JPH0414641B2 - - Google Patents

Info

Publication number
JPH0414641B2
JPH0414641B2 JP59205637A JP20563784A JPH0414641B2 JP H0414641 B2 JPH0414641 B2 JP H0414641B2 JP 59205637 A JP59205637 A JP 59205637A JP 20563784 A JP20563784 A JP 20563784A JP H0414641 B2 JPH0414641 B2 JP H0414641B2
Authority
JP
Japan
Prior art keywords
plants
plant
lif
disease
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59205637A
Other languages
Japanese (ja)
Other versions
JPS6185303A (en
Inventor
Yasuji Asada
Isao Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP59205637A priority Critical patent/JPS6185303A/en
Publication of JPS6185303A publication Critical patent/JPS6185303A/en
Publication of JPH0414641B2 publication Critical patent/JPH0414641B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、植物病害予防剤に関するものであ
る。 (従来の技術および問題点) 植物の病害防除は種々の殺菌剤開発によつてめ
ざましく進歩し、作物の安定生産に大きく寄与し
てきたが、それらの多くは化学合成によつて得ら
れたもので自然界にかつて存在しなかつた物質で
あるため長期間残留して問題になつた例もある。
また、それらの多くは病原菌に直接作用して殺生
するものもあり、その作用機構は動・植物を含め
て多くの生物に共通する呼吸、蛋白合成阻害など
基本的代射経路を阻害する場合もある。このよう
に化学合成農薬は常に人畜、魚類他の自然環境を
破壊する危険をはらんでいるため、環境保護の立
場から多大な費用・時間をかけて安全性を確認し
ているが、なお十分ではないのが実情であり、よ
り安全な殺菌剤の模索が続けられている。 ところで自然条件下に育つ植物は、その一生の
うちに何回となく激しい風雨にさらされ、また病
原菌、害虫の攻撃を受けるが、植物はそれらに対
する防御反応を示す能力をもつている。激しい風
に対してはホルモンの調節により草丈が抑えら
れ、がつちりした植物体になり、受けた傷害に対
しては癒傷層が形成される。また植物が病原菌の
侵入を受けると感染部位に抗菌性物質が出来るこ
とが知られており、これらの物質にフイトアレキ
シンという名称が与えられている。 Ku′cらはキユウリなどウリ類の子葉や第1本
葉に炭そ病菌を接種すると、上位本葉に再度接種
した時に発病しにくくなることを見い出し、宿主
に抵抗性が誘導されることを明らかにした。しか
し、その抵抗性は抗菌性物質によるものではな
く、細胞壁の木化により病原菌の宿主への侵入及
び菌糸伸展が抑えられるためと述べている
(Physiol.Pl.Pathol.14:329〜338)。 (問題点を解決するための手段) 本発明者らはアブラナ科植物べと病菌とアブラ
ナ科植物の系を用いて病態植物組織におけるリグ
ニン生成とそ誘導機作の研究を進めてきた結果、
アブラナ科植物ベと病菌を接種したアブラナ科植
物より作製した摩砕液中に細胞壁の木化を誘導す
る物質(木化誘導因子)含まれており、この摩砕
液上澄液を作物に散布した場合に病害を有効に予
防できること見い出し、本発明を完成した。 すなわち、本発明は、 ペロノスポラ パラジチカ(Peronospora
para−sitica(Pers.)Fr.)に罹病したアブラナ科
植物組織の摩砕液を有効成分として含有すること
を特徴とする植物病害予防剤を提供するものであ
る。 次に本発明について詳述する。 本発明において用いられるペロノスポラ パラ
ジチカ(Peronospora paratica(Pers.)Fr.)は、
アブラナ科植物べと病原菌であり、藻菌類の一種
でアブラナ科植物に普遍的に寄生するものであ
る。特にハクサイ、キヤベツ、ダイコンの重要病
害を起こす病原菌であり、また畑周辺の雑草であ
るナズナ、イヌザラシなどにも寄生する。菌糸お
よび卵胞子で越冬または越夏し、分生子の形で空
気伝染する。多くの場合、秋季平均温度10℃以下
になつて一時的に発生し、春季8℃くらいで降雨
とともに発生が多くなる。本発明の供試菌は、絶
対寄生菌であり、試験管では培養できないが、上
述したように、アブラナ科植物に普遍的に寄生す
るものであるから、当業者が極めて容易に入手す
ることができる。 本発明で用いられるアブラナ科植物の具体例と
しては、ダイコン、カブ、ハクサイ、キヤベツ、
カラシナ、ナタネ、ナズナなどが挙げられるが、
これらの中でもダイコン、カブが好適である。 次に、アブラナ科植物組織へのペロノスポラ
パラジチカ(Peronospora parasitica(Pers.)
Fr.)の罹病のさせ方の一例について述べる。 アブラナ科植物の葉、茎、または根部組織を水
で洗浄した後に、無菌室に移し0.1wt%昇汞水に
1分間、あるいは1wt%次亜鉛素酸ソーダ溶液に
7分間浸漬して消毒する。次いで70vol%アルコ
ールで消毒したメスで組織を切断し、湿室に入れ
る。この時組織は適当な大きさに切断しておく。
特にダイコンの根のような組織では切断すること
によつて、後述すると病の罹病面積が大きくな
り、抵抗性誘導因子が多く生産される。湿室はろ
紙をひいて減菌水を加えたペトリ皿で簡単に作る
ことができるがアブラナ科植物べと病の発病が十
分に行なわれる90%以上の高温度が得られれば良
い。一方圃場で自然発生したアブラナ科植物べと
病菌にかかつたダイコン葉片を採集し湿室(湿度
90%以上)、湿度20℃、200ルクスの条件下で分生
子を発生させ、この分生子をかきとり水に懸濁さ
せる。この懸濁液を前述のアブラナ科植物の切断
組織に点滴する(接種)。懸濁液の分生子濃度は
大きい程よいが106〜108個/mlで十分である。発
病は20℃、200ルクスの条件に4〜7日間おいて
行なわれる。 アブラナ科植物べと病菌は比較的低温を好む病
原菌であり、その生活温度は3〜25℃の範囲であ
るが、20℃前後で発病させるのが最適である。ア
ブラナ科植物べと病の発病によつて茎、葉部は輪
郭が不鮮明な黄緑色から灰白色の斑紋を生じる。
また根部の場合は表面1〜2mmに黒色が変色する 〔罹病組織〕。 次に、罹病組織の摩砕液の作り方について述べ
る。 アブラナ科植物組織は一般に柔かであるので家
庭用のジユーサーで摩砕することができる。さら
に摩砕率を上げるためにジユースおよび残渣をワ
ーリンクブレンダー(トリオサイエンス(株)製)、
ハイパワーホモジナイザー(増田理化工学製)の
ようなホモジナイザーで10000〜18000rpm、10分
間程度、あるいはウルトラデイスパーサー(増田
理化工業製)のようなデイスパーサーを用いて
20000〜25000rpmで1分間程度摩砕するとさらに
十分な摩砕が行なわれる。 このようにして得られた摩砕物は木化誘導因子
の他に細胞壁、原形質膜、繊維組織、表皮組織そ
の他を含むので、まずガーゼなどにより大組織片
を分離除去する。さらにろ液を遠心分離機を用い
て膜組織等を除去する。この時の遠心力は小さく
てもよく700g程度で十分である。沈澱物を除去
して摩砕液をとり木化誘導因子を含む液(以下
LIF液という)とする。また摩砕およびLIF液分
取の工程は室温で行なうことができる。 以上の工程による摩砕液収量は組織の種類によ
つて異なるがダイコンの根の場合で70%程度であ
る。 このようにして得られたLIF液は、そのままか
5倍以下の水で希釈し、植物病害予防剤として噴
霧器のような散布器で対象作物に散布することが
できる。散布液量は対象作物の大きさによつて異
なるが、3ml〜30ml/個体の範囲で茎葉に均一に
散布するのがよい。また散布液の葉面への付着を
よくするためネオエステリン(クミアイ化学工業
製)などの市販の展着剤を適量加えることもでき
る。殺虫剤、殺菌剤、植物生長調節剤、液肥など
他の薬剤を混合して散布することも可能である。 散布時期は病害の発生前が特に有効であるが、
病害の発生後においても病害の拡大を抑制するた
めに使用できる。 (発明の効果) 本発明の植物病害予防剤は植物の免疫的な反応
を利用した画期的な発明であるとともに、植物を
起源とするものであるため人畜に安全であること
はもとより、環境保護の立場からも理想的なもの
である。 本発明の植物病害予防剤による効果は散布され
た植物の細胞壁の木化を誘導することによつて病
原菌の侵入を抑制することによるため、予防の対
象となる病害としては炭そ病の他、種々の病害が
挙げられる。また対象とする作物としてはキユウ
リ、カボチヤなどウリ科作物が代表的に挙げられ
るが、本発明の植物病害予防剤は、これ以外の作
物に対しても有効である。 (実施例) 次に本発明の実施例を挙げる。 実施例 1 〔LIF液の調整〕 ダイコン(Raphanus sativus L.品種、時無)
を圃場で栽培し播種後2〜3か月後の根を採取し
た。表面を水でよく洗浄した後無菌室に移し、
0.1wt%の昇汞水に1分間浸漬して消毒後、無菌
水で洗浄した。次いで、70vol%アルコールで消
毒したメスで厚さ1cmに切断し、ろ紙をひいて滅
菌水を加えた直径9cmの湿室ペトリ皿に入れた。 一方、自然発生したアブラナ科植物べと病に罹
つたダイコン葉片を圃場より採集し直径15cmのシ
ヤーレに入れ、温度20℃、200ルクスの条件下で、
分生子を発生させた。 この分生子を白金耳でかきとり少量の水に懸濁
させた。この懸濁液(分生子濃度106〜108個/
ml)を無菌室中で前述の切断したダイコン根部の
表面に0.1ml/表面cm2の割合で点滴し、これを20
℃、200ルクスの条件下7日間インキユベートし
発病させた。発病によつて表面から1〜2mmの部
分が黒色に変色したダイコンの切断根をワーリン
グブレンダー(トリオサイエンス株式会社製)に
よつて15000rpmで摩砕した。この摩砕物を4枚
重ねのガーゼでろ過した後、ろ液をさらに遠心力
700gで15分間遠心分離し、この摩砕液をLIFと
した。 〔キユウリの炭そ病発病抑制効果試験〕 炭そ病に対して罹病性であるキユウリ「品種、
四葉」をビニールポツトを用いて播種し人工気象
器〔温度23℃相対湿度60〜70%照明8000ルクス、
日長13時間〕内で育苗した。本葉3〜4枚程度に
育つた頃に前述の方法で調整したLIF液をその
まゝキユウリ1個体あたり3mlづつ植物体1、2
葉に散布した。LIF液散布の3日後、炭そ病菌の
分生子懸濁液(胞子濃度(0.9〜1.0)×106個/ml)
をキユウリ植物体全体に散布(接種)、22〜24℃、
相対湿度100%の湿室内に20時間保持した後に、
前述の人工気象器に移し、生育させた。また対照
区としてLIF液の代りに水を散布した区を設け
た。 炭そ病接種6日後にLIF液処理葉および上位葉
を病斑数を調査し、接種13日後に病斑面積を測定
した。その結果を第1表に示した。数字は2回反
復の平均を示す。
(Industrial Application Field) The present invention relates to a plant disease preventive agent. (Conventional techniques and problems) Plant disease control has made remarkable progress through the development of various fungicides, which have greatly contributed to the stable production of crops, but many of these have been obtained through chemical synthesis. Because these substances have never existed in the natural world, there are cases where they persist for long periods of time, causing problems.
In addition, many of them act directly on pathogenic bacteria to kill them, and their mechanism of action may also inhibit basic biological pathways such as respiration and inhibition of protein synthesis that are common to many living things, including animals and plants. be. In this way, chemically synthesized pesticides always carry the risk of destroying humans, livestock, fish, and the natural environment, so from the standpoint of environmental protection, we spend a great deal of money and time to confirm their safety. The reality is that this is not the case, and the search for safer disinfectants continues. By the way, plants that grow under natural conditions are exposed to heavy winds and rain many times during their life, and are attacked by pathogens and pests, but plants have the ability to display defensive responses against these attacks. In response to strong winds, hormonal regulation suppresses plant height, resulting in a sturdy plant, and a healing layer is formed in response to injury. It is also known that when plants are invaded by pathogenic bacteria, antibacterial substances are produced at the infected site, and these substances have been given the name phytoalexins. Ku'c et al. found that when anthracnose bacteria was inoculated into the cotyledons and first true leaves of cucumbers and other cucurbits, the disease was less likely to develop when the upper true leaves were re-inoculated, suggesting that resistance was induced in the host. revealed. However, it is stated that this resistance is not due to antibacterial substances, but to the lignification of cell walls, which suppresses invasion of pathogenic bacteria into the host and hyphal extension (Physiol. Pl. Pathol. 14: 329-338). (Means for Solving the Problems) The present inventors have conducted research on lignin production and its induction mechanism in diseased plant tissues using a system of downy mildew fungi and cruciferous plants.
A substance that induces lignification of cell walls (lignification inducing factor) is contained in the ground solution prepared from a Cruciferous plant inoculated with a diseased fungus, and when this ground solution supernatant is sprayed on crops. The present invention has been completed based on the discovery that the disease can be effectively prevented. That is, the present invention provides Peronospora parasitica (Peronospora paragica).
The present invention provides a plant disease preventive agent characterized by containing as an active ingredient a ground solution of a Cruciferous plant tissue infected with para-sitica (Pers. Fr.). Next, the present invention will be explained in detail. Peronospora paratica (Pers.) Fr. used in the present invention is
It is a downy mildew pathogenic fungus of cruciferous plants, and is a type of algae that commonly parasitizes cruciferous plants. It is a pathogenic bacterium that causes important diseases, especially in Chinese cabbage, cabbage, and radish, and it also parasitizes weeds near fields, such as shepherd's purse and dog seal. It overwinters or oversummers in hyphae and oospores and is airborne in the form of conidia. In most cases, it occurs temporarily when the average temperature in autumn drops to below 10℃, and in spring it occurs more often at around 8℃ with rainfall. The test fungus of the present invention is an obligately parasitic fungus and cannot be cultured in a test tube, but as mentioned above, it is universally parasitic on plants of the Brassicaceae family and therefore can be obtained extremely easily by those skilled in the art. can. Specific examples of cruciferous plants used in the present invention include radish, turnip, Chinese cabbage, cabbage,
Examples include mustard, rapeseed, and shepherd's purse.
Among these, radish and turnip are preferred. Next, Peronospora to Brassica tissue
Peronospora parasitica (Pers.)
An example of how to cause the disease of Fr. After washing the leaves, stems, or root tissues of Brassicaceae plants with water, they are transferred to a sterile room and sterilized by immersing them in 0.1 wt% water for 1 minute or in 1 wt% sodium hypozinc acid solution for 7 minutes. The tissue is then cut with a scalpel disinfected with 70 vol% alcohol and placed in a wet chamber. At this time, the tissue is cut into appropriate sizes.
In particular, cutting tissues such as radish roots increases the area affected by the disease, as will be described later, and produces a large amount of resistance-inducing factors. A humid chamber can be easily constructed using a Petri dish lined with filter paper and sterilized water added, but it is sufficient to obtain a temperature higher than 90%, which is sufficient for the onset of downy mildew on cruciferous plants. On the other hand, we collected radish leaf pieces infected with downy mildew of cruciferous plants that naturally occurred in the field, and put them in a humid chamber (humidity chamber).
Conidia are generated under conditions of 90% or more), humidity of 20℃, and 200 lux, and the conidia are scraped off and suspended in water. This suspension is instilled into the cut tissue of the above-mentioned Brassicaceae plant (inoculation). The higher the conidia concentration in the suspension, the better, but 10 6 to 10 8 conidia/ml is sufficient. The onset of the disease takes place under conditions of 20°C and 200 lux for 4 to 7 days. Cruciferous plant downy mildew is a pathogenic bacterium that prefers relatively low temperatures, and its living temperature ranges from 3 to 25°C, but it is optimal to cause the disease to occur at around 20°C. Due to the onset of downy mildew on cruciferous plants, stems and leaves develop yellow-green to grayish-white spots with unclear outlines.
In addition, in the case of the roots, the surface becomes black (1-2 mm) [affected tissue]. Next, we will discuss how to make a triturate of diseased tissue. Cruciferous plant tissues are generally soft and can be ground with a household juicer. In order to further increase the grinding rate, use a Warlink blender (manufactured by Trio Science Co., Ltd.) to
Use a homogenizer such as the High Power Homogenizer (manufactured by Masuda Rika Kogyo) at 10,000 to 18,000 rpm for about 10 minutes, or use a disperser such as the Ultra Disperser (manufactured by Masuda Rika Kogyo).
Further sufficient grinding can be achieved by grinding at 20,000 to 25,000 rpm for about 1 minute. Since the triturate thus obtained contains cell walls, plasma membranes, fibrous tissue, epidermal tissue, etc. in addition to lignification-inducing factors, large tissue pieces are first separated and removed using gauze or the like. Furthermore, membrane tissue and the like are removed from the filtrate using a centrifuge. The centrifugal force at this time may be small, and around 700 g is sufficient. Remove the precipitate, take the triturated liquid, and remove the lignification-inducing factor-containing liquid (hereinafter referred to as
(referred to as LIF fluid). Additionally, the steps of milling and LIF liquid fractionation can be performed at room temperature. The yield of the grinding solution in the above process varies depending on the type of tissue, but is about 70% in the case of radish roots. The LIF solution thus obtained can be used as it is or diluted with 5 times or less water and sprayed onto target crops as a plant disease preventive agent using a sprayer such as a sprayer. The amount of liquid to be sprayed varies depending on the size of the target crop, but it is best to uniformly spray the foliage in the range of 3 ml to 30 ml/plant. Further, in order to improve the adhesion of the spray solution to the leaf surface, an appropriate amount of a commercially available spreading agent such as Neoesterin (manufactured by Kumiai Chemical Industry Co., Ltd.) may be added. It is also possible to mix and spray other chemicals such as insecticides, fungicides, plant growth regulators, and liquid fertilizers. The most effective time to spray is before the outbreak of the disease.
It can be used to suppress the spread of diseases even after they have occurred. (Effects of the Invention) The plant disease preventive agent of the present invention is an epoch-making invention that utilizes the immune response of plants, and since it is derived from plants, it is not only safe for humans and animals, but also environmentally friendly. It is also ideal from a protection standpoint. The effect of the plant disease preventive agent of the present invention is to suppress the invasion of pathogenic bacteria by inducing lignification of the cell walls of the sprayed plants, so diseases that can be prevented include anthracnose and other diseases. Various diseases can be mentioned. Although the target crops are typically Cucurbitaceae crops such as cucumbers and pumpkins, the plant disease preventive agent of the present invention is also effective against other crops. (Example) Next, an example of the present invention will be given. Example 1 [Adjustment of LIF solution] Japanese radish (Raphanus sativus L. cultivar, Tokinashi)
was cultivated in the field, and roots were collected 2 to 3 months after sowing. After washing the surface thoroughly with water, move it to a sterile room.
It was disinfected by immersing it in 0.1wt% water for 1 minute, and then washed with sterile water. Next, it was cut into 1 cm thick pieces using a scalpel disinfected with 70 vol% alcohol, covered with filter paper, and placed in a 9 cm diameter wet Petri dish containing sterile water. On the other hand, radish leaf pieces infected with naturally occurring cruciferous downy mildew were collected from the field, placed in a 15 cm diameter tray, and placed at a temperature of 20°C and 200 lux.
produced conidia. The conidia were scraped off with a platinum loop and suspended in a small amount of water. This suspension (conidia concentration 10 6 - 10 8 /
ml) was dripped onto the surface of the cut radish roots mentioned above in a sterile room at a ratio of 0.1 ml/ cm2 of surface, and this was
The cells were incubated at 200 lux for 7 days to induce disease. A cut root of a Japanese radish whose part 1 to 2 mm from the surface had turned black due to the onset of the disease was ground at 15,000 rpm using a Waring blender (manufactured by Trio Science Co., Ltd.). After filtering this ground material through four layers of gauze, the filtrate is further subjected to centrifugal force.
The mixture was centrifuged at 700g for 15 minutes, and the resulting triturate was used as LIF. [Test on the effect of suppressing the onset of anthracnose on cucumber]
Sow "Four Leaves" using a vinyl pot and place in an artificial weather machine [temperature 23℃, relative humidity 60-70%, lighting 8000 lux,
Seedlings were grown within a photoperiod of 13 hours. When the number of true leaves has grown to about 3 to 4, apply the LIF solution prepared in the above manner to 1 or 2 plants per cucumber.
Sprayed on the leaves. Three days after spraying the LIF solution, conidial suspension of anthracnose bacteria (spore concentration (0.9-1.0) x 106 pieces/ml)
Spray (inoculate) on the whole cucumber plant, 22-24℃,
After being kept in a humid chamber with 100% relative humidity for 20 hours,
The plants were transferred to the artificial climate chamber described above and grown. In addition, a control plot was set up in which water was sprayed instead of LIF solution. Six days after inoculation with anthracnose, the LIF liquid-treated leaves and upper leaves were examined for the number of lesions, and 13 days after inoculation, the lesion area was measured. The results are shown in Table 1. Numbers indicate the average of two replicates.

【表】 LIF液散布区は対照区に比べて病斑数および病
斑面積が著るしく減少し、LIF液の散布により植
物の病害に対する抵抗性が著るしく高まることが
明らかになつた。 さらに第1表の結果に示すように、LIF液を散
布していない上位本葉(第3葉)に対しても、発
病抑制効果がみられ、下位葉に散布されたLIF液
の効果が上位葉にも及ぶことが明らかになつた。 またLIF液散布区の細胞壁木化を調べるために
キユウリ葉柄の表皮をピンセツトで薄く剥ぎとり
80vol%エチルアルコールに浸漬して固定脱色後、
リグニンの発色試薬であるフロログリシン塩酸試
薬(フロログリシン:エチルアルコール:35%塩
酸=1:50:25v/v)で染色し、顕微鏡で調べ
たところLIF液散布区では無散布区に比べて強い
赤色化がみられ木化が著しいことが確認された。 また本発明の植物病害予防剤は直接炭そ病菌を
殺生するのではなく植物に作用して発病を抑制し
ていることは第2表に示すようにLIF液中での炭
そ病菌の分生子の発芽がむしろ蒸溜水中での発芽
より良いことより明らかである。
[Table] The number of lesions and lesion area were significantly reduced in the LIF liquid sprayed area compared to the control area, and it became clear that the LIF liquid spraying significantly increased the resistance of plants to diseases. Furthermore, as shown in the results in Table 1, the disease onset suppressing effect was seen even on the upper true leaves (third leaves) that were not sprayed with LIF solution, and the effect of LIF solution sprayed on lower leaves was higher. It has become clear that the disease also affects the leaves. In addition, in order to examine cell wall lignification in the LIF solution sprayed area, the epidermis of cucumber petioles was thinly peeled off with tweezers.
After fixation and decolorization by immersion in 80vol% ethyl alcohol,
It was stained with phloroglycin hydrochloride reagent (phloroglycin: ethyl alcohol: 35% hydrochloric acid = 1:50:25 v/v), which is a coloring reagent for lignin, and examined under a microscope. It was found that the area sprayed with LIF solution was stronger than the area without spraying. It was confirmed that red coloration was observed and significant lignification was observed. In addition, the plant disease preventive agent of the present invention does not directly kill the anthracnose bacteria, but acts on the plants to suppress the onset of the disease.As shown in Table 2, the conidia of the anthracnose bacteria in the LIF liquid It is clear that the germination is better than that in distilled water.

【表】 発芽分生子数
分生子発芽率=
[Table] Number of germinated conidia Conidial germination rate =

Claims (1)

【特許請求の範囲】[Claims] 1 ペロノスポラ パラジチカ(PeronospOra
para−sitica(Pers.)Fr.)に罹病したアブラナ科
植物組織の摩砕液を有効成分として含有すること
を特徴とする植物病害予防剤。
1 Peronospora parasitica (PeronospOra)
1. A plant disease preventive agent characterized by containing as an active ingredient a ground solution of a Cruciferous plant tissue infected with para-sitica (Pers. Fr.).
JP59205637A 1984-10-02 1984-10-02 Preventive for plant diseases Granted JPS6185303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59205637A JPS6185303A (en) 1984-10-02 1984-10-02 Preventive for plant diseases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59205637A JPS6185303A (en) 1984-10-02 1984-10-02 Preventive for plant diseases

Publications (2)

Publication Number Publication Date
JPS6185303A JPS6185303A (en) 1986-04-30
JPH0414641B2 true JPH0414641B2 (en) 1992-03-13

Family

ID=16510187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59205637A Granted JPS6185303A (en) 1984-10-02 1984-10-02 Preventive for plant diseases

Country Status (1)

Country Link
JP (1) JPS6185303A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104663185A (en) * 2013-11-29 2015-06-03 东港市椅圈镇农业技术推广站 Biological disease prevention and control method for Holland cucumbers planted in solar greenhouse
CN110495359B (en) * 2018-05-18 2021-09-24 华南农业大学 Cabbage heart planting method for improving edible quality and slowing down lignification of tender stems
CN111280038B (en) * 2020-03-04 2022-01-28 北京林业大学 Method for quickly obtaining primula denticulata hance old stake seedlings

Also Published As

Publication number Publication date
JPS6185303A (en) 1986-04-30

Similar Documents

Publication Publication Date Title
SU649293A3 (en) Composition for destroying pathogenic microorganisms
JP2007534765A (en) Method for treating plant diseases by microorganisms
JPS632901A (en) Agent for controlling viral disease of plant
Siddique et al. Allelopathic effects of'Fimbristylis miliacea'on the physiological activities of five Malaysian rice varieties
Dickens Studies on the chemical control of chrysanthemum white rust caused by Puccinia horiana
JPH0414641B2 (en)
JPH0871A (en) Raising seedling of crop of family cruciferae
WO2015152702A1 (en) Extracts of agricultural husks used to modify the metabolism of plants
Ben‐Yephet et al. Control of lettuce drop disease, caused by Sclerotinia sclerotiorum, with metham‐sodium soil treatment and foliar application of benomyl
CN107771811A (en) A kind of seed of bitter gourd inorganic agent and its method for handling seed of bitter gourd
JPS5924123B2 (en) plant growth regulator
JP2022543210A (en) Method and plant extract composition for promoting plant growth and preventing and controlling plant diseases
JPS6328404B2 (en)
Garas et al. Effects of growth regulating substances and root exudates on the seed germination of Orobanche crenata Forsk.
CN108552233A (en) A kind of paraquat aqua and preparation method thereof
CN106962367A (en) A kind of composition pesticide containing zinc thiazole and its application
JP3356973B2 (en) Composition for improving plant disease resistance comprising chitosan
US5039330A (en) Use of fructose-1,6-diphosphate in botany as germination and plant growth promoter
WO2021187815A1 (en) Microbial formulation for enhancing environmental stress tolerance of plants, containing flavobacterium sp. strain tch3-2 as active ingredient, and use thereof
JP2002544483A (en) Composition and method for measuring pesticide absorption rate of plant leaf
JP2001039810A (en) Control of mango anthrax
JP2942716B2 (en) How to prevent or control plant diseases
RU2137368C1 (en) Composition for regulation of functional state of plants
BR102023004692A2 (en) BIOLOGICAL AGENT FOR THE PREVENTION AND TREATMENT OF LEAF DISEASES IN PLANTS, WHICH ARE CAUSED BY BIOTROPHIC OR HEMIBIOTROPHIC FUNGI
JPH08104602A (en) Biophylaxis stimulator for plant