JPH04147962A - Coating method with metal nitride/oxide film having reflectivity for heat ray - Google Patents

Coating method with metal nitride/oxide film having reflectivity for heat ray

Info

Publication number
JPH04147962A
JPH04147962A JP27165390A JP27165390A JPH04147962A JP H04147962 A JPH04147962 A JP H04147962A JP 27165390 A JP27165390 A JP 27165390A JP 27165390 A JP27165390 A JP 27165390A JP H04147962 A JPH04147962 A JP H04147962A
Authority
JP
Japan
Prior art keywords
metal
film
gas
oxygen
oxygen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27165390A
Other languages
Japanese (ja)
Inventor
Masanori Ueda
正則 上田
Eiji Kusano
英二 草野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP27165390A priority Critical patent/JPH04147962A/en
Publication of JPH04147962A publication Critical patent/JPH04147962A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To obtain a metal nitride/oxide film having good adhesion property and reflectivity for heat ray by depositing a cathode metal on a substrate by arc vapor deposition in an atmosphere under reduced pressure containing nitrogen gas and oxygen gas by specified proportion. CONSTITUTION:In an evacuated tank in which the atmosphere can be controlled, a metal target to form the metal nitride/oxide is disposed as the cathode. Nitrogen gas and oxygen gas are introduced to the evacuated tank so that both gases in the tank satisfy (oxygen gas)/(oxygen gas+nitrogen gas)=0.25-0.55 by volume. Then the metal nitride/oxide film is formed on a substrate by arc vapor deposition in this evacuated tank.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、アーク蒸着法により熱線反射性の金属窒酸化
物の膜を基体に被覆する方法に関し、とりわけ基体との
密着性がよい熱線反射性の金属窒酸化物の膜を被覆する
方法に関する。
Detailed Description of the Invention "Industrial Application Field" The present invention relates to a method of coating a substrate with a heat-reflecting metal nitoxide film by arc evaporation, and in particular a heat-reflecting metal nitoxide film with good adhesion to the substrate. The present invention relates to a method of coating a metal nitoxide film.

「従来技術」 従来、耐久性が良い熱線反射性を有する金属化合物の膜
としては金属窒化物の膜が知られている。
"Prior Art" Metal nitride films have been known as metal compound films that are durable and have heat ray reflection properties.

そして、前記金属窒化物の膜をアーク蒸着法で基体に被
覆する方法としては、特開昭83−208333号公報
に開示されている。これによると、金属窒化物の膜は金
属をターゲットとし、アルゴンと窒素ガスあるいは純窒
素ガスの雰囲気内で基体上または酸化物下地膜上に被覆
されている。
A method for coating a substrate with the metal nitride film by arc evaporation is disclosed in JP-A-83-208333. According to this, a metal nitride film targets a metal and is coated on a substrate or an oxide base film in an atmosphere of argon and nitrogen gas or pure nitrogen gas.

「発明が解決しようとする課題」 しかしながら、上記従来の技術で得られる金属、窒化物
の被膜は、膜内部に応力が生じ基体に直接被覆したり酸
化物膜上に被覆すると、密着力が必ずしも十分でなく剥
離しやすいという問題がある。
``Problem to be Solved by the Invention'' However, the metal or nitride coatings obtained by the above-mentioned conventional techniques do not necessarily have good adhesion when coated directly on a substrate or coated on an oxide film due to stress within the coating. There is a problem that it is not sufficient and easily peels off.

本発明は、かかる従来技術が有する問題を解決するため
になされたものであって、基体または酸化物の下地膜と
の密着性が改善された熱線反射性の被膜を被覆する方法
を提供するものである。
The present invention has been made to solve the problems of the prior art, and provides a method for coating a heat ray reflective film with improved adhesion to a substrate or an oxide underlayer. It is.

「課題を解決するための手段」 本発明は、減圧された雰囲気が調整できる槽内でアーク
蒸着法により熱線反射性の金属窒酸化物膜を基体に被覆
する方法であって、前記金属窒酸化物の膜となる金属を
ターゲットとして陰極に設置し、前記減圧された雰囲気
が酸素ガスと窒素ガスとを少なくとも含み、前記酸素ガ
スと窒素ガスとの体積比が、(酸素ガス)/(酸素ガス
十窒素ガス)で表して、0.25〜0.55とした熱線
反射性の金属窒酸化膜の被覆方法である。
"Means for Solving the Problems" The present invention is a method of coating a substrate with a heat-reflective metal nitoxide film by arc evaporation in a tank in which a reduced pressure atmosphere can be adjusted, the method comprising: A metal that will become a film of an object is placed on the cathode as a target, and the reduced pressure atmosphere contains at least oxygen gas and nitrogen gas, and the volume ratio of the oxygen gas and nitrogen gas is (oxygen gas)/(oxygen gas). This is a method for coating a heat ray reflective metal nitoxide film with a value of 0.25 to 0.55 expressed as 10 nitrogen gas).

本発明により得られる熱線反射性の金属窒酸化物の膜は
、金属と窒素と酸素とが含まれる。アーク蒸着をおこな
うときの雰囲気は、窒素と酸素とからなっていてもよく
、さらにアルゴンのような不活性ガスが含まれていても
よい。金属をアーク蒸着により蒸発するとき、蒸発金属
と反応する雰囲気中の酸素と窒素の体積比は、(酸素ガ
ス)/(酸素ガス+窒素ガス)で表して0.25〜0゜
55であることが必要である。酸素と窒素の体積比が、
(酸素ガス)/(酸素ガス+窒素ガス)で表して0.2
5より小さいと、得られる金属窒酸化物膜中の酸素量が
少なくなり、膜中に残留歪が生じて基体または下地膜と
の密着性が低下し剥がれ易くなる。また、酸素と窒素の
体積比が(酸素ガス)/(酸素ガス十窒素ガス)で表し
て0.55より大きいと、得られる金属窒酸化物膜中の
酸素量が多くなり、熱線反射性が低下し窓ガラスとして
熱線遮蔽性能が十分でなくなるとともに、金属を蒸発す
るためのアーク放電が不安定になる。
The heat-reflective metal nitoxide film obtained by the present invention contains metal, nitrogen, and oxygen. The atmosphere during arc deposition may consist of nitrogen and oxygen, and may further contain an inert gas such as argon. When metal is evaporated by arc evaporation, the volume ratio of oxygen and nitrogen in the atmosphere that reacts with the evaporated metal must be 0.25 to 0.55 expressed as (oxygen gas)/(oxygen gas + nitrogen gas). is necessary. The volume ratio of oxygen and nitrogen is
Expressed as (oxygen gas)/(oxygen gas + nitrogen gas) 0.2
If it is less than 5, the amount of oxygen in the obtained metal nitoxide film will decrease, residual strain will occur in the film, and the adhesion to the substrate or underlying film will decrease, making it easy to peel off. In addition, when the volume ratio of oxygen and nitrogen is expressed as (oxygen gas)/(oxygen gas/ten nitrogen gas) and is larger than 0.55, the amount of oxygen in the obtained metal nitride film increases and the heat ray reflectivity decreases. As a result, the heat ray shielding performance of the window glass becomes insufficient, and the arc discharge for evaporating metal becomes unstable.

また、より大きい熱線反射性を確保するためには、上記
の酸素と窒素の体積比率は0.50以下が好ましい。
Further, in order to ensure greater heat ray reflectivity, the volume ratio of oxygen and nitrogen is preferably 0.50 or less.

本発明に用いられる基体としては、ソーダライム組成の
ガラスのような無機ガラスのほかに、有機樹脂のガラス
が用いられる。また、下地の膜としては、酸化チタン、
酸化タンタル、酸化ジルコニウム、酸化アルミニウム、
酸化錫、酸化インジウムなどの金属酸化物や二酸化珪素
は、酸素を含むので本発明にかかる金属窒酸化物膜との
密着性がよい。上記の例示されている金属酸化物の膜を
本発明にかかる金属窒酸化物のオーバーコートとし用い
ても、良好な密着性が得られる。
As the substrate used in the present invention, in addition to inorganic glass such as glass having a soda lime composition, organic resin glass is used. In addition, the underlying film is titanium oxide,
tantalum oxide, zirconium oxide, aluminum oxide,
Metal oxides such as tin oxide and indium oxide and silicon dioxide contain oxygen and therefore have good adhesion to the metal nitoxide film according to the present invention. Even when the metal oxide film exemplified above is used as the metal oxynitride overcoat according to the present invention, good adhesion can be obtained.

[作用] アーク蒸着法で被膜を基体に被覆するときの雰囲気ガス
中の酸素および窒素は、蒸発する金属と反応して膜中に
入り、金属窒酸化物膜を形成する。
[Operation] Oxygen and nitrogen in the atmospheric gas when a film is applied to a substrate by arc evaporation react with the evaporated metal and enter the film, forming a metal nitoxide film.

そして金属窒酸化物膜中の酸素原子は、膜の熱線反射性
を低下させることなく、基体または下地膜との密着性を
強くする。
The oxygen atoms in the metal nitoxide film strengthen the adhesion to the substrate or underlying film without reducing the heat ray reflectivity of the film.

「実施例」 以下に本発明を実施例に基づいて説明する。"Example" The present invention will be explained below based on examples.

第1図は本発明の実施に用いたアーク蒸着装置の一例で
ある。アーク蒸着装置は3室(2)(3)(4)からな
る一体のアースされた真空槽(1)を基礎構造としてい
る。各部屋はゲートバルブ(5)(8)により仕切るこ
とができるようになっており、連動式の搬送ベルト(7
)がそれぞれ設置されている。真空槽の部屋(2)はロ
ード室であり、ゲートバルブ(5)で仕切られている。
FIG. 1 shows an example of an arc evaporation apparatus used in carrying out the present invention. The basic structure of the arc evaporation apparatus is an integrated, grounded vacuum chamber (1) consisting of three chambers (2), (3), and (4). Each room can be partitioned using gate valves (5) and (8), and is equipped with an interlocking conveyor belt (7).
) are installed respectively. The vacuum chamber chamber (2) is a load chamber and is separated by a gate valve (5).

部屋(2)を大気圧に戻し基板(8)を搬送ベルト上に
取り付け、再度真空にすることにより基板(8)をセッ
トする。真空槽の中央の部屋(3)が成膜室であり、底
部に電気絶縁体(9)を介してアーク放電用陰極(10
)が設置されている。
The chamber (2) is returned to atmospheric pressure, the substrate (8) is mounted on the conveyor belt, and the substrate (8) is set by evacuating the chamber (2) again. The central chamber (3) of the vacuum chamber is a film forming chamber, and an arc discharge cathode (10
) is installed.

この陰極には直流電源(11)がスイッチ(12)を介
して接続されている。さらに、底部のフランジを介して
バルブ(18)を備えたガス供給管(14)が設置され
ている。バルブ(13)には流量調整器(15)(18
)を介して窒素ボンベ(17)、および酸素ボンベ(1
8)が取り付けられている。アーク放電を生起させるた
めのトリガー(19)がスイッチ(20)を介して直流
電源(11)に接続されている。ガラス基板(8)が連
動式の搬送ベルト(7)に固定されて、部屋(2)から
陰極(10)上部を通過し部屋(4)に移動する間に被
膜が形成される。形成すべき被膜の厚みは搬送ベルト(
7)の移動速度を調整することにより調節する。真空槽
の部屋(4)はアンロード室であり、ゲートバルブ(6
)で仕切り大気圧に戻すことにより、第1図で示すよう
な基体(8)に被膜(21)が被覆された熱線反射ガラ
ス(22)を取り出す。
A DC power supply (11) is connected to this cathode via a switch (12). Furthermore, a gas supply pipe (14) with a valve (18) is installed via the bottom flange. The valve (13) is equipped with a flow regulator (15) (18).
) through the nitrogen cylinder (17) and the oxygen cylinder (1
8) is attached. A trigger (19) for causing arc discharge is connected to a DC power source (11) via a switch (20). A glass substrate (8) is fixed to an interlocking conveyor belt (7), and a coating is formed while the glass substrate (8) is moved from the chamber (2), passing over the cathode (10) and into the chamber (4). The thickness of the film to be formed is determined by the conveyor belt (
7) by adjusting the moving speed. The vacuum chamber room (4) is the unloading room, and the gate valve (6)
) to return the glass to atmospheric pressure, and then take out the heat-reflecting glass (22), which is a substrate (8) coated with a film (21) as shown in FIG.

実験例1 真空室(3)のアーク放電用陰極(10)の上面にチタ
ン金属のターゲットを設置した。ゲートバルブ(5)を
閉にし、真空室(2)を大気圧に戻し、基板(8)を搬
送ベルト(7)上に取り付けた。真空室(2)を真空ポ
ンプ(図示しない)によりlX1f)  Torrまで
排気した。ゲートバルブ(5)(8)を閉にして3室と
も5X10−’T o r rより高真空になるまで排
気した。バルブ(13)を開にしてガス供給管(14)
より真空槽内にガスを導入した。このガスは、窒素ガス
と酸素ガスをそれぞれ流量調整器(15L  (16)
により所定の体積割合になるように調整された混合ガス
である。窒素ガスと酸素ガスの比を種々変えてガラス板
の上に金属窒酸化物の膜を被覆した。混合ガスを導入し
た状態で真空槽内の真空度が2X1σ Torrになる
ようにコンダクタンスバルブ(図示しない)により真空
ポンプの排気速度を調整した。スイッチ(12)をオン
にしてターゲット表面に100(V)の電圧を印加し、
さらにトリガー(19)のスイッチ(20)をオンにし
てアーク放電を生起させた。この時のアーク電流は10
0(A)とした。その後、搬送ベルト(7)を3室連動
で1000mm/minの速度で動かし、ガラス基板(
8)を真空室(2)から陰極(10)の上方を通過させ
真空室(4)に送った。そして、搬送ベルト(7)を停
止させアーク放電を停止させた。さらに、ゲートバルブ
(6)を閉にし、真空室(4)を大気圧に戻しガラス基
板を取りだした。
Experimental Example 1 A titanium metal target was installed on the upper surface of the arc discharge cathode (10) in the vacuum chamber (3). The gate valve (5) was closed, the vacuum chamber (2) was returned to atmospheric pressure, and the substrate (8) was mounted on the conveyor belt (7). The vacuum chamber (2) was evacuated to 1×1f) Torr by a vacuum pump (not shown). The gate valves (5) and (8) were closed and all three chambers were evacuated to a higher vacuum than 5×10-'T or r. Open the valve (13) and connect the gas supply pipe (14)
Gas was introduced into the vacuum chamber. This gas is supplied through flow regulators (15L (16)) for nitrogen gas and oxygen gas respectively.
This is a mixed gas adjusted to have a predetermined volume ratio. A film of metal nitride oxide was coated on a glass plate with various ratios of nitrogen gas and oxygen gas. The pumping speed of the vacuum pump was adjusted using a conductance valve (not shown) so that the degree of vacuum in the vacuum chamber became 2×1σ Torr with the mixed gas introduced. Turn on the switch (12) and apply a voltage of 100 (V) to the target surface,
Further, the switch (20) of the trigger (19) was turned on to cause arc discharge. The arc current at this time is 10
It was set to 0 (A). After that, the conveyor belt (7) is moved in conjunction with the three chambers at a speed of 1000 mm/min, and the glass substrate (
8) was passed from the vacuum chamber (2) over the cathode (10) and sent to the vacuum chamber (4). Then, the conveyor belt (7) was stopped to stop the arc discharge. Furthermore, the gate valve (6) was closed, and the vacuum chamber (4) was returned to atmospheric pressure, and the glass substrate was taken out.

以上の手順に従い窒素と酸素の組成を変化させて酸窒化
チタンの膜を被覆したガラスを得た。このガラスサンプ
ルの光学特性、膜の剥がれ状況とアーク蒸着をするとき
の放電の安定性の観察結果を第1表にまとめて示す。第
3図は雰囲気中の酸素ガスと窒素ガスとの比を変えた時
の膜応力の測定結果を示す。第1表から、膜被覆時の反
応ガスの体積比02/ (02+N2)が0. 3. 
0. 4. 0゜5としてそれぞれ作成したガラスサン
プルは膜剥厚みノ 圓−’l17cDζ剤早。
Glass coated with a titanium oxynitride film was obtained by changing the composition of nitrogen and oxygen according to the above procedure. Table 1 summarizes the optical properties of this glass sample, the peeling status of the film, and the observation results of the stability of discharge during arc evaporation. FIG. 3 shows the measurement results of film stress when the ratio of oxygen gas to nitrogen gas in the atmosphere was changed. From Table 1, it can be seen that the volume ratio of the reaction gas during membrane coating 02/(02+N2) is 0. 3.
0. 4. The glass samples prepared as 0°5 had a film peeling thickness of 17cDζ.

がれがなく、太陽輻射反射率が20%以上のチタンと酸
素と窒素とからなる熱線反射ガラスが得られたことが分
かる。またこのときのプラズマは安定していた。反応ガ
スの体積比02/ (02十N、)を0.25以上とし
て作成したガラスサンプルの膜の圧縮応力は、第3図に
示されるように5×10’Pa以下であり、酸素ガスが
より少ない雰囲気で作成したサンプルよりも膜の圧縮応
力が小さくなっていいることが認められた。
It can be seen that a heat-reflecting glass made of titanium, oxygen, and nitrogen without any peeling and having a solar radiation reflectance of 20% or more was obtained. Also, the plasma at this time was stable. The compressive stress of the film of the glass sample prepared with the volume ratio of the reaction gas 02/(020N,) of 0.25 or more is 5×10'Pa or less, as shown in Figure 3, and the oxygen gas It was observed that the compressive stress of the film was smaller than that of the sample prepared in a smaller atmosphere.

実験例2 アーク放電用陰極の上面にチタニウム金属の代わりにジ
ルコニウム金属をターゲットとして取り付けた。実施例
1と同様な方法で反応ガスの窒素ガスと酸素ガスの比率
を変えてジルコニウム窒酸化物の膜をガラス板上に被覆
した。実施例1と同じように得られたサンプルを評価し
た結果を第2表に示す。第2表から、膜被覆時の反応ガ
スの体積比02/(02+N2)、6fO,3,0,4
,0,5としてそれぞれ作成したガラスサンプルは膜剥
がれがなく、太陽輻射反射率が20%以上のジルコニウ
ムと酸素と窒素とからなる熱線反射ガラスが得られるこ
とが分かる。
Experimental Example 2 Zirconium metal was attached as a target to the upper surface of the arc discharge cathode instead of titanium metal. A film of zirconium nitoxide was coated on a glass plate in the same manner as in Example 1 while changing the ratio of nitrogen gas and oxygen gas as reaction gases. Table 2 shows the results of evaluating the samples obtained in the same manner as in Example 1. From Table 2, the volume ratio of reaction gas during membrane coating is 02/(02+N2), 6fO, 3,0,4
, 0, and 5, there was no film peeling, and it was found that heat-reflective glasses made of zirconium, oxygen, and nitrogen and having a solar radiation reflectance of 20% or more were obtained.

実験例3 アーク放電用陰極の上面にハフニウム金属をターゲット
としてを取り付けた。実施例1と同様の方法で反応ガス
の窒素ガスと酸素ガスの比率を変えてハフニウム窒酸化
物の膜をガラス板上に被覆した。実施例1と同じように
得られたサンプルを評価した結果を第3表に示す。第3
表から、膜被覆時の反応ガスの体積比02/ (02+
N2)が0゜3、 0. 4. 0. 5としてそれぞ
れ作成したガラスサンプルは膜剥がれがなく、太陽輻射
反射率が20%以上のハフニウムと酸素と窒素とからな
る熱線反射ガラスが得られることが分かる。
Experimental Example 3 Hafnium metal was attached as a target to the upper surface of the arc discharge cathode. A hafnium nitride film was coated on a glass plate in the same manner as in Example 1, while changing the ratio of nitrogen gas and oxygen gas as reaction gases. Table 3 shows the results of evaluating the samples obtained in the same manner as in Example 1. Third
From the table, it can be seen that the volume ratio of the reaction gas during membrane coating is 02/ (02+
N2) is 0°3, 0. 4. 0. It can be seen that the glass samples prepared as No. 5 had no peeling, and a heat-reflecting glass made of hafnium, oxygen, and nitrogen and having a solar radiation reflectance of 20% or more was obtained.

「発明の効果」 本発明によれば基体との密着性が良い熱線反射性の金属
窒酸化物の膜を被覆することができる。
"Effects of the Invention" According to the present invention, it is possible to coat a substrate with a heat-reflective metal nitoxide film that has good adhesion to the substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を実施するのに用いた装置の概略断面
図、第2図は本発明の実施により得られる熱線反射ガラ
スの一部断面図、 第3図は、 被膜 の内部応力を説明するための図である。 特許
FIG. 1 is a schematic cross-sectional view of the apparatus used to carry out the present invention, FIG. It is a figure for explaining. patent

Claims (1)

【特許請求の範囲】[Claims] 1)減圧された雰囲気が調整できる槽内でアーク蒸着法
により金属窒酸化物膜を基体に被覆する方法において、
前記金属窒酸化物となる金属のターゲットを陰極に設置
し、前記減圧された雰囲気が窒素ガスと酸素ガスとを少
なくとも含み、前記酸素ガスと窒素ガスとの体積比が、
(酸素ガス)/(酸素ガス+窒素ガス)で表して、0.
25〜0.55としたことを特徴とする熱線反射性の金
属窒酸化物膜の被覆方法。
1) In a method of coating a substrate with a metal nitoxide film by arc evaporation in a tank where a reduced pressure atmosphere can be adjusted,
A metal target to be the metal nitoxide is placed on the cathode, the reduced pressure atmosphere contains at least nitrogen gas and oxygen gas, and the volume ratio of the oxygen gas to nitrogen gas is
Expressed as (oxygen gas)/(oxygen gas + nitrogen gas), 0.
25 to 0.55. A method for coating a heat ray reflective metal nitoxide film.
JP27165390A 1990-10-09 1990-10-09 Coating method with metal nitride/oxide film having reflectivity for heat ray Pending JPH04147962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27165390A JPH04147962A (en) 1990-10-09 1990-10-09 Coating method with metal nitride/oxide film having reflectivity for heat ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27165390A JPH04147962A (en) 1990-10-09 1990-10-09 Coating method with metal nitride/oxide film having reflectivity for heat ray

Publications (1)

Publication Number Publication Date
JPH04147962A true JPH04147962A (en) 1992-05-21

Family

ID=17503039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27165390A Pending JPH04147962A (en) 1990-10-09 1990-10-09 Coating method with metal nitride/oxide film having reflectivity for heat ray

Country Status (1)

Country Link
JP (1) JPH04147962A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010284873A (en) * 2009-06-11 2010-12-24 Asahi Glass Co Ltd Heat-ray-reflective transparent material, method of manufacturing the same, and greenhouse provided with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010284873A (en) * 2009-06-11 2010-12-24 Asahi Glass Co Ltd Heat-ray-reflective transparent material, method of manufacturing the same, and greenhouse provided with the same

Similar Documents

Publication Publication Date Title
US5462779A (en) Thin film multilayer structure as permeation barrier on plastic film
RU2341587C2 (en) Method of coating application by method of deposition with magnetron scattering in vacuum
US5464683A (en) Coated transparent substrate
US20130122252A1 (en) Ion beam deposition of fluorine-based optical films
US20070170050A1 (en) Method for the production of an ultra barrier layer system
JP4434949B2 (en) Methods for obtaining thin, stable, fluorine-doped silica layers, the resulting thin layers, and their application in ophthalmic optics
EP1178130B1 (en) Oxide film, laminate and methods for their production
JP2002322561A (en) Sputtering film deposition method
Ohsaki et al. High rate sputter deposition of TiO2 from TiO2− x target
JPH10237630A (en) Oxide coating, laminated body and heir production
JPH04147962A (en) Coating method with metal nitride/oxide film having reflectivity for heat ray
JP4106931B2 (en) Transparent gas barrier thin film coating film
US5919342A (en) Method for depositing golden titanium nitride
US20020097512A1 (en) Method for the coating of substrates made of plastic
KR20150030366A (en) Method for depositing coating film for improving wear reistance and weatherproof of uv rays of polycarbonate and the polycarbonate having deposit coating film by the method
JPH05221689A (en) Radiant heat-shield glass
JPS62287074A (en) Roll coater device
JP2001288562A (en) Silicon compound thin film deposition method, and article obtained by using it
KR20140102345A (en) method and apparatus the same for forming aluminium-silicone nitride layer for enhancing the surface hardness and wear resistance of polycarbonate
JP2817287B2 (en) Transparent goods
JPH0248432A (en) Heat ray-shielding plate and production thereof
JP3208795B2 (en) Transparent article and method for producing the same
JPH01234557A (en) Heat ray reflecting plate and its production
JPH03134157A (en) Wear resistant transparent parts
Leroux et al. Mechanical properties of plasma deposited functional coatings determined by microscratch measurements