JPH041482A - Controller for variable displacement pump - Google Patents

Controller for variable displacement pump

Info

Publication number
JPH041482A
JPH041482A JP2097724A JP9772490A JPH041482A JP H041482 A JPH041482 A JP H041482A JP 2097724 A JP2097724 A JP 2097724A JP 9772490 A JP9772490 A JP 9772490A JP H041482 A JPH041482 A JP H041482A
Authority
JP
Japan
Prior art keywords
pump
pressure
variable displacement
spool
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2097724A
Other languages
Japanese (ja)
Other versions
JP2600968B2 (en
Inventor
Yuji Kohari
裕二 小張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2097724A priority Critical patent/JP2600968B2/en
Publication of JPH041482A publication Critical patent/JPH041482A/en
Application granted granted Critical
Publication of JP2600968B2 publication Critical patent/JP2600968B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the extent of penetration of the outside air as well as to prevent a pumping noise from occurring by controlling the opening of an inlet passage to the maximum with a valve means when such a state that a rise in negative pressure in a suction chamber in the pump inside is foreseen, and then keeping off any unneces sary increase of the negative pressure in the suction chamber. CONSTITUTION:A controller 2 regulates flow of working fluid which has reached a suction circuit 30 from a reservoir 29 and flows into an inlet passage 18, and it is provided with a spool valve 31. At this juncture, at time of engine starting, the maximum value of a command current value is inputted into a coil 45 of a magnetic solenoid 43 in spite of small requested flow rate of an apparatus 27 by a controller 48 according to a signal out of an engine starting detector 47. This input is executed as long as the specified period of time, and for the while pressing force of a spool 33 is increased. Then, the total of spring force of a spring 37 and magnetic force out of a pushrod 46 is made larger than the pressing force of a feedback plunger 39 where pressure in a working pressure circuit 28 is made to work by way of a capacity control pressure circuit 40. With this constitution, the spool 33 is stopped at a position where an opening area becomes maximum, thus opening of the inlet passage 18 is maximized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は容積形ポンプの吐出容量及び吐出圧を制御する
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a device for controlling the discharge capacity and discharge pressure of a positive displacement pump.

(従来の技術) 可変容量容積ポンプは、これからの吐出圧で作動される
機器が要求する必要最少量を吐出するように制御するの
がポンプ駆動エネルギーを節約する上で好ましい。
(Prior Art) In order to save pump driving energy, it is preferable to control a variable displacement pump so that it discharges the minimum amount required by the equipment to be operated at the upcoming discharge pressure.

そのための吐出容量および吐出圧の制御装置として、本
願出願人は先に特願平2−8506号の装置を提案済み
である。この特願平2−8506号の装置は、可変容量
容積ポンプの吸入通路を絞り手段により開度調整して該
ポンプの容量制御を行う際に、ポンプ吐出圧を容量制御
圧として入力されたときこれによる力と、その力と対向
する向きの吐出圧制御力とを受け、これらによる力が釣
り合うような開度にポンプ吸入通路を開度制御する弁手
段によって前記絞り手段を構成したものである。
As a control device for the discharge volume and discharge pressure for this purpose, the applicant of the present application has previously proposed a device disclosed in Japanese Patent Application No. 2-8506. This device of Japanese Patent Application No. 2-8506 is designed to control the capacity of a variable displacement pump by adjusting the opening of the suction passage of the pump using a throttle means, and when the pump discharge pressure is input as the capacity control pressure. The throttle means is constituted by a valve means that receives the force caused by this force and a discharge pressure control force in a direction opposite to the force, and controls the opening of the pump suction passage to an opening degree such that these forces are balanced. .

この特願平2−8506号の装置によれば、ポンプの吐
出容量制御を行うとともに、ポンプ吐出圧を機器の要求
圧にマツチさせてポンプ駆動エネルギーの浪費を防止す
るように吐出圧制御を行うことのできる装置を、コンパ
クトかつ安価で提供することができる。
According to the device disclosed in Japanese Patent Application No. 2-8506, the discharge capacity of the pump is controlled, and the discharge pressure is also controlled to match the pump discharge pressure with the required pressure of the equipment to prevent waste of pump driving energy. It is possible to provide a device that is compact and inexpensive.

(発明が解決しようとする課題) しかしながら上記従来装置においては、ポンプ内部の吸
入室に作動流体を導く吸入通路の開度調整はポンプ吐出
圧を容量制御圧とする弁手段(例えばスプール弁)によ
り行われることから、エンジン始動時を含めた車両静止
時には油圧サスペンション等に消費されるポンプからの
供給流量も少なくなって前記弁手段が閉じる方向に作用
するため、前記吸入室においては負の圧力が高まる。こ
のとき、特に外気温が低い場合ポンプ内部に画成される
吸入室を外気から遮断するシール部はその弾力性が低下
してシール機能が低下するため吸入室は外気を吸い込み
やすい状態になり、ポンプ騒音が大きくなるという問題
が生じる。
(Problem to be Solved by the Invention) However, in the above conventional device, the opening degree of the suction passage that guides the working fluid to the suction chamber inside the pump is adjusted by a valve means (for example, a spool valve) that uses the pump discharge pressure as the capacity control pressure. Therefore, when the vehicle is stationary, including when starting the engine, the supply flow rate from the pump consumed by the hydraulic suspension etc. decreases and acts in the direction of closing the valve means, so that negative pressure is generated in the suction chamber. It increases. At this time, especially when the outside temperature is low, the seal that isolates the suction chamber defined inside the pump from the outside air loses its elasticity and its sealing function decreases, making the suction chamber more likely to suck in outside air. A problem arises in that the pump noise increases.

本発明はポンプ内部の吸入室において負圧の上昇が予想
される状況のときには吸入通路の開度を弁手段によって
最大にすることにより、上述した問題を解決することを
目的とする。
An object of the present invention is to solve the above-mentioned problem by maximizing the opening degree of the suction passage using a valve means when a rise in negative pressure is expected in the suction chamber inside the pump.

(課題を解決するための手段) この目的のため本発明の可変容量容積ポンプの制御装置
の第1の構成は、吸入通路を絞り手段により開度制御し
て流量制御可能な可変容量容積ポンプであって、該ポン
プの吐出圧を容量制御圧としてこれに応動するとともに
、この容量制御圧に対向する向きに吐出圧制御力を受け
てこれにも応動し、開度を決定される弁手段により前記
絞り手段を構成した可変容量容積ポンプにおいて、ポン
プ始動後の所定期間、該ポンプの吐出圧の如何に拘わら
ず、前記吸入通路の開度が最大になるよう前記弁手段を
制御するようにするものとし、第2の構成は、吸入通路
を絞り手段により開度制御して流量制御可能な可変容量
容積ポンプであって、該ポンプの吐出圧を容量制御圧と
してこれに応動するとともに、この容量制御圧に対向す
る向きに吐出圧制御力を受けてこれにも応動し、開度を
決定される弁手段により前記絞り手段を構成した可変容
量容積ポンプにおいて、ポンプ作動油の油温を検出する
油温検出手段を設け、検出した作動油の油温か所定値以
下のとき、該ポンプの吐出圧の如何に拘わらず、前記吸
入通路の開度が最大になるよう前記弁手段を制御するよ
うにするものとし、さらに第3の構成は第1の構成にお
いてポンプ作動油の油温を検出する油温検出手段を設け
、検出した作動油の油温か所定値以下のとき、ポンプ始
動後の所定期間、該ポンプの吐出圧の如何に拘わらず、
前記吸入通路の開度が最大になるよう前記弁手段を制御
するようにするものとする。
(Means for Solving the Problems) For this purpose, the first configuration of the variable displacement pump control device of the present invention is a variable displacement pump that can control the flow rate by controlling the opening of the suction passage with a throttle means. The valve means responds to the discharge pressure of the pump as a capacity control pressure, receives a discharge pressure control force in a direction opposite to this capacity control pressure and responds thereto, and determines the opening degree. In the variable displacement pump including the throttle means, the valve means is controlled so that the opening degree of the suction passage is maximized for a predetermined period after the pump is started, regardless of the discharge pressure of the pump. The second configuration is a variable displacement pump capable of controlling the flow rate by controlling the opening of the suction passage with a throttle means, which responds to the discharge pressure of the pump as a displacement control pressure, and also controls the displacement of the pump. In a variable displacement pump in which the throttling means is constituted by a valve means whose opening degree is determined by receiving a discharge pressure control force in a direction opposite to the control pressure, the temperature of the pump hydraulic oil is detected. Oil temperature detection means is provided, and when the detected oil temperature of the hydraulic oil is below a predetermined value, the valve means is controlled so that the opening degree of the suction passage is maximized, regardless of the discharge pressure of the pump. Furthermore, a third configuration is provided with an oil temperature detection means for detecting the oil temperature of the pump hydraulic oil in the first configuration, and when the detected oil temperature of the hydraulic oil is equal to or lower than a predetermined value, a predetermined period of time after starting the pump is provided. , regardless of the discharge pressure of the pump,
The valve means is controlled so that the degree of opening of the suction passage is maximized.

(作 用) 本発明の第1の構成によれば、エンジン始動時を含めた
車両静止時には油圧サスペンション等に消費されるポン
プからの供給流量が減少して前記弁手段を閉じようとす
る力が働くが、その際、該弁手段を強制的に開方向に作
動させて吸入室に作動流体を導く吸入通路の開度を最大
にするから、吸入室の負圧が不必要に高まることはなく
なるため、ポンプ内部に画成される吸入室を外気から遮
断するシール部からの吸入室への外気の侵入は少なくな
り、可変容量容積ポンプの騒音の発生を防止することが
できる。
(Function) According to the first configuration of the present invention, when the vehicle is stationary including when starting the engine, the flow rate supplied from the pump consumed by the hydraulic suspension etc. decreases, and the force that tends to close the valve means is reduced. At that time, the valve means is forcibly operated in the opening direction to maximize the opening of the suction passage that guides the working fluid to the suction chamber, so that the negative pressure in the suction chamber does not increase unnecessarily. Therefore, the intrusion of outside air into the suction chamber from the seal portion that isolates the suction chamber defined inside the pump from the outside air is reduced, and generation of noise in the variable displacement pump can be prevented.

また本発明の第2の構成によれば、特に極低温時には、
吸入室を外気から遮断するシール部のシール機能の低下
に伴う吸入室への外気の侵入を少なくするため、前記弁
手段を強制的に開方向に作動させて前記吸入通路の開度
を最大にするから、上記と同様の騒音防止効果が得られ
る。
According to the second configuration of the present invention, especially at extremely low temperatures,
In order to reduce the intrusion of outside air into the suction chamber due to the deterioration of the sealing function of the seal portion that isolates the suction chamber from the outside air, the valve means is forcibly operated in the opening direction to maximize the opening degree of the suction passage. Therefore, the same noise prevention effect as above can be obtained.

さらに本発明の第3の構成によれば、特に極低温状態に
おけるエンジン始動時を含めた車両停車時には前記第1
および第2の構成の制御を同時に行うから、上記騒音防
止効果に加えて、ポンプ始動により油温が所定値になる
前に前記シール機能が」−分回復しているにもかかわら
ず最大吐出流量のままになってしまうのを防ぐため、上
記吸入通路の開度を最大にする制御を中止してポンプ駆
動エネルギーの浪費を防止することができる。
Furthermore, according to the third configuration of the present invention, the first
Since the control of the first and second configurations is performed at the same time, in addition to the above-mentioned noise prevention effect, the maximum discharge flow rate is achieved even though the sealing function has been recovered by - minutes before the oil temperature reaches the predetermined value by starting the pump. In order to prevent this from happening, the control for maximizing the opening of the suction passage can be stopped to prevent waste of pump drive energy.

(実施例) 以下、本発明の実施例を図面に基き詳細に説明する。(Example) Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は固定シリンダ型ラジアルピストンポンプ1に適
用した本発明制御装置2の第1実施例を示す。
FIG. 1 shows a first embodiment of a control device 2 of the present invention applied to a fixed cylinder type radial piston pump 1. As shown in FIG.

ポンプ1はポンプハウジング3を具え、これにポンプ駆
動軸4を貫通して軸受5.6により回転自在に支持する
。これら軸受間において軸4に偏心カム4aを一体成形
し、この偏心カムをポンプハウジング3に形成した吸入
室7内に収納する。偏心カム4aの外周にリング8を回
転自在に嵌合し、リング8の外周に円周方向等間隔に配
して例えば10個のラジアルピストン9(図面では1個
のみを示す)を対設する。これら各ラジアルピストン9
は偏心カムリング8の径方向へ延在させてポンプハウジ
ング3に形成した対応する固定シリンダ10内に摺動自
在に嵌合する。固定シリンダ10の外部開口端をプラグ
11により閉塞してこのプラグ11およびラジアルピス
トン9間に吐出室12を画成する。
The pump 1 includes a pump housing 3 through which a pump drive shaft 4 passes and is rotatably supported by a bearing 5.6. An eccentric cam 4a is integrally molded on the shaft 4 between these bearings, and this eccentric cam is housed in a suction chamber 7 formed in the pump housing 3. A ring 8 is rotatably fitted on the outer periphery of the eccentric cam 4a, and, for example, ten radial pistons 9 (only one is shown in the drawing) are provided on the outer periphery of the ring 8 at equal intervals in the circumferential direction. . Each of these radial pistons 9
extends in the radial direction of the eccentric cam ring 8 and is slidably fitted into a corresponding fixed cylinder 10 formed in the pump housing 3. The external open end of the fixed cylinder 10 is closed by a plug 11 to define a discharge chamber 12 between the plug 11 and the radial piston 9.

各ラジアルピストン9は偏心カムリング8に近い端部を
閉塞された有底スリーブ形状とし、ばね13により偏心
カムリング8に押圧する。そして各ラジアルピストン9
の周壁には、ラジアルピストンのストローク中吸入室7
内に出没する位置に配してサイドボート14を形成する
Each radial piston 9 has a bottomed sleeve shape with its end close to the eccentric cam ring 8 closed, and is pressed against the eccentric cam ring 8 by a spring 13. and each radial piston 9
On the peripheral wall of the radial piston, there is a suction chamber 7 during the stroke of the radial piston.
A side boat 14 is formed by disposing it at a position where it appears and retracts inside.

ポンプ駆動軸4の図中右端を動力供給端とし、これに近
いポンプ駆動軸4の箇所をシール15によりポンプハウ
ジング3に対し封止する。ポンプ駆動軸4の他端は、ポ
ンプハウジング3に添設した通路メンバ16に対しシー
ル17で封止する。通路メンバ16は吸入通路18およ
び吐出通路19を有するものとし、吐出通路19は固定
シリンダ10と同じ数だけ形成する。吸入通路18はポ
ンプハウジング3に形成した連絡ボート20により吸入
室7に通じさせ、各吐出通路19はポンプハウジング3
に形成した連絡ボート21により対応する吐出室12に
通じさせる。
The right end of the pump drive shaft 4 in the drawing is used as a power supply end, and a portion of the pump drive shaft 4 near this end is sealed from the pump housing 3 with a seal 15. The other end of the pump drive shaft 4 is sealed with a seal 17 against a passage member 16 attached to the pump housing 3. The passage member 16 has a suction passage 18 and a discharge passage 19, and the same number of discharge passages 19 as the fixed cylinders 10 are formed. The suction passage 18 is communicated with the suction chamber 7 by a communication boat 20 formed in the pump housing 3, and each discharge passage 19 is connected to the suction chamber 7 through a communication boat 20 formed in the pump housing 3.
It is communicated with the corresponding discharge chamber 12 by a communication boat 21 formed in the.

連絡ボート21および吐出通路19間にデリバリバルブ
22を設け、このバルブはその間弁圧以上の圧力が連絡
ボート21から供給されるとき開いてこのボートから吐
出通路19へ作動流体を供給し、逆向きの作動流体を一
切許容しない形式のものとする。
A delivery valve 22 is provided between the communication boat 21 and the discharge passage 19, and this valve opens when a pressure higher than the valve pressure is supplied from the communication boat 21 to supply working fluid from this boat to the discharge passage 19, and in the opposite direction. It shall be of a type that does not allow any working fluid.

ポンプハウジング3から遠い通路メンバ16の側に端蓋
23を添設し、これに全ての吐出通路19と通ずる1個
の条溝24を形成する他、該条溝に至る吐出ボート25
を形成する。吐出ボート25に、これからの圧力を蓄圧
するアキュムレータ26および該圧力により作動される
圧力作動機器27を持った作動圧回路2日を接続する。
An end cover 23 is attached to the side of the passage member 16 far from the pump housing 3, and in addition to forming one groove 24 communicating with all the discharge passages 19, there is also a discharge boat 25 leading to the groove.
form. The discharge boat 25 is connected to an operating pressure circuit 2, which has an accumulator 26 for accumulating future pressure and a pressure operating device 27 operated by the pressure.

次に本発明による制御装置2を説明する。この制御装置
2は11ザーハ29から吸入回路30に達した作動流体
が吸入通路18に流入する量を調整するもので、弁手段
としてのスプール弁31を具える。このスプール弁は弁
本体32内にスプール33を摺動自在に嵌合して構成し
、弁本体32に吸入回路30を接続すべき入口室34、
および吸入通路18に通ずるべき出口室35を夫々形成
する。スプール33はそのストロークに応じ開度変化す
る可変絞り36を入口室34および出口室35間に従供
する。スプール33の図中右端にはこれを可変絞り36
の開度増大方向に付勢するばね37をフリーピストン3
8を介して作用させ、スプール33の他端にはフィード
ハ・ツクプランジャ39を突当て、回路40により作動
圧回路28内のポンプ吐出圧を容量制御圧として作用さ
せる。
Next, the control device 2 according to the present invention will be explained. This control device 2 adjusts the amount of working fluid that has reached the suction circuit 30 from the 11-saha 29 and flows into the suction passage 18, and includes a spool valve 31 as a valve means. This spool valve is constructed by slidably fitting a spool 33 into a valve body 32, and includes an inlet chamber 34 to which a suction circuit 30 is connected to the valve body 32;
and an outlet chamber 35 that communicates with the suction passage 18. The spool 33 provides a variable throttle 36 between the inlet chamber 34 and the outlet chamber 35 whose opening degree changes depending on the stroke of the spool 33 . At the right end of the spool 33 in the figure is a variable aperture 36.
The spring 37 biasing the free piston 3 in the direction of increasing the opening
The other end of the spool 33 is abutted against the feed pump plunger 39, and the pump discharge pressure in the operating pressure circuit 28 is caused to act as a displacement control pressure through the circuit 40.

弁本体32にはさらに、可変絞り36をバイパスし、入
口室34および出口室35間を短絡する固定オリフィス
41、ならびに入口室34および室49間を短絡する固
定オリフィス61を形成する。この固定オリフィス61
は、室49内を無圧状態に保ってスプール33のストロ
ークを妨げないようにし、その結果室49内が変動圧力
を入力されないため、スプール33が不安定になって可
変絞り36が開度変化するのを回避することができる。
The valve body 32 is further formed with a fixed orifice 41 that bypasses the variable throttle 36 and short-circuits between the inlet chamber 34 and the outlet chamber 35, and a fixed orifice 61 that short-circuits between the inlet chamber 34 and the chamber 49. This fixed orifice 61
The chamber 49 is kept in an unpressurized state so as not to disturb the stroke of the spool 33, and as a result, no fluctuating pressure is input into the chamber 49, which causes the spool 33 to become unstable and cause the variable throttle 36 to change its opening degree. can be avoided.

ばね37は、フリーピストン38により出口室35から
区画された室42内に収納し、この室42および入口室
34間を通ずる容積変化補償路51を弁本体32に形成
して、容積変化補償路51および固定オリフィス51を
経由する室35.42間での作動流体の置換流動により
フリーピストン38が自由にストロークし得るようにす
る。
The spring 37 is housed in a chamber 42 separated from the outlet chamber 35 by a free piston 38, and a volume change compensation path 51 is formed in the valve body 32 that communicates between this chamber 42 and the inlet chamber 34. 51 and the chamber 35.42 via the fixed orifice 51 allows the free piston 38 to freely stroke.

フリーピストン38を挾んでスプール弁31の反対側に
電磁手段としての電磁ソレノイド43を同軸に対設する
。二のt磁ソレノイド43はスプール弁体32に螺合し
たケース44を具え、これにコイル45を収納する。そ
して、コイル45の中心を貫通し、これへの通電量に応
じた電磁力を図中左方に受ける摺動可能なブツシュロッ
ド46をフリーピストン38に突当てる。
An electromagnetic solenoid 43 as an electromagnetic means is coaxially provided on the opposite side of the spool valve 31 with the free piston 38 interposed therebetween. The second magnetic solenoid 43 includes a case 44 screwed onto the spool valve body 32, and a coil 45 is housed in the case 44. Then, a slidable bushing rod 46 that passes through the center of the coil 45 and receives electromagnetic force to the left in the figure according to the amount of current applied thereto is brought into contact with the free piston 38.

コイル45への通電量はエンジン始動検出装置47から
の情報に基づきコントローラ48により制御し、当該i
!電量を、エンジン始動時以外には機器27の作動圧上
限値(圧力作動機器27が複数個存在する場合、そのう
ち最も高い作動圧上限値)またはこれに配管抵抗にとも
なう圧力損失分を加算したポンプ吐出圧に対応させ、エ
ンジン始動時には始動後の所定期間、可変絞り360開
度を最大(全開)にする値に固定する。
The amount of current applied to the coil 45 is controlled by the controller 48 based on information from the engine start detection device 47, and
! The amount of electricity is calculated by adding the operating pressure upper limit value of the device 27 (if there are multiple pressure-operated devices 27, the highest operating pressure upper limit value among them) or the pressure loss due to piping resistance other than when starting the engine. When starting the engine, the opening degree of the variable throttle 360 is fixed at a value that maximizes (fully opens) for a predetermined period of time after starting the engine, in accordance with the discharge pressure.

上記実施例の作用を次に説明する。The operation of the above embodiment will be explained next.

ヱZ1昨朋 ポンプ駆動軸4はこれへの供給動力により回転され、こ
の軸4と一体の偏心カム4aはリング8を介し各ラジア
ルピストン9を固定シリンダ10内で往復動させる。各
ラジアルピストン9はこの往復動中、ポンプ駆動軸4の
軸線から遠去かるストローク域においてサイドボート1
4がシリンダニ0により塞がれた後吐出室12内の作動
流体を加圧する。
The pump drive shaft 4 is rotated by the power supplied thereto, and the eccentric cam 4a integrated with the shaft 4 reciprocates each radial piston 9 within the fixed cylinder 10 via the ring 8. During this reciprocating movement, each radial piston 9 moves toward the side boat 1 in a stroke region far from the axis of the pump drive shaft 4.
4 is closed by the cylinder 0, the working fluid in the discharge chamber 12 is pressurized.

そして、この作動流体はデリバリバルブ22の開弁圧以
上になると、このバルブ22を開きつつ吐出通路19に
吐出される。このようにして各通路19に吐出された作
動流体は条溝24に集合し、吐出ボート25より作動圧
回路28に至ってアキュムレータ26に蓄圧されるとと
もに、機器27の作動に供される。
When the working fluid reaches the opening pressure of the delivery valve 22 or higher, it is discharged into the discharge passage 19 while opening the valve 22. The working fluid thus discharged into each passage 19 collects in the groove 24, reaches the working pressure circuit 28 from the discharge boat 25, is accumulated in the accumulator 26, and is used for operating the equipment 27.

−勇名うシアルピストン9は、ポンプ駆動軸4の軸線に
向かうストローク中サイドボート14が吸入室7に開口
した後において、この吸入室7内の作動流体サイドボー
目4より吐出室12内に流入させて補充し、次の吐出に
備える。このとき吸入室7内にはリザーバ29内の作動
流体が吸入回路30、入口室34、可変絞り36、出口
室35、吸入通路18およ連絡ボート20を経て補充さ
れる。
- After the side boat 14 opens into the suction chamber 7 during the stroke toward the axis of the pump drive shaft 4, the working fluid in the suction chamber 7 flows into the discharge chamber 12 from the side boat 4. Allow to refill and prepare for the next discharge. At this time, the working fluid in the reservoir 29 is replenished into the suction chamber 7 through the suction circuit 30, the inlet chamber 34, the variable throttle 36, the outlet chamber 35, the suction passage 18, and the communication boat 20.

産1M圏 上記ポンプ作用中、ボート25からのポンプ吐出流量は
以下の如く容量制御される。
During the above-mentioned pump operation, the pump discharge flow rate from the boat 25 is controlled in the following manner.

スプール33は、図中左端にフィードバックプランジャ
39を介し回路28内の圧力(ポンプ吐出圧)を作用さ
れ、図中右端にばね37のばね力およびブツシュロッド
46からの電磁力(コントローラ48で制御されるコイ
ル45への通電量により決まる)を作用され、両端への
力がバランスする位置に停止する。
The spool 33 is applied with the pressure in the circuit 28 (pump discharge pressure) via the feedback plunger 39 at the left end in the figure, and the spring force of the spring 37 and the electromagnetic force from the bushing rod 46 (controlled by the controller 48) at the right end in the figure. (determined by the amount of current applied to the coil 45), and the coil 45 stops at a position where the forces on both ends are balanced.

圧力作動機器27がその作動により多量の作動流体を必
要とする間、回路28内の圧力(ポンプ吐出圧)は低下
する。このとき、回路28内の圧力を容量制御圧として
プランジャ39を介し入力されるスプール31は、当該
圧力低下によりスプール33を上記のバランス状態から
ばね37オよびプッシュ口・ンド46からの電磁力によ
り図中左行され、可変絞り36を開度増大させる。よっ
て、リザーバ29から吸入室7への作動流体吸入限界が
大きくなり、その公役入室7から吐出室12への作動流
体供給能力、したがってポンプ吐出流量が大きくなって
、これを圧力作動機器27の要求にマツチさせることが
できる。
While the pressure-operated device 27 requires a large amount of working fluid for its operation, the pressure in the circuit 28 (pump discharge pressure) decreases. At this time, the spool 31, which is input via the plunger 39 using the pressure in the circuit 28 as a capacity control pressure, moves the spool 33 from the above-mentioned balanced state due to the pressure drop due to the electromagnetic force from the spring 37 and the push port 46. It is moved to the left in the figure and increases the opening of the variable diaphragm 36. Therefore, the working fluid suction limit from the reservoir 29 to the suction chamber 7 becomes large, and the working fluid supply capacity from the official entry chamber 7 to the discharge chamber 12, and therefore the pump discharge flow rate becomes large, which increases the pressure of the pressure-operated equipment 27. It can be matched to your requirements.

一方、圧力作動機器27が作動しないときとか、僅かな
作動流体した必要としない作動状態にあるときは、後述
するエンジン始動時を除き回路28内の圧力(ポンプ吐
出圧)は上昇する。このときスプール弁31は当該圧力
上昇によりスプール33を図中右行されて可変絞り36
を開度減少させる。よって、リザーバ29から吸入室7
への作動流体供給能力、したがってポンプ吐出流量が小
さくなって、これを圧力作動機器27が要求する必要量
に抑えることができる。
On the other hand, when the pressure-operated device 27 does not operate or is in an operating state in which it does not require a small amount of working fluid, the pressure within the circuit 28 (pump discharge pressure) increases, except when starting the engine, which will be described later. At this time, the spool valve 31 moves the spool 33 to the right in the figure due to the pressure increase, and the variable throttle 36
Decrease the opening. Therefore, from the reservoir 29 to the suction chamber 7
The working fluid supply capacity and therefore the pump discharge flow rate are reduced to the required amount required by the pressure-operated equipment 27.

以上の容量制御によれば、ポンプ回転数(軸4の回転数
)の上昇につれ増大するポンプ吐出量の上限値を機器2
7の要求流量にマツチするよう制御することができ、し
たがってポンプ駆動トルクを必要最小限のものにしてポ
ンプ駆動エネルギーの浪費を防止することができる。
According to the above capacity control, the upper limit of the pump discharge amount, which increases as the pump rotation speed (rotation speed of the shaft 4) increases, is set to the device 2.
Therefore, the pump drive torque can be kept to the minimum necessary and waste of pump drive energy can be prevented.

なお、スプール33が図中右方へフルストロークすると
、可変絞り36が全閉するが、この状態でも固定オリフ
ィス41が入口室34および出口室35間を制限開度で
通じ、若干ながら吸入室7への作動流体流を補償するた
め、スプール33がこの状態にロックされたとしてもピ
ストン9の焼付きを防止することができる。
Note that when the spool 33 makes a full stroke to the right in the figure, the variable throttle 36 is fully closed, but even in this state, the fixed orifice 41 communicates between the inlet chamber 34 and the outlet chamber 35 at a limited opening, and the suction chamber 7 is slightly closed. To compensate for the flow of working fluid to the piston 9, seizing of the piston 9 can be prevented even if the spool 33 is locked in this state.

エンジン   の六  ′ エンジン始動時(したがってポンプ1始動時)、エンジ
ン始動検出装置47からコントローラ48に信号(始動
情報)が入力され、これに応してコントローラ48は、
機器27の要求流量が少ないにも拘わらず電磁ソレノイ
ド43のコイル45に指令電流値の最大値を入力する。
6' When the engine is started (therefore, when the pump 1 is started), a signal (starting information) is input from the engine start detection device 47 to the controller 48, and in response to this, the controller 48
Even though the required flow rate of the device 27 is small, the maximum command current value is input to the coil 45 of the electromagnetic solenoid 43.

この最大値の入力はエンジンが始動を開始してから所定
期間(例えば30秒間)だけ実行され、その間スプール
330図中左方向の押圧力が増加し、ばね37のばね力
およびブツシュロッド46からの電磁力の和が作動圧回
路28の圧力を容量制御圧回路40を経て作用されたフ
ィードバックプランジャ39の図中右方向の押圧力より
も大きくなるため、スプール33は開口面積が最大にな
る位置に停止し、吸入通路の開度が最大になる。
This maximum value input is performed for a predetermined period of time (for example, 30 seconds) after the engine starts, and during that time the pressing force of the spool 330 in the left direction in the figure increases, and the spring force of the spring 37 and the electromagnetic force from the bushing rod 46 increase. Since the sum of the forces increases the pressure of the operating pressure circuit 28 to be greater than the pressing force of the feedback plunger 39 in the right direction in the figure, which is applied via the capacity control pressure circuit 40, the spool 33 stops at the position where the opening area is maximized. The opening of the suction passage is maximized.

これにより、吸入室7内の負圧が不必要に高まるのを抑
制することができるため、吸入室7への外気の侵入が少
なくなり、本発明の狙い通りポンプ1の騒音の発生を防
止することができる。
As a result, it is possible to suppress the negative pressure inside the suction chamber 7 from increasing unnecessarily, so that the intrusion of outside air into the suction chamber 7 is reduced, and as the aim of the present invention, the generation of noise from the pump 1 is prevented. be able to.

肚班圧M囮 コントローラ48は圧力作動機器27の作動圧上限値を
指令するものであるが、加えてこの作動圧上限値に応じ
た電流をコイル45に供給する。この電流は、例えば作
動圧回路28内が上記の上限値となるよう当該上限値に
、配管抵抗にともなう圧力損失分を加算した圧力値に対
応した電流値とする。
The abdominal pressure M decoy controller 48 instructs the upper limit of the operating pressure of the pressure-operated device 27, and additionally supplies a current to the coil 45 in accordance with this upper limit of the operating pressure. This current is, for example, a current value corresponding to a pressure value obtained by adding the pressure loss due to piping resistance to the upper limit value so that the inside of the operating pressure circuit 28 reaches the above upper limit value.

つまりコントローラ48は圧力作動機器の作動圧上限値
を上昇させるよう指令するとき、その分コイル45への
通電量も増大する。このとき、電磁ソレノイド43はブ
ツシュロッド46からスプール33への図中左向きの電
磁力を大きくする。これにより、スプール33への図中
右向きのポンプ吐出圧による力と、スプール33への図
中左向きのばね37および上記1を磁力による力とはよ
り高いポンプ吐出圧でバランスすることとなり、ポンプ
吐出圧を圧力作動機器27の作動圧上限値にマツチさせ
ることができ、ポンプ吐出圧が要求圧に対し過大になっ
てポンプ駆動エネルギーが浪費されるのを防止すること
ができる。
In other words, when the controller 48 issues a command to increase the upper limit of the operating pressure of the pressure-operated device, the amount of current applied to the coil 45 increases accordingly. At this time, the electromagnetic solenoid 43 increases the electromagnetic force from the bushing rod 46 to the spool 33 in the leftward direction in the figure. As a result, the force due to the pump discharge pressure directed to the right in the figure on the spool 33 and the force due to the magnetic force exerted on the spool 33 by the spring 37 and the magnetic force directed to the left in the figure are balanced by a higher pump discharge pressure, and the pump discharge pressure The pressure can be matched to the upper limit of the operating pressure of the pressure-operated device 27, and it is possible to prevent the pump discharge pressure from becoming excessive with respect to the required pressure and the pump drive energy being wasted.

第2図は本発明の第2実施例を示す、第1図と同様な断
面図であり、本例ではエンジン始動検出装置47の代わ
りに油温センサ71をリザーバ29に設ける。この第2
実施例ではコントローラ48は、入力された油温情報に
基づき温度状況の判別を行い、リザーバタンク内の油温
が所定値以下になる極低温時には、前記第1実施例にお
けるエンジン始動後の所定期間と同様に、ソレノイド4
3のコイル45に指令電流の最大値を入力する。
FIG. 2 is a sectional view similar to FIG. 1 showing a second embodiment of the present invention, and in this embodiment, an oil temperature sensor 71 is provided in the reservoir 29 instead of the engine start detection device 47. This second
In the embodiment, the controller 48 determines the temperature situation based on the input oil temperature information, and when the oil temperature in the reservoir tank is at an extremely low temperature below a predetermined value, the controller 48 determines the temperature status for a predetermined period after the engine start in the first embodiment. Similarly, solenoid 4
The maximum value of the command current is input to the coil 45 of No. 3.

このようにすると、極低温時には、吸入室7を外気から
遮断するシール部のシール機能が低下して外気を吸い込
みやすくなるのと対応して吸入通路の開度が最大になり
、第1実施例と同様の騒音防止効果が得られ、さらに極
低温時以外の、前記シール機能が良好な状態においては
エンジン始動時であっても吐出流量が増加せず、ポンプ
駆動エネルギーの浪費を防止することができる。
In this way, when the temperature is extremely low, the sealing function of the seal portion that isolates the suction chamber 7 from the outside air decreases, making it easier to suck in outside air, and the degree of opening of the suction passage is maximized. In addition, when the sealing function is in good condition except at extremely low temperatures, the discharge flow rate does not increase even when the engine is started, and waste of pump driving energy can be prevented. can.

第3図は本発明の第3実施例を示す、第1図と同様な断
面図であり、本例はエンジン始動検出装置47およびリ
ザーバ29に設けた油温センサ71を双方兵員えるもの
である。この第3実施例ではエンジン始動後の所定期間
(例えば30秒間)であって極低温の場合のみ、コント
ローラ48がソレノイド43のコイル45に指令電流の
最大値を入力する。
FIG. 3 is a sectional view similar to FIG. 1 showing a third embodiment of the present invention, and this embodiment includes an engine start detection device 47 and an oil temperature sensor 71 provided in the reservoir 29. . In this third embodiment, the controller 48 inputs the maximum value of the command current to the coil 45 of the solenoid 43 only during a predetermined period (for example, 30 seconds) after the engine is started and when the temperature is extremely low.

このようにすると、第2実施例においては油温の上昇速
度が緩やかなため実際に油温が上昇して前記シール機能
が良好な状態に回復したにも拘わらずそれを検出するタ
イミングが遅延してその間不所望に吐出流量が多い状態
が継続することが懸念されるが、本例ではそのようなこ
とは起こらず、その間のポンプ駆動エネルギーの浪費を
防止することができる。
In this way, in the second embodiment, the rate of increase in oil temperature is slow, so even though the oil temperature has actually risen and the sealing function has recovered to a good state, the timing of detecting this is delayed. There is a concern that the discharge flow rate may continue to be undesirably high during this period, but in this example, such a situation does not occur, and waste of pump drive energy during that period can be prevented.

なお上記第2および第3実施例においては、油温センサ
71をリザーバ29に設けているが、センサ設置位置は
これに限定されるものではなく、吸入室を外気から遮断
するシール部近傍、あるいは車両がどのような温度状況
下にあるかが検出できる場所に温度センサを設置すれば
よい(例えば車室内や冷却水容器内に温度センサを設け
て車室内温度や冷却水温度を検出するようにする)。さ
らに上記各実施例では可変容量容積ポンプとしてラジア
ルピストンポンプを用いたが、これに限定されるもので
はなく、回転入力の作用により吸入、吐出を行う可変容
量容積ポンプであればよい。またさらに上記各実施例で
は吐出圧フィードバックにより流量制御を行っているが
、これに限定されるものではなく、例えば車両の走行状
態を検出し、この検出情報に基づきステップモータ等を
用いて吸入路の開度制御を行うものにも本発明は適用可
能である。
In the second and third embodiments described above, the oil temperature sensor 71 is provided in the reservoir 29, but the sensor installation position is not limited to this, and may be near the seal that isolates the suction chamber from the outside air, or The temperature sensor can be installed in a place where it can detect the temperature conditions in the vehicle (for example, a temperature sensor can be installed inside the vehicle interior or in the cooling water container to detect the temperature inside the vehicle and the temperature of the cooling water). do). Further, in each of the above embodiments, a radial piston pump is used as the variable displacement pump, but the pump is not limited to this, and any variable displacement pump that performs suction and discharge by the action of rotational input may be used. Further, in each of the embodiments described above, the flow rate is controlled by feedback of the discharge pressure, but the invention is not limited to this. For example, the running condition of the vehicle is detected, and based on this detected information, a step motor or the like is used to control the flow rate of the suction passage. The present invention is also applicable to those that control the opening degree of the valve.

(発明の効果) かくして本発明可変容量容積ポンプの制御装置は上述の
如く、ポンプ内部の吸入室において負圧の上昇が予想さ
れる状況のときには吸入通路の開度を弁手段によって最
大にするから、吸入室の負圧が不必要に高まることはな
くなり、可変容量容積ポンプへの外気の侵入が少なくな
るためポンプ騒音の発生を防止することができる。
(Effects of the Invention) Thus, as described above, the control device for the variable displacement pump of the present invention maximizes the opening degree of the suction passage by means of the valve means when a rise in negative pressure is expected in the suction chamber inside the pump. Since the negative pressure in the suction chamber does not increase unnecessarily and the amount of outside air entering the variable displacement pump is reduced, pump noise can be prevented from occurring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明制御装置の第1実施例を示すラジアルピ
ストンポンプの断面図、 第2図は本発明の第2実施例を示す第1図と同様な断面
図、 第3図は本発明の第3実施例を示す第1図と同様な断面
図である。 1・・・固定シリンダ型ラジアルピストンポンプ2・・
・本発明制御装置   4・・・ポンプ駆動軸7・・・
吸入室       8・・・偏心カムリング9・・・
ラジアルピストン  10・・・固定シリンダ12・・
・吐出室       14・・・サイドポート18・
・・吸入通路      19・・・吐出通路22・・
・デリバリバルブ   24・・・条溝25・・・吐出
ボート 31・・・スプール弁(弁手段) 33・・・スプール      34・・・入口室35
・・・出口室       36・・・可変絞り40・
・・容量制御圧回路 43・・・電磁ソレノイド(電磁手段)45・・・コイ
ル 47・・・エンジン始動検出装置 48・・・コントローラ 51・・・容積変化補償路 71・・・油温センサ
FIG. 1 is a cross-sectional view of a radial piston pump showing a first embodiment of the control device of the present invention, FIG. 2 is a cross-sectional view similar to FIG. 1 showing a second embodiment of the present invention, and FIG. FIG. 2 is a sectional view similar to FIG. 1 showing a third embodiment of the present invention. 1...Fixed cylinder type radial piston pump 2...
- Control device of the present invention 4... Pump drive shaft 7...
Suction chamber 8... Eccentric cam ring 9...
Radial piston 10...Fixed cylinder 12...
・Discharge chamber 14...Side port 18・
...Suction passage 19...Discharge passage 22...
・Delivery valve 24...Groove 25...Discharge boat 31...Spool valve (valve means) 33...Spool 34...Inlet chamber 35
...Exit chamber 36...Variable aperture 40.
... Capacity control pressure circuit 43 ... Electromagnetic solenoid (electromagnetic means) 45 ... Coil 47 ... Engine start detection device 48 ... Controller 51 ... Volume change compensation path 71 ... Oil temperature sensor

Claims (1)

【特許請求の範囲】 1、吸入通路を絞り手段により開度制御して流量制御可
能な可変容量容積ポンプであって、該ポンプの吐出圧を
容量制御圧としてこれに応動するとともに、この容量制
御圧に対向する向きに吐出圧制御力を受けてこれにも応
動し、開度を決定される弁手段により前記絞り手段を構
成した可変容量容積ポンプにおいて、 ポンプ始動後の所定期間、該ポンプの吐出圧の如何に拘
わらず、前記吸入通路の開度が最大になるよう前記弁手
段を制御するようにしたことを特徴とする、可変容量容
積ポンプの制御装置。 2、吸入通路を絞り手段により開度制御して流量制御可
能な可変容量容積ポンプであって、該ポンプの吐出圧を
容量制御圧としてこれに応動するとともに、この容量制
御圧に対向する向きに吐出圧制御力を受けてこれにも応
動し、開度を決定される弁手段により前記絞り手段を構
成した可変容量容積ポンプにおいて、 ポンプ作動油の油温を検出する油温検出手段を設け、検
出した作動油の油温が所定値以下のとき、該ポンプの吐
出圧の如何に拘わらず、前記吸入通路の開度が最大にな
るよう前記弁手段を制御するようにしたことを特徴とす
る、可変容量容積ポンプの制御装置。 3、請求項1記載の可変容量容積ポンプの制御装置にお
いて、ポンプ作動油の油温を検出する油温検出手段を設
け、検出した作動油の油温が所定値以下のとき、ポンプ
始動後の所定期間、該ポンプの吐出圧の如何に拘わらず
、前記吸入通路の開度が最大になるよう前記弁手段を制
御するようにしたことを特徴とする、可変容量容積ポン
プの制御装置。
[Scope of Claims] 1. A variable displacement pump capable of controlling the flow rate by controlling the opening of the suction passage with a restricting means, which responds to the discharge pressure of the pump as a displacement control pressure and controls the displacement. In a variable displacement pump in which the throttling means is constituted by a valve means whose opening degree is determined by receiving a discharge pressure control force in a direction opposite to the pressure, the pump is operated for a predetermined period after starting the pump. A control device for a variable displacement pump, characterized in that the valve means is controlled so that the opening degree of the suction passage is maximized regardless of the discharge pressure. 2. A variable displacement pump capable of controlling the flow rate by controlling the opening of the suction passage with a restricting means, which responds to the discharge pressure of the pump as a displacement control pressure, and also operates in a direction opposite to this displacement control pressure. In a variable displacement pump in which the throttling means is constituted by a valve means whose opening degree is determined in response to a discharge pressure control force, an oil temperature detection means for detecting the temperature of pump hydraulic oil is provided, When the detected temperature of the hydraulic oil is below a predetermined value, the valve means is controlled so that the opening degree of the suction passage is maximized, regardless of the discharge pressure of the pump. , control device for variable displacement volumetric pumps. 3. In the variable displacement pump control device according to claim 1, an oil temperature detection means for detecting the temperature of the pump hydraulic oil is provided, and when the detected oil temperature of the hydraulic oil is below a predetermined value, the control device after the pump starts. A control device for a variable displacement pump, characterized in that the valve means is controlled so that the opening degree of the suction passage is maximized for a predetermined period of time, regardless of the discharge pressure of the pump.
JP2097724A 1990-04-16 1990-04-16 Control device for variable displacement pump Expired - Lifetime JP2600968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2097724A JP2600968B2 (en) 1990-04-16 1990-04-16 Control device for variable displacement pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2097724A JP2600968B2 (en) 1990-04-16 1990-04-16 Control device for variable displacement pump

Publications (2)

Publication Number Publication Date
JPH041482A true JPH041482A (en) 1992-01-06
JP2600968B2 JP2600968B2 (en) 1997-04-16

Family

ID=14199839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2097724A Expired - Lifetime JP2600968B2 (en) 1990-04-16 1990-04-16 Control device for variable displacement pump

Country Status (1)

Country Link
JP (1) JP2600968B2 (en)

Also Published As

Publication number Publication date
JP2600968B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
KR0167866B1 (en) Variable displacement pump
KR100325916B1 (en) Variable displacement type swash plate compressor and displacement control valve
US20200400134A1 (en) Capacity control valve
EP3822485B1 (en) Capacity control valve
US5769386A (en) Electromagnetic proportional pressure control valve
JPH03103619A (en) Apparatus for adjusting rotating angle of cam shaft relative to driving member
CN109253083B (en) Hydraulic control device and hydraulic control method
KR930013481A (en) Inclined Plate Compressor with Variable Capacity Control
US20130312400A1 (en) Variable displacement pump
US4441863A (en) Variable discharge rotary compressor
EP2423508B1 (en) capacity control for a screw compressor
US6321702B1 (en) Process for controlling a gas exchange valve for internal combustion engines
JP2009102989A (en) Variable displacement compressor
JPH041482A (en) Controller for variable displacement pump
JP2684804B2 (en) Control device for positive displacement pump
US6213730B1 (en) Flow control apparatus for a hydraulic pump
JP2768033B2 (en) Control device for positive displacement pump
JP2689664B2 (en) Flow control device for variable displacement positive displacement pump
JP2008128091A (en) Clutch-less variable displacement compressor
JPS6346714Y2 (en)
US11378194B2 (en) Capacity control valve
JPH0788815B2 (en) Diaphragm type vacuum pump
US8475142B2 (en) Pump having a magnetically actuated control valve for suction regulation
JPH04214973A (en) Control device for positive displacement pump
JP2952378B2 (en) Capacity control device for compressor