JPH02264473A (en) Solid-state image sensing element
JPS59178769A (en) Solid-state image pickup device
JPH0517492B2 (en)
EP0276683B1 (en) Photoelectric conversion device
KR970002123B1 (en) Infrared image sensor
JP3303571B2 (en) Infrared detector and infrared detector array
JPH01220862A (en) Solid-state image sensing device
JP2671548B2 (en) Infrared sensor

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11