JPH0414596A - Self-diagnostic method of sludge conveying equipment - Google Patents

Self-diagnostic method of sludge conveying equipment

Info

Publication number
JPH0414596A
JPH0414596A JP11173590A JP11173590A JPH0414596A JP H0414596 A JPH0414596 A JP H0414596A JP 11173590 A JP11173590 A JP 11173590A JP 11173590 A JP11173590 A JP 11173590A JP H0414596 A JPH0414596 A JP H0414596A
Authority
JP
Japan
Prior art keywords
mud
sludge
self
pipe
muddy water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11173590A
Other languages
Japanese (ja)
Other versions
JP2530046B2 (en
Inventor
Kosaburo Tsuchiya
幸三郎 土屋
Michio Nakao
中尾 通夫
Kazuhiko Imakura
今倉 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP11173590A priority Critical patent/JP2530046B2/en
Publication of JPH0414596A publication Critical patent/JPH0414596A/en
Application granted granted Critical
Publication of JP2530046B2 publication Critical patent/JP2530046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Transport Of Granular Materials (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PURPOSE:To enable self-diagnosis of an equipment by measuring flow of sludge, specific gravity, number of revolutions of a pump, driving current and pipe pressure in the sludge conveying equipment of a shield excavator, and subjecting data obtained through static processing of measured values to fuzzy inference. CONSTITUTION:As a sensor to detect a driving state of a sludge conveying equipment, facing water pressure gauges a1 and a2 to detect pressure in a sludge room 18 and tachometers and ammeters are provided to a sludge delivery pump P1, and differential pressure density meters b1, b2 and electromagnetic flow meters c1, c2 are respectively to a sludge delivery and moving pipe 20. After that, the tachometers are provided respectively to sludge moving pumps P2, P3... PE, and pressure gauges d2 - E, e2 - E to measure absorbing and discharging pressure are respectively provided to the front and rear of each of pumps P2... PE. Those measured values are inputted to a self-diagnostic device 30 through direct or multi-transmission devices 32 and 34. According to the constitution, self-diagnosis of the sludge conveying equipment can be automatically made.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、泥水輸送設備の自己診断方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a self-diagnosis method for muddy water transport equipment.

(従来の技術) 周知のように、シールド工法は地盤中にトンネルを構築
する工法であり、この種の工法には地盤を掘削するシー
ルド掘進機が用いられる。
(Prior Art) As is well known, the shield construction method is a method of constructing a tunnel in the ground, and this type of construction method uses a shield excavator that excavates the ground.

ところで、近時のシールド工事は、複雑な地盤条件や大
深度、大口径など困難な条件下での施工が増加する傾向
にある。
Incidentally, in recent years, there has been a tendency for shield construction work to be performed under difficult conditions such as complex ground conditions, large depths, and large diameters.

このような困難な条件下での施工には、より一層の安全
性が要請されるとともに、省力化や施工能率の改善も同
時に要請されている。
Construction under such difficult conditions requires greater safety, as well as labor savings and improved construction efficiency.

そこで、例えば、1989年11月日本工業出版発行「
建設機械」には、シールド工事の自動化。
For example, in November 1989, published by Nippon Kogyo Publishing,
"Construction Machinery" includes automation of shield construction.

省力化を目的にした故障診断システムが開示されている
A fault diagnosis system aimed at saving labor has been disclosed.

この文献に示されている故障診断システムは、いわゆる
エキスパートシステムによるものであり、シールド工事
の専門家の知識をデータベースとして有していて、この
データベースに基づいて、故陣個所の推論を行うもので
あるが、この故障診断システムを泥水シールド掘進機の
泥水輸送設備に適用する場合には、以下に説明する技術
的課題があった。
The failure diagnosis system shown in this document is based on a so-called expert system, which has the knowledge of shield construction experts as a database, and based on this database, infers the location of the damaged part. However, when applying this failure diagnosis system to the muddy water transportation equipment of the muddy water shield excavator, there were technical problems described below.

(発明か解決しようとする課題) すなわち、上記文献に開示されている故障診断システム
では、故障位置を推論する際には、オペレータとの対話
形式で行われるので、その操作が煩雑になるとともに、
オペレータが操作しなければ結論が得られず、操作ミス
があると適正な推論が行われないという問題があった。
(Problem to be Solved by the Invention) In other words, in the fault diagnosis system disclosed in the above-mentioned document, when inferring the fault location, it is performed in an interactive manner with the operator, which makes the operation complicated and
There was a problem in that a conclusion could not be reached unless the operator operated the system, and that proper inference could not be made if there was an operational error.

この発明は、このような従来の問題点に鑑みてなされた
ものであり、その目的とするところは、自動的に、かつ
、総合的に泥水輸送設備の状態か判断できる自己診断方
法を提供することにある。
This invention was made in view of these conventional problems, and its purpose is to provide a self-diagnosis method that can automatically and comprehensively determine the condition of muddy water transport equipment. There is a particular thing.

(課題を解決するための手段) 上記目的を達成するために、本発明は、シールド掘進機
の泥水室に泥水を供給する送泥管と、前記泥水室から掘
削土砂と泥水との混合物を排出する排泥管と、前記送泥
管に設けられた送泥ポンプと、前記排泥管に設けられた
排泥ポンプとを偏えた泥水輸送設備の自己診断方法にお
いて、前記泥水および混合物の流量、比重、前記ポンプ
の回転数、駆動電流、前記泥水室や管内の圧力をそれぞ
れ測定し、得られた測定値の内から診断項目に応じて適
宜選択した測定値に平均値、最大値、最小値1分散1回
帰係数の演算などの統計処理を施し、得られた統計処理
データにより前記泥水輸送設備の状態をファジィ推論に
より判断することを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a mud pipe that supplies mud to a mud chamber of a shield excavator, and a mud pipe that discharges a mixture of excavated soil and mud from the mud chamber. A self-diagnosis method for muddy water transport equipment in which a mud pump provided on the mud pipe, a mud pump provided on the mud pipe, and a mud pump installed on the mud pipe are biased, the flow rate of the mud and mixture; The specific gravity, the rotation speed of the pump, the driving current, and the pressure inside the muddy water chamber and pipes are each measured, and the average value, maximum value, and minimum value are selected from the measured values as appropriate according to the diagnosis item. The method is characterized in that statistical processing such as calculation of one variance and one regression coefficient is performed, and the state of the muddy water transport equipment is determined by fuzzy inference based on the obtained statistical processing data.

(発明の作用効果) 上記構成の自己診断方法によれば、各測定値に対してメ
ンバーシップ関数を設定すれば、自動的に泥水輸送設備
の自己診断が行われる。
(Operations and Effects of the Invention) According to the self-diagnosis method configured as described above, if a membership function is set for each measured value, self-diagnosis of the muddy water transport equipment is automatically performed.

(実施例) 以下、この発明の好適な実施例について添付図面を参照
にして詳細に説明する。
(Embodiments) Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図から第3図は、この発明にかかる泥水輸送設備の
自己診断方法の一実施例を示している。
1 to 3 show an embodiment of the self-diagnosis method for muddy water transport equipment according to the present invention.

同図に示す自己診断方法では、第1図にその全体配置を
示すような装置類が用いられる。
In the self-diagnosis method shown in the figure, devices whose overall arrangement is shown in FIG. 1 are used.

第1図において、10は泥水式のシールド掘進機を示し
ており、シールド掘進機10は、筒状のスキンプレート
12と、このスキンプレート12の先端に回転可能に設
置されたカッター14とを有している。
In FIG. 1, numeral 10 indicates a muddy water type shield excavator, and the shield excavator 10 has a cylindrical skin plate 12 and a cutter 14 rotatably installed at the tip of the skin plate 12. are doing.

カッター14め前面には、多数のカッタービットが植設
され、その背面側には、−所定の間隔をおいて隔壁16
がスキンプレート12に固設され、泥水室18が隔成さ
れている。
A large number of cutter bits are installed on the front side of the cutter 14, and partition walls 16 are installed on the back side of the cutter 14 at predetermined intervals.
is fixed to the skin plate 12, and a muddy water chamber 18 is separated from the skin plate 12.

この隔壁16には、その上部側に泥水室18内に泥水を
供給する送泥管20が設けられており、下部側には掘削
された土砂と泥水との混合物を泥水室18から排出する
排泥管22が設けられている。
This partition wall 16 is provided with a mud feeding pipe 20 on its upper side for supplying muddy water into the muddy water chamber 18, and on its lower side is provided with a drainage pipe 20 for discharging a mixture of excavated earth and sand and muddy water from the muddy water chamber 18. A mud pipe 22 is provided.

一方、地上側には、泥水槽24と図外の回収槽とが設置
され、泥水槽24には送泥ポンプP1を介して送泥管2
0が接続されるとともに、回収槽には複数の排泥ポンプ
P2.P3・・・・・・PEを介して排泥管22が接続
されており、排泥管22を介して回収槽に収容された泥
水と掘削土砂との混合物は、混合物中の掘削土砂のみが
分離され、泥水は泥水槽24に導入されて再使用される
On the other hand, on the ground side, a mud tank 24 and a recovery tank (not shown) are installed, and the mud tank 24 is connected to a mud pipe 2 via a mud pump P1.
0 is connected to the collection tank, and a plurality of sludge pumps P2. P3...The mud draining pipe 22 is connected through the PE, and the mixture of muddy water and excavated soil stored in the collection tank through the mud draining pipe 22 is such that only the excavated soil in the mixture is The muddy water is separated and introduced into the muddy water tank 24 for reuse.

また、送泥管20と排泥管22との間には、2つのバイ
パス管25.26が接続されていて、方のバイパス管2
5はその前後に設けられたバルブを開閉することにより
、送泥管20から送られる泥水が泥水室18内に流入す
ることなく排泥管22に流出させるためのものである(
バイパスモード)。
Furthermore, two bypass pipes 25 and 26 are connected between the mud feeding pipe 20 and the mud removal pipe 22, and the bypass pipe 25 and 26 are connected to each other.
Reference numeral 5 is for opening and closing valves provided before and after the slurry pipe 20 so that the muddy water sent from the mud feeding pipe 20 flows out into the mud draining pipe 22 without flowing into the muddy water chamber 18 (
bypass mode).

そして、他方のバイパス管26は、前記と同様にバルブ
操作することにより、送泥管20から送られる泥水が泥
水室18内の下方からその内部に供給され、泥水室18
内の上方から排泥管22に流出させるために用いられる
(逆噴モード)。
Then, by operating the valve of the other bypass pipe 26 in the same manner as described above, the muddy water sent from the mud feeding pipe 20 is supplied into the inside of the muddy water chamber 18 from below, and the muddy water chamber 18
This is used to drain the sludge from above into the drainage pipe 22 (reverse injection mode).

以上のように構成されたシールド掘進機10ては、セグ
メントにシールドジヤツキの反力を取りつつ掘進させ、
カッター14で掘削された土砂は、泥水室18内に取り
込まれ、泥水とともに排泥管22から坑外の回収槽に排
出しながらトンネルか構築される。
The shield excavator 10 configured as described above allows the segments to excavate while absorbing the reaction force of the shield jack,
The earth and sand excavated by the cutter 14 is taken into the muddy water chamber 18, and is discharged along with the muddy water from the mud drainage pipe 22 to a collection tank outside the mine, while a tunnel is constructed.

このとき、泥水輸送設備(泥水槽24−送泥ポンプP1
−送泥管2〇−泥水室18−排泥管22−排泥ポンプP
2.P3.・・・・・PE−回収槽)では、地上側に設
置された自己診断装置30て以下のようにしてその自己
診断が自動的に行われる。
At this time, mud water transport equipment (mud water tank 24 - mud pump P1
- Sludge pipe 2〇 - Sludge chamber 18 - Sludge pipe 22 - Sludge pump P
2. P3. ...PE-recovery tank), the self-diagnosis is automatically performed by the self-diagnosis device 30 installed on the ground side as follows.

なお、自己診断装置30には、トンネル内に設置された
各種センサーからの測定値を複数の多重伝送装置子局3
2を介して受信する多重伝送装置親局34が接続されて
いる。
Note that the self-diagnosis device 30 transmits measured values from various sensors installed in the tunnel to a plurality of multiplex transmission device slave stations 3.
A multiplex transmission device master station 34 is connected which receives data via 2.

自己診断装置30で実施される自己診断は、泥水輸送設
備の切羽循環、バイパス、停止、逆噴の4つのモードに
分けて行われその処理手順を第2図に示している。
The self-diagnosis carried out by the self-diagnosis device 30 is carried out in four modes: face circulation, bypass, stoppage, and reverse injection of the muddy water transport equipment, and the processing procedure is shown in FIG.

処理手順がスタートすると、まず、ステ・ンブS1でセ
ンサーの測定値が取込まれ、同S2で取込んだ情報が記
憶される。
When the processing procedure starts, first, the measured value of the sensor is captured in step S1, and the information captured in step S2 is stored.

次いで、ステップS3では、所定回数の測定値が取込ま
れたか否かが判断され、所定回数取込まれると、ステッ
プS4ては記憶した測定値の統計的処理が実行される。
Next, in step S3, it is determined whether or not a predetermined number of measured values have been taken in. If the measured values have been taken in a predetermined number of times, in step S4, statistical processing of the stored measured values is performed.

このとき実行される統計的処理では、時間軸にについて
序列を付けた母集団か作成され、この母集団について平
均値、最大値、最小値1分散、標準偏差値1回帰係数の
計算か行われる。
In the statistical processing performed at this time, a population is created that is ranked along the time axis, and the average value, maximum value, minimum value 1 variance, and standard deviation 1 regression coefficient are calculated for this population. .

そして、ステップS5ては、現在泥水輸送設備がどのモ
ードにあるのか判断され、スップs6ては各モードに応
じてファジィ推論が実行され、推論によって得られた結
果をステップs7て゛表示してスタートに戻る。
Then, in step S5, it is determined which mode the muddy water transport equipment is currently in, and in step s6, fuzzy inference is executed according to each mode, and the results obtained by the inference are displayed in step s7, and the process starts. return.

以上の自己診断の要部を切羽循環モードを例にして具体
的に説明すると、まず、このモードでは泥水輸送設備の
駆動状態を検出するセンサーとしては、第1図に示すよ
うに、泥水室18内の圧力を検出する切羽水圧計al、
a2、送泥ポンプP1に回転計、電流計が設けられてお
り、また、送排泥管20にはそれぞれ差圧密度計b1.
b2と電磁流量計cl、c2が設置されている。
To specifically explain the main parts of the above self-diagnosis using the face circulation mode as an example, firstly, in this mode, the sensor that detects the driving state of the muddy water transport equipment is the muddy water chamber 18, as shown in FIG. A face water pressure gauge al that detects the pressure inside the
a2, the mud pump P1 is provided with a tachometer and an ammeter, and each of the mud transport pipes 20 is equipped with a differential pressure density meter b1.
b2 and electromagnetic flowmeters cl and c2 are installed.

また、排泥ポンプP2.P3.・・・・・・PEには、
それぞれ回転計が設置されるとともに、各ポンプP2.
P3.・・・・・・PEの前後には、それぞれ吸込およ
び吐出圧力を測定する圧力計d1〜E、el〜Eがそれ
ぞれ設置されている。
In addition, the sludge pump P2. P3.・・・・・・PE has
A tachometer is installed in each pump P2.
P3. . . . Pressure gauges d1 to E and el to E are installed before and after the PE, respectively, to measure suction and discharge pressures, respectively.

そして、これらの測定器での測定値は、切羽水圧A、送
泥流量B、送泥ポンプP1の回転数C1送泥ポンプP1
の電流値D、送泥流量変動値E、送泥比重F、排泥流量
変動値G1排泥ポンプP2〜PEの回転数変動値H1送
泥ポンプP2〜PEの回転数変動値I、排泥流量J、排
泥ポンプP2〜PEの吸込圧力に1同圧力変動し、排泥
ポンプP2〜PEの吐出圧力M1同圧力変動Nとして、
直接ないしは多重伝送装置32.34を介して自己診断
装置30に入力される。
The measured values with these measuring instruments are face water pressure A, mud feeding flow rate B, rotation speed C1 of mud feeding pump P1, mud feeding pump P1.
current value D, mud feeding flow rate fluctuation value E, mud feeding specific gravity F, mud removal flow rate fluctuation value G1 rotation speed fluctuation value of mud removal pumps P2 to PE H1 rotation speed fluctuation value I of mud feeding pumps P2 to PE, mud removal Assuming that the flow rate J, the suction pressure of the sludge pumps P2 to PE has the same pressure fluctuation, and the discharge pressure M1 of the sludge pumps P2 to PE has the same pressure fluctuation N,
The data are input to the self-diagnosis device 30 directly or via multiplex transmission devices 32,34.

一方、切羽循環モードにおける自己診断項目としては、
この実施例では、■切羽水圧の異常低下(送泥ポンプP
1の動力モータの異常)、■切羽水圧の異常低下(送泥
ポンプP1への異物の噛み込み)、■切羽水圧の異常低
下(送泥ポンプP1のインペラ部の破損)、■切羽水圧
の異常低下(送泥ポンプP1の回転数制御不良)、■切
羽水圧の異常低下(逸泥量の過大)、■切羽水圧の異常
低下(送泥ポンプP2〜PEの回転数制御異常)、■送
泥管22の閉塞発生の7項目を挙げている。
On the other hand, self-diagnosis items in face circulation mode include:
In this example, ■Abnormal decrease in face water pressure (sludge pump P
1 abnormality of the power motor), ■Abnormal decrease in water pressure at the face (foreign object caught in the mud pump P1), ■Abnormal decrease in water pressure at the face (damage to the impeller part of the mud pump P1), ■Abnormality in the water pressure at the face Decrease (improper rotation speed control of mud pump P1), ■ Abnormal decrease in face water pressure (excessive amount of mud lost), ■ Abnormal decrease in face water pressure (abnormal rotation speed control of mud pumps P2 to PE), ■ Sludge feed Seven items are listed for occurrence of blockage of the pipe 22.

そして、上記測定値A−Hは、■〜■の診断項目に応じ
て適宜選択され、予めそれぞれファジィ推論に用いるメ
ンバーシップ関数が定められている。
The measured values A to H are appropriately selected according to the diagnostic items (1) to (2), and membership functions used for fuzzy inference are determined in advance.

以上の診断項目と出力およびメンバーシップ関数との関
係を第3図に示している。
The relationship between the above diagnostic items, outputs, and membership functions is shown in FIG.

自己診断の実行に当たっては、各測定値A−Hは、前述
したように統計処理が行われ、平均値などが演算される
In executing the self-diagnosis, each measured value A to H is subjected to statistical processing as described above, and an average value and the like are calculated.

第3図の各欄に示している記号の意味を表にして示した
のが以下の第1表であり、例えば、診断項目■の行て送
泥流量Bに示しているA L (3)は、診断の任意の
ループ間での送泥流zBの平均値であり、同A B (
10)は10リングでの送泥流量の平均初期設定値であ
る。
Table 1 below shows the meanings of the symbols shown in each column of Fig. 3. For example, in the diagnosis item ■, the A L (3) shown in mud feeding flow rate B is shown in Table 1 below. is the average value of the mud flow zB between any loops of diagnosis, and the same A B (
10) is the average initial setting value of the mud feeding flow rate in 10 rings.

さて、以上のように設定された状態での推論について、
例えば、診断項目■の切羽水圧の異常低下でどのように
推論が行われるかについて説明すると、まず、切羽水圧
Aに対しては現時点での測定値が設定値よりも大きいか
否かが演算され、これが設定値以上の場合に100%の
確信度で切羽水圧が上昇していると判断される。
Now, regarding the inference with the above settings,
For example, to explain how inferences are made for diagnosis item (■) abnormal decrease in water pressure at the face, first, for water pressure A at the face, it is calculated whether or not the measured value at the present moment is greater than the set value. , if this is greater than the set value, it is determined with 100% certainty that the face water pressure is increasing.

また、送泥流jlBに対しては、その3ループでの平均
値が、10リングでの平均初期設定値に対して約60%
以下の場合に切羽水圧が異常に低下しているとか100
%の確信度で判断される。
In addition, for the mud flow jlB, the average value for the 3 loops is approximately 60% of the average initial setting value for the 10 rings.
The water pressure at the face is abnormally low in the following cases:
Judged with % confidence.

さらに、送泥ポンプPの回転数Cでは、3リングの平均
値が、10リングでの平均初期設定値に対して約60%
以下の場合に切羽水圧が100%の確信度で低下してい
ると判断される。
Furthermore, at the rotation speed C of the mud pump P, the average value for 3 rings is approximately 60% of the average initial setting value for 10 rings.
In the following cases, it is determined with 100% certainty that the face water pressure has decreased.

さらに、送泥ポンプPの電流値りは、1ループの平均値
が、10リングでの平均初期設定値から約40%以下の
場合に切羽水圧が100%の確信度で低下していると判
断され。
Furthermore, if the average value of the mud pump P current value for one loop is approximately 40% or less from the average initial setting value for 10 rings, it is determined that the face water pressure has decreased with 100% certainty. It is.

そして、最終的な■切羽水圧の異常低下(送泥ポンプP
の動力モータ異常)に対する判断は、上記各判断の確信
度の最小のものを採用して、例えば、現在の状況では、
何%の確信度で送泥ポンプP1の動力モータの異常によ
り切羽水圧が異常に低下していると推論される。
Then, the final abnormal decrease in face water pressure (sludge pump P
For example, in the current situation, the judgment regarding the power motor abnormality) is made by adopting the lowest confidence of each judgment above.
It can be inferred with what percentage of certainty that the water pressure at the face is abnormally reduced due to an abnormality in the power motor of the slurry pump P1.

このような推論は、診断項目■〜■のそれぞれについて
同様な手法で自動的に行われ、その結果が表示されるこ
とになる。
Such inference is automatically performed using the same method for each of the diagnostic items (■-■), and the results are displayed.

なお、以上の説明では泥水輸送設備の切羽循環モードに
おける自己診断方法について説明したか、バイパスモー
ド、停止モードおよび逆噴モードに対しても、各モード
に応じた診断項目を設定し、かつ、設定された診断項目
に応じて測定値を適宜選択して、それぞれにメンバーシ
ップ関数を設定しておけば上記と同様に自動的に自己診
断が行われることになる。
In addition, in the above explanation, we have explained the self-diagnosis method in the face circulation mode of muddy water transportation equipment, but also in the bypass mode, stop mode, and reverse injection mode, we have set diagnostic items according to each mode, and the settings If measurement values are appropriately selected according to the diagnostic items and membership functions are set for each, self-diagnosis will be automatically performed in the same way as described above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる泥水輸送設備の自己診断方法の
実施状態の全体説明図、第2図は同方法の処理手順を示
すフローチャート、第3図は診断項目と測定値およびメ
ンノく−シ・ツブ関数の関係を示す説明図である。 10・・・・・・・・・シールド掘進機18・・・・・
・・・・送泥室 20・・・・・・・送泥管 22・・・・・・・・・排泥管 Pl・・・・・・・・・送泥ポンプ P2,3・・・排泥ポンプ 30・・・・・・・・・自己診断装置
Fig. 1 is an overall explanatory diagram of the implementation state of the self-diagnosis method for muddy water transport equipment according to the present invention, Fig. 2 is a flowchart showing the processing procedure of the method, and Fig. 3 is a diagram showing diagnostic items, measured values, and menu diagrams. - It is an explanatory diagram showing the relationship between the Tsubu functions. 10......Shield excavator 18...
...Sludge feeding chamber 20...Sludge feeding pipe 22...Sludge removal pipe Pl...Sludge pump P2, 3... Sludge pump 30... Self-diagnosis device

Claims (1)

【特許請求の範囲】[Claims] (1)シールド掘進機の泥水室に泥水を供給する送泥管
と、前記泥水室から掘削土砂と泥水との混合物を排出す
る排泥管と、前記送泥管に設けられた送泥ポンプと、前
記排泥管に設けられた排泥ポンプとを備えた泥水輸送設
備の自己診断方法において、前記泥水および混合物の流
量、比重、前記ポンプの回転数、駆動電流、前記泥水室
や管内の圧力をそれぞれ測定し、得られた測定値の内か
ら診断項目に応じて適宜選択した測定値に平均値、最大
値、最小値、分散、回帰係数の演算などの統計処理を施
し、得られた統計処理データにより前記泥水輸送設備の
状態をファジィ推論により判断することを特徴とする泥
水輸送設備の自己診断方法。
(1) A mud pipe that supplies mud to the mud chamber of the shield excavator, a mud discharge pipe that discharges a mixture of excavated soil and mud from the mud chamber, and a mud pump installed in the mud pipe. , a self-diagnosis method for muddy water transport equipment equipped with a muddy pump installed in the muddy pipe, the flow rate and specific gravity of the muddy water and the mixture, the rotational speed of the pump, the driving current, and the pressure in the muddy room and the pipe. The obtained statistics are calculated by performing statistical processing such as calculating the average value, maximum value, minimum value, variance, and regression coefficient on the measured values that are selected according to the diagnostic item. A self-diagnosis method for muddy water transport equipment, characterized in that the status of the muddy water transport equipment is determined by fuzzy reasoning based on processed data.
JP11173590A 1990-05-01 1990-05-01 Self-diagnosis method for mud transport equipment Expired - Fee Related JP2530046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11173590A JP2530046B2 (en) 1990-05-01 1990-05-01 Self-diagnosis method for mud transport equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11173590A JP2530046B2 (en) 1990-05-01 1990-05-01 Self-diagnosis method for mud transport equipment

Publications (2)

Publication Number Publication Date
JPH0414596A true JPH0414596A (en) 1992-01-20
JP2530046B2 JP2530046B2 (en) 1996-09-04

Family

ID=14568854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11173590A Expired - Fee Related JP2530046B2 (en) 1990-05-01 1990-05-01 Self-diagnosis method for mud transport equipment

Country Status (1)

Country Link
JP (1) JP2530046B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4601853B2 (en) * 2001-05-15 2010-12-22 株式会社鴻池組 Muddy water type propulsion method
CN102433911A (en) * 2011-10-01 2012-05-02 徐州徐工挖掘机械有限公司 Online fault diagnosis system and method for excavator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4601853B2 (en) * 2001-05-15 2010-12-22 株式会社鴻池組 Muddy water type propulsion method
CN102433911A (en) * 2011-10-01 2012-05-02 徐州徐工挖掘机械有限公司 Online fault diagnosis system and method for excavator

Also Published As

Publication number Publication date
JP2530046B2 (en) 1996-09-04

Similar Documents

Publication Publication Date Title
US4171848A (en) Control method and system for ensuring stable boring operation at working face during tunnelling with tunnel boring or shield machine
US4167289A (en) Method and system for controlling earth pressure in tunnel boring or shield machine
CN103180793A (en) Anomaly diagnostic device and industrial machine
CN106640100A (en) Improved shield master driving HBW grease injection device and control method thereof
CN102619525A (en) Method for dredging blocked mud door of slurry shield by aid of backwash and system
JP2007247200A (en) Muddy water shielding device
JPH0414596A (en) Self-diagnostic method of sludge conveying equipment
CN214334581U (en) Slurry density detection system of slurry storehouse and slurry shield machine
JP2002180781A (en) Method for controlling face hydraulic pressure in slurry shield method
JP7449634B2 (en) Mud water type shield excavator and its excavation method
CN206495678U (en) A kind of main driving HBW grease injection devices of the shield of improvement
JP7427342B2 (en) Mud water type shield excavation machine and compressed air pressure adjustment method in muddy water type shield excavation machine
JPH06257381A (en) Synthetic control system for shield work
JP2648824B2 (en) Self-diagnosis method of tunnel machine
JPH08218771A (en) Sludge type tunnel excavator
CN210087328U (en) Air cushion type direct pressure balance control system
JP3129853B2 (en) Automatic control system of face water pressure in mud pressurized shield construction
JP2575051B2 (en) Construction management method of mud pressurized shield method
CN207348870U (en) Intelligent electric-controlled wellblock by-pass collar and jacking construction system
JPH11303585A (en) Carry-out control device for dug earth and sand
JP7449638B2 (en) Management screen for muddy shield tunneling machine
JP2797170B2 (en) Method and apparatus for controlling grease supply pressure to a seal portion in a shield machine
US4486124A (en) Pipe laying method and apparatus
JP2783936B2 (en) Pump pump equipment used for construction work
KR102381871B1 (en) Apparatus and method for producing mud and treating waste mud in mud circulation system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees